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Abstract 

Background Reproduction is vital to welfare, health, and economics in animal husbandry and breeding. Health 
and reproduction are increasingly being considered because of the observed genetic correlations between reproduc-
tion, health, conformation, and performance traits in dairy cattle. Understanding the detailed genetic architecture 
underlying these traits would represent a major step in comprehending their interplay. Identifying known, putative 
or novel associations in genomics could improve animal health, welfare, and performance while allowing further 
adjustments in animal breeding.

Results We conducted genome-wide association studies for 25 different traits belonging to four different com-
plexes, namely reproduction (n = 13), conformation (n = 6), production (n = 3), and metabolism (n = 3), using a cohort 
of over 235,000 dairy cows. As a result, we identified genome-wide significant signals for all the studied traits. The 
obtained summary statistics collected served as the input for a Mendelian randomisation approach (GSMR) to infer 
causal associations between putative exposure and reproduction traits. The study considered conformation, produc-
tion, and metabolism as exposure and reproduction as outcome. A range of 139 to 252 genome-wide significant 
SNPs per combination were identified as instrumental variables (IVs). Out of 156 trait combinations, 135 demonstrated 
statistically significant effects, thereby enabling the identification of the responsible IVs. Combinations of traits related 
to metabolism (38 out of 39), conformation (68 out of 78), or production (29 out of 39) were found to have significant 
effects on reproduction. These relationships were partially non-linear. Moreover, a separate variance component 
estimation supported these findings, strongly correlating with the GSMR results and offering suggestions for improve-
ment. Downstream analyses of selected representative traits per complex resulted in identifying and investigating 
potential physiological mechanisms. Notably, we identified both trait-specific SNPs and genes that appeared to influ-
ence specific traits per complex, as well as more general SNPs that were common between exposure and outcome 
traits.

Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

*Correspondence:
Leopold Schwarz
leopold.schwarz@uni-goettingen.de
Full list of author information is available at the end of the article

http://orcid.org/0009-0008-0069-5320
http://orcid.org/0000-0002-7605-7148
http://orcid.org/0000-0002-7112-0320
http://orcid.org/0000-0001-6450-1160
http://orcid.org/0000-0002-6782-2039
http://orcid.org/0000-0001-5352-464X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-025-00950-w&domain=pdf


Page 2 of 18Schwarz et al. Genetics Selection Evolution            (2025) 57:7 

Introduction
Female fertility is of fundamental importance in dairy 
cattle. Despite this, over the decades, a decrease in 
reproductive performance has been observed [1, 2], 
while production traits like milk kg (MKG), fat kg 
(FKG) or protein kg (PKG) have improved and been 
the central focus of breeding programmes in dairy pro-
duction systems [3]. Various factors can contribute to 
these circumstances, including an extremely low herit-
ability for reproductive performance compared to pro-
duction traits, a negative genetic correlation between 
these trait pairs, and management deficiencies [4–6]. 
To consider these factors and improve functional traits, 
the genetic correlation between the traits is crucial [7, 
8] and remains a persistent challenge in dairy cattle 
breeding programmes [9]. The modifications needed 
for enhancement are of further interest to fulfil soci-
ety’s increasing awareness of animal welfare and the 
ongoing changes in husbandry conditions, such as cli-
mate change [10, 11]. Moreover, genetic correlation can 
arise for distinctive reasons, including but not limited 
to linkage between causal variants or forms of pleiot-
ropy [12, 13], i.e., more than one trait is affected by a 
genetic variant.

Furthermore, it is important to differentiate between 
genetic correlation and causation and identify the 
underlying causal mechanisms [12–14]. The extent and 
direction of genetic correlation may vary depending on 
the specific traits under consideration [9, 15]. Never-
theless, a detailed and direct inference about causality 
or causal associations from genetic correlations alone is 
not feasible [13, 16, 17]. It is necessary to move beyond 
global correlation to gain detailed genomic correlation 
and causality analysis and determine the connection 
between quantitative traits in dairy cattle breeding [18, 
19].

Several established approaches and methods can be 
used to reveal potential causal associations between 
traits [14]. Randomised controlled trials (RCTs) are 
generally considered the gold standard for causality 
testing of possible exposure (e.g. treatment) against 
outcomes (e.g.  disease) [20]. Nevertheless, RCTs are 
restricted in their ability to ascertain the causal rela-
tionships between quantitative traits due to the con-
trol challenges for potential confounding factors 
[21]. Moreover, the small sample size and controlled 
experimental conditions may not accurately reflect the 

conditions present on commercial dairy farms. It is 
important to note that only observational data is avail-
able, which can limit the reliability of the findings. One 
way to address this problem is to use single nucleotide 
polymorphisms (SNPs) as instrumental variables (IVs) 
for achieving randomisation, a method known as the 
Mendelian randomisation (MR) approach [12, 22, 23]. 
This method allows for the inference of potential causal 
association effects between two traits. The design of the 
method defines the case and control groups, revealing 
the potential association effects between exposure and 
outcome.

Burgess et  al. [12] provided guidelines for MR analy-
ses and compared the various available methods. In gen-
eral, three key assumptions must be fulfilled by the IVs 
[24, 25]: (1) the IV is associated with the exposure, (2) 
the IV does not affect the outcome except potentially via 
the exposure, and (3) the IV is not associated with the 
outcome due to confounding pathways. This study used 
summary statistics from genome-wide association stud-
ies (GWAS) and performed MR using the generalised 
summary-data-based Mendelian randomisation (GSMR) 
approach [17]. This method identified and quantified 
genetic effects between traits and narrowed down poten-
tial mediators for causal association effects, such as plei-
otropy [17, 26].

Briefly, trait interrelationship may arise due to vary-
ing reasons, simplified here into three major categories: 
(1) real (biological) pleiotropy, indicating one variant 
is affecting two traits similar to one variant is causative 
for both traits (2) mediated (vertical/indirect) pleiotropy, 
whereby one variant affects one trait through another, 
and (3) supposed real (horizontal/direct) pleiotropy, 
where causal variants for two traits are in linkage dise-
quilibrium (LD) with a variant associated with both traits 
but may even fall in distinct loci [12, 27].

Notably, the second category, mediated pleiotropy, is 
particularly interesting, as it encompasses the genetic 
correlation employed to ascertain the underlying causal 
association [13]. Consequently, the principal objective 
of the GSMR method is to infer the causal association 
between traits mediated by the IVs [12, 17]. Moreover, 
this method has additional advantages, including iden-
tifying horizontal pleiotropic variants that affect both 
traits and their removal from further analyses, as well 
as approximating the causal effect of an exposure on an 
outcome [17, 26]. The most notable distinction between 

Conclusions Our study confirms the known genetic associations between reproduction traits and the three com-
plexes tested. It provides new insights into causality, indicating a non-linear relationship between conformation 
and reproduction. In addition, the downstream analyses have identified several clustered genes that may mediate this 
association.
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MR studies in livestock species and humans is the dis-
crepancy in the availability of potential exposure data 
and the observational setting. While voluntary and self-
determined treatments for dairy cattle are scarcely avail-
able, human studies commonly focus on self-determined 
behaviours such as smoking [22], alcohol consumption 
[28] or physical activities [29].

To better understand the interconnections between 
various trait complexes, we analysed traits related to 
reproduction, production, conformation, and metabo-
lism to assess their potential influences on one another. 
The traits associated with the complexes of conforma-
tion, production and metabolism were selected for their 
putative exposures on the reproduction traits as the out-
come, based on known or presumed genetic connections 
(e.g. body condition score and calving interval [30] or 
negative energy balance and hypothalamo-hypophyseal 
axis [31]).

Ketosis (KET), displaced abomasum (LMV) and milk 
fever (MIF) were used as potential indicators of metabo-
lism. In addition to the body condition score (BCS), milk 
type (MTY) and several overall scores for body (OBS), 
udder (OUS), feet and legs (OFL), or conformation 
(OCS) were used to outline conformation. Here, we used 
an approach based on GWAS summary statistics for 25 
traits, including 235,164 German Holstein Friesian dairy 
cows. The identified IVs were then used for downstream 
analyses to identify potential candidate genes responsi-
ble for the detected effects. Additionally, we performed 
genetic restricted maximum likelihood (GREML) analy-
ses to estimate variance components within a smaller 
dataset of 48,118 animals. The study combined informa-
tion from GSMR and GREML to investigate the overall 
interrelationship between traits based on SNPs from 
GREML and IVs identified from GSMR.

Material and methods
Animals and phenotypes
Phenotypic and genotypic data were provided by the 
national computing centre VIT (Vereinigte Informations-
systeme Tierhaltung w.V., Verden, Germany) and part of 
the ‘KuhVision’ dataset based on German Holstein cows, 
which represent the genomic pattern of the German Hol-
stein Friesian reference population [8].

The number of animals with observational data per 
trait ranged from 110,629 to 192,188 (Table  1), repre-
senting 235,164 animals in total. We estimated the vari-
ance components using a subset of 48,118 animals that 
simultaneously had complete observations for all traits. 
To ensure clarity, we have employed the terms and abbre-
viations defined by VIT [32]. A total of 25 traits related to 

conformation, production, metabolism, or reproduction 
were analysed.

The 13 reproduction traits reflect the calving-related 
traits with calving ease direct/maternal (CEd/CEm), 
endometritis/metritis (MET), retained placenta (NGV), 
stillbirth direct/maternal (SBd/SBm) or ovary cycle dis-
turbances (ZYS). Additionally, they also include fertility 
indicators such as calving to first insemination cow (CFc), 
days open cow (DOc), first to last insemination cow/
heifer (FSc/FSh) or non-return rate cows/heifers (NRc/
NRh).

For this analysis, we used phenotypic data as dere-
gressed proofs (DRPs) obtained from VIT’s 2021 breed-
ing value estimation. The calculations were made using 
the deregression method by Jairath et  al. [33], which 
aligned with its application described by Liu and Masuda 
[34]. However, it is important to highlight the informa-
tive value of the DRPs, which were corrected for environ-
mental factors and the population mean. Therefore, they 
were taken from different steps of the national breeding 
value estimation in Germany. For example, a lower value 
for MET implies a higher susceptibility, while a lower 
value for CFc indicates a shorter period than the popula-
tion mean.

Genotyping data, quality control
The genotypes comprising 45,613 SNPs were obtained 
through routine genetic evaluation. The study mainly 
included animals imputed to the 50K level using various 
versions of the EuroGenomics low-density chips (Eurog-
enomics, Amsterdam, NL), with a minority genotyped 
using various versions of the Illumina 50K chips (Illu-
mina Inc., San Diego, CA) and EuroGenomics medium-
density chips (Eurogenomics, Amsterdam, NL).

The imputation procedure described in Segelke et  al. 
was implemented [35]. To perform further analyses, we 
filtered the data using PLINK v1.90 [36], removing SNPs 
with a minor allele frequency below 1%. The genotype 
dataset used in the GCTA tool version 1.93.2 beta con-
tained 44,994 SNPs on Bos taurus (BTA) autosomes and 
the X chromosome (BTAX) [37].

Variance components and genetic correlations
Variance components and genetic correlations between 
traits were estimated using GREML [38] as implemented 
in GCTA [37]. The analysis was conducted on a subset of 
48,118 animals. The trait variances were partitioned into 
an additive genetic and a residual component. This parti-
tion was based on the genetic relationship between the 
individuals using the autosomal SNPs (44,136) [38] in a 
univariate analysis. The SNP heritability (the proportion 
of phenotypic variance explained by the additive effects 
of common SNPs) was estimated. A bivariate GREML 
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(biREML) analysis was conducted to assess the genetic 
correlations between traits, as described by Lee et  al. 
[39].

Genome‑wide association studies
Each trait was split into two equal cohorts to accom-
modate the large number of animals per trait and meet 
the computational demand. GWAS was conducted sepa-
rately for each cohort. To identify the genomic regions 
associated with each one, single-trait GWAS was per-
formed for all 25 using GCTA [37] with a mixed-linear 
model approach (MLMA) using a single SNP regression 
[40], as implemented with the model below:

In this case, the phenotype vector represented as 
DRPs is denoted by y , while 1 is a vector of ones and µ 
signifies the mean term. The additive (fixed) effect of the 
individual candidate SNP being tested for association is 

y = 1µ+ xb+ g + e

represented by b, and the vector x stores the SNP gen-
otype indicator variables coded as 0, 1 or 2 for all ani-
mals for one of the 44,994 SNPs on the autosomes and 
BTAX. The genetic relationship matrix (GRM) captures 
the polygenic effect, represented by g , while the residual 
is represented by e. To account for the kinship structure 
of the study population, the GRM was constructed using 
all autosomal SNPs (44,136). Subsequently, meta-anal-
yses were conducted using the METAL program (ver-
sion 2020-05-05) [41] to combine both cohorts per trait 
and obtain a joint test statistic. METAL utilises GWAS 
test statistics obtained from MLMA, which include esti-
mated effects and standard errors per SNP. Furthermore, 
METAL considers individual cohorts’ sample sizes to 
combine p-values and convert them into merged signed 
Z-scores [41].

In addition to the default settings, the flag for genomic 
control correction was set to restrict the genomic infla-
tion factor (lambda, λ) of every test statistic to a maxi-
mum value of one. To ensure accurate results, we 

Table 1 Complex, trait, abbreviation and number of animals (No.) used for GWAS and subsequent GSMR analyses

h2 = SNP-based heritability estimates of the traits with their standard errors (SE)

Complex Trait Abbreviation No. h2 (SE)

Exposure

 Conformation Body condition score BCS 163,127 0.318 (0.007)

Milk type MTY 163,127 0.298 (0.007)

Overall conformation score OCS 163,127 0.281 (0.007)

Overall body score OBS 163,127 0.339 (0.007)

Overall udder score OUS 163,127 0.286 (0.007)

Overall feet and legs score OFL 163,127 0.108 (0.005)

 Metabolism Ketosis KET 148,515 0.070 (0.004)

Displaced abomasum LMV 133,525 0.102 (0.005)

Milk fever MIF 145,802 0.068 (0.004)

 Production Milk kg MKG 180,217 0.439 (0.007)

Fat kg FKG 180,217 0.372 (0.007)

Protein kg PKG 180,217 0.324 (0.007)

Outcome

 Reproduction Non-return rate cows NRc 163,663 0.063 (0.004)

Non-return rate heifers NRh 187,004 0.106 (0.005)

First to last insemination cows FSc 149,289 0.146 (0.005)

First to last insemination heifers FSh 176,091 0.091 (0.004)

Calving to first insemination cow CFc 165,212 0.109 (0.005)

Days open cow DOc 165,212 0.167 (0.006)

Calving ease direct CEd 130,495 0.095 (0.005)

Calving ease maternal CEm 185,153 0.097 (0.005)

Stillbirth direct SBd 138,592 0.103 (0.005)

Stillbirth maternal SBm 192,188 0.132 (0.005)

Retained placenta NGV 142,395 0.068 (0.004)

Metritis/Endometritis MET 126,842 0.054 (0.003)

Ovary cycle disturbances ZYS 110,629 0.070 (0.004)



Page 5 of 18Schwarz et al. Genetics Selection Evolution            (2025) 57:7  

conducted a genomic control parameter [42] estimation 
for each input file. We then applied genomic control cor-
rection to input statistics before performing a meta-anal-
ysis and creating the joint summary statistic.

The meta-analyses were performed twice for each trait 
[41]. First, the separate cohorts were combined to obtain 
a joint test statistic. Second, the obtained combined test 
statistic was re-processed to correct any putative 
genomic inflation arising from the combination. There-
fore, to prevent p-value inflation, the λ values for genomic 
inflation were restricted to a maximum of one (λ ≤ 1). 
Subsequently, the Z-scores obtained from METAL were 
transformed back to beta values using the method 
described by Zhu et al. [26]. The basic principle of trans-
formation relies on  bzx (effect of the single SNP (z) on the 
trait, here exposure (x)) that could be interpreted in 
standard deviation (SD) units, i.e.   bzx =

Zzx√
2p(1−p)(n+z2zx)

, 

with p being the allele frequency and n being the sample 
size [26].

For considering genetic variants as associated, the 
GWAS threshold for significance was Bonferroni-cor-
rected on a genome-wide level to account for multiple 
SNP testing. Therefore, a type-I error value of α = 0.05 
was used, divided by the number of tests (p = 1.11 *  10−6 
[(0.05/44,994), −  log10 (p) ≈ 5.95]). The Manhattan plots 
for graphical representation were generated using the R 
package ggplot2 [43] in R version 4.2.0 [44].

Mendelian randomisation
Mendelian randomisation was performed using sum-
mary statistics from the above GWAS and the GSMR 
approach implemented in GCTA [17]. This method 
extends the summary-data-based MR (SMR) method 
[26]. It integrates the estimates of SNP effects and the 
distinction between causality; in this case, the influence 
of the SNP on the outcome is mediated by the exposure. 
Furthermore, it incorporates horizontal pleiotropy; in 
this case, the SNP has a different impact on exposure and 
outcome, thus accounting for LD structure and variance 
in both [17].

Zhu et al. provide a comprehensive explanation of the 
method [17]. However, briefly, the following filter set-
tings were used: the GWAS threshold p-value was set 
to 1.11 *  10−6 after applying Bonferroni correction. The 
clumping r2 threshold was set to 0.05, with a minimum 
of ten genome-wide significant and quasi-independent 
SNPs used as the default for analysis. The fundamental 
concept is that if an exposure (x) affects an outcome (y), 
any instrumental variables (IVs, SNPs, z) that are causally 
associated with x will also affect y. Moreover, the effect of 
x on y  (bxy) is expected to be identical for any SNPs with-
out pleiotropy [17].

In this study, the MR estimate of the GSMR method, 
which indicates the causal effect of a specific exposure on 
a given outcome trait, is calculated for the individual var-
iant (i) as  bxy(i) = bzy(i)bzx(i)

 . For each combination of individual 
exposure against the individual outcome, the overall  bxy 
equals the sum of all the single IV effects estimated, fol-
lowing a normal distribution given ~ N(bxy, V). In this 
context, V represents the variance–covariance matrix of 
 bxy, which includes the LD correlation between the IVs 
[17]. Using the HEIDI (heterogeneity in dependent 
instruments) outlier filtering [17], we crucially removed 
horizontal pleiotropic variants to avoid any possible vio-
lation of the MR assumptions outlined above (e.g. [25]). 
The fundamental concept was to test every IV for a sig-
nificant deviation (di) of the individual  bxy(i) from a target 
SNP that had a strong association with the exposure 
tested  (bxy(top)).

Interestingly, the capacity to identify heterogene-
ity is enhanced as the correlation between the SNP and 
the exposure in question strengthens. However, sim-
ply selecting the most exposure-associated SNP is not 
feasible as there is a possibility it may have a markedly 
strong pleiotropic effect [17]. Therefore, to increase 
robustness, the distribution of  bxy is ordered as a func-
tion of −  log10(p-value) for  bzx, and the SNP with the 
strongest association is then selected in the third quin-
tile of the distribution itself. Given the approximation of 
di =  bxy(i) −  bxy(top) and var(di) = var(bxy(i)  −  bxy(top)), con-
sidering the LD among IVs and filtering for LD that was 
not removed by the clumping filter beforehand [17].

Each potential exposure trait was tested against all 
reproduction-associated traits as separate outcomes. 
For every trait combination, we obtained the instrumen-
tal variables  (SNPGSMR) that represented them, the esti-
mated mediated effect of the exposure on the outcome 
 (bxy), both overall and per individual IV, as well as the 
corresponding p-value (pGSMR) after HEIDI filtering for 
the removal of pleiotropic SNPs [17]. To correct for the 
multiple testing on 13 different reproduction traits jointly 
against each single potential exposure trait and to deter-
mine the significance threshold for each combination 
(single exposure vs. single outcome), we used the remain-
ing number of SNPs after applying the GWAS thresh-
old and LD-clumping (=  SNPINDEX) for correction. As a 
result, we used a threshold of pGSMR < (0.05/SNPINDEX) for 
significance.

Downstream analysis
The study used the Ensembl Variant Predictor (VEP) 
release 94 [45] with markers identified by the GSMR 
method and the results for  SNPGSMR per trait combina-
tion as the data input. The Bos taurus genome (assembly 
ARS-UCD1.2) was screened for putative genes within 
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a 1000 base pair (bp) range downstream and upstream 
of each identified marker. Only known genes with con-
firmed symbols approved by the gene nomenclature [46] 
were considered. As a result of the GSMR analysis, four 
traits from three complexes were selected: BCS and OBS 
for conformation, MKG for production, and KET for 
metabolism.

For the conformation traits, we chose a direct trait 
and a linear score trait to compare. Finally, the R pack-
age VennDiagram [47] was used to generate a Venn dia-
gram showing shared candidate genes between the four 
selected traits.

Results
Variance components and genetic correlations
Our results show that heritability estimates were low for 
traits representing reproduction, metabolism, and partly 
conformation (e.g. OFL  h2 = 0.108, Table  1). Regarding 
reproductive and metabolic traits, MET had the lowest 
heritability  (h2 = 0.054) and DOc the highest  (h2 = 0.167). 
Moderate estimates were obtained for the other confor-
mation traits (like BCS  h2 = 0.318) and for production, 
demonstrating even higher heritability estimates (MKG 
 h2 = 0.439).

We used the biREML option to estimate genetic cor-
relations, which involved all 44,136 autosomal SNPs in 
the panel. For this study, these estimates are presented 
at three different levels: (1) between all exposure and all 
outcome combinations, (2) within exposure only, and (3) 
within outcome traits only. The results of the exposure-
outcome analysis are presented in Table 2, which includes 
SNP-based correlation estimates and their corresponding 
standard errors (SE).

Overall, the genetic correlations  (rG) varied 
between  rG =  − 0.373 ± 0.024 for BCS against CFc 
(BCS-CFc) and  rG = 0.456 ± 0.023 for PKG-CFc. For 
most combinations,  rG values were low, with abso-
lute values of the estimates close to the standard 
errors. Moderate negative genetic correlations were 
found for BCS-CFc  (rG =  − 0.373 ± 0.024) as well as 
BCS-DOc  (rG =  − 0.293 ± 0.023), along with FKG-NRc 
 (rG =  − 0.208 ± 0.029).

In contrast, moderate positive genetic correla-
tions were found for several traits, such as FKG-CFc 
 (rG = 0.283 ± 0.024), FKG-DOc  (rG = 0.288 ± 0.022), 
MKG-FSc  (rG = 0.287 ± 0.022) and PKG-FSh 
 (rG = 0.254 ± 0.027).

For the exposure traits (Additional file  1, Table  S1), 
the genetic correlations ranged from  rG = -0.346 ± 0.019 
for BCS-PKG to  rG = 0.831 ± 0.005 for MKG-PKG. For 
BCS-MTY, the genetic correlation estimation failed; 
however, testing another model excluding the residual 

covariance revealed an  rG close to 1 between both traits 
 (rG = − 0.988 ± 0.001).

The genetic correlations for most traits (45 out of 65 
combinations) were found to be low  (rG < |0.200|). Within 
the different fields, moderate (KET-MIF) up to high 
genetic correlations (MKG-PKG) were observed with 
 rG = 0.582 ± 0.028 and  rG = 0.831 ± 0.005, respectively.

The outcome traits (Additional file  1, Table  S2) 
showed a range of  rG values, from  rG = − 0.786 ± 0.015 
for FSh-NRh to  rG = 0.912 ± 0.006 for DOc-FSc. Of 76 
trait combinations, 31 had a low genetic correlation 
 (rG <  |0.200|). The estimation for two combinations, 
FSc-NRc and FSh-NRc, also failed. However, drop-
ping the residual covariance revealed a high genetic 
correlation of  rG = − 0.985 ± 0.002 and − 0.994 ± 0.002, 
respectively.

Genome‑wide association studies
For all 25 traits (12 exposure, 13 outcome), genetic vari-
ants were found that passed the genome-wide signifi-
cance threshold (p = 1.11 *  10 −6). Additional file 2, Tables 
S3 to S4, lists all genome-wide significant variants per 
trait and their corresponding p-values. Manhattan plots 
for all traits not shown in this section are displayed in 
Additional file 3, Figures S1 to S4.

Production traits
Signals for all three production traits were found on 
BTA1, 2, 3, 5, 6, 11, 14, 15, 19, 20, 26, 27, 28, 29 and 
BTAX. On BTA14, a region between 1,463,676 and 
2,909,929 bp contained a prominent peak for all three 
traits, including SNP ARS-BFGL-NGS-4939 as the most 
significant hit.

Metabolic traits
The metabolic traits analysed were KET, LMV and MIF. 
Several SNPs reached the genome-wide significance 
threshold, with peaks on BTA6 and BTAX (KET and MIF 
in Fig. 1). The region between 88,592,295 and 88,891,318 
bp on BTA6 contained several significant variants, three 
of which were common to all traits. SNP BTB-01654826 
was the most significant hit across all traits in this region.

Conformation traits
For conformation, the traits BCS, OBS, MTY, OCS, OFL, 
and OUS were analysed, and peaks on BTA2, 4, 5, 6, 7, 
8, 9, 11, 13, 14, 18, 19, 20, 21, 25, 26, 28, 29 and BTAX 
were found. The strongest signals were on BTA5, 6, 8 
and 11 for BCS, OBS and MTY, including ARS-BFGL-
NGS-118182 on BTA6 for BCS and MTY as well as ARS-
BFGL-NGS-11105 on BTA11 for  OBS. The results for 
BCS and OBS are displayed as examples in Fig. 2.
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Reproduction traits
Genome-wide significant signals were identified for the 
13 reproduction traits (CEm and CFc in Fig. 3) on BTA5, 
6, 7, 9, 12, 14, 15, 17, 18, 20, 21, 23, 26, 28, 29, and BTAX. 
In total, two to 33 genome-wide significant SNPs were 
identified per trait. Furthermore, within the context of 
all chromosomes, BTAX revealed the highest number of 
significant associations, with a total of 12 distinct traits. 
Of all autosomes, BTA6 and BTA18 followed, including 

significant signals for a maximum of seven different traits 
concurently. The strongest signal for both autosomes 
was found for BTB-00277427 on BTA6 and ARS-BFGL-
NGS-109285 on BTA18.

Mendelian randomisation
For GSMR analyses, 135 out of 156 trait combina-
tions surpassed the pGSMR threshold for significance 
(pGSMR < (0.05/number of  SNPINDEX)). Following the 

Fig. 1 Manhattan plots for exemplary results of GWAS for metabolic traits. Ketosis (KET) and milk fever (MIF). Negative decadic logarithm of p-value 
of each SNP is shown on the y-axes, and on the x-axes, the 29 autosomes and X chromosome are shown. The red line represents the significance 
threshold on genome-wide level p = 1.11 *  10–6

Fig. 2 Manhattan plots for exemplary results of GWAS for conformation traits. Body condition score (BCS) and overall body score (OBS). Negative 
decadic logarithm of p-value of each SNP is shown on the y-axes, and on the x-axes, the 29 autosomes and X chromosome are shown. The red line 
represents the significance threshold on genome-wide level p = 1.11 *  10−6

Fig. 3 Manhattan plots for exemplary results of GWAS for reproduction traits. Calving ease maternal (CEm) and calving to first insemination (CFc). 
Negative decadic logarithm of p-value of each SNP is shown on the y-axes, and on the x-axes, the 29 autosomes and X chromosome are shown. The 
red line represents the significance threshold on genome-wide level p = 1.11 *  10−6
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homogeneity filtering process, the number of identified 
 SNPGSMR as instrumental variables ranged from three to 
31. Furthermore, the number of SNPs tested for the 13 
reproduction-associated outcome traits  (SNPOUT) was 
constant. However, the number of SNPs tested per expo-
sure  (SNPEXP) varied depending on the trait. An overview 
of the outcomes is shown in Table  3, while Additional 
file  4, Table  S5 displays detailed results for the number 
of identified  SNPGSMR and the corresponding pGSMR value 
for each combination.

Out of the 39 combinations tested for the three ana-
lysed production traits (FKG, MKG, PKG), ten were 
below the threshold for statistical significance, rang-
ing from eight to 31  SNPGSMR and a  bxy between 
 bxy = − 0.231 for PKG as exposure for ZYS (PKG → ZYS) 
and  bxy = 0.557 (PKG → FSc). Additionally, MKG had the 
highest  SNPINDEX (n = 56) within this group and across all 
production traits, followed by FKG with a  SNPINDEX of 43 
and PKG with a  SNPINDEX of 41.

All combinations except one (LMV → SBd), KET, 
LMV, and MIF, representing metabolic traits, exceeded 
the corresponding significance threshold. The combina-
tion of KET → CFc had the lowest number of  SNPGSMR, 
with three different  SNPGSMR, while MIF → ZYS had 
the highest number, with 22 different  SNPGSMR. The 
range of  bxy for metabolism was higher than all com-
binations, varying between  bxy = − 1.496 (MIF → FSc) 
and  bxy = 1.543 (KET → NGV). The lowest number of 

 SNPINDEX was observed for LMV (n = 26), followed by 
MIF with 27 different  SNPGSMR. The highest number 
was observed for KET, with 29 different  SNPGSMR.

There were 78 combinations of the six traits and con-
formation scores tested, of which 68 exceeded the sig-
nificance threshold. Within this group, we identified 
four to 20 different  SNPGSMR, each with a correspond-
ing  bxy value. These values ranged from  bxy = − 0.933 
(OFL → NRh) to  bxy = 1.335 (OFL → FSh). The highest 
number of  SNPINDEX was obtained for OBS, includ-
ing 40 different  SNPGSMR, while the lowest amount 
was observed for OCS, with only 21. Additional file 4, 
Table  S5 provides further details on all six traits, and 
Table 4 displays the results for the detected effect sizes 
 bxy.

The exposures KET, MIF, MTY, and OUS significantly 
affected all outcomes. Conversely, all tested exposures 
displayed significant interrelationships with CFc, FSh, 
NGV, and NRc. The traits related to production had 
the lowest effect size, ranging from  bxy =  − 0.231 to 
0.557, followed by conformation traits ranging from  bxy 
= − 0.933 to 1.335. The complex that exhibited the larg-
est variation in effect size was associated with meta-
bolic traits, with a range of  bxy values from  bxy = − 1.496 
to  1.244. In terms of conformation, OFL displayed a 
notably wider range of variation compared to the other 
conformation and production traits, which had a rela-
tively similar variance (Table 3).

Table 3 Overview of GSMR result table for all exposures and outcomes

Results for different exposure traits from the different complexes tested.  SNPEXP represents the number of genome-wide significant (p = 1.11 * 10 −6) SNPs for exposure 
traits, and  SNPOUT all genome-wide significant (p = 1.11 * 10 −6) SNPs for reproduction traits, respectively.  SNPINDEX equals the number of SNPs after the additional 
clumping filter. Significant traits indicate how many of the 13 tested reproduction traits reached the pGSMR significance threshold. At the same time,  SNPGSRM and range 
 bxy represent the number of SNPs and effect size for each of the remaining significant combinations, respectively. Trait abbreviations are explained in Table 1

Exposure SNPEXP SNPOUT SNPINDEX Significant traits SNPGSMR Range  bxy

Conformation

 BCS 101 135 31 12 10–17 − 0.499–0.386

 MTY 75 135 30 13 09–18 − 0.400–0.514

 OCS 5 135 21 8 04–09 − 0.323–0.262

 OBS 68 135 40 12 09–20 − 0.307–0.298

 OUS 32 135 30 13 08–15 − 0.526–0.320

 OFL 4 135 25 10 04–12 − 0.933–1.335

Metabolism

 KET 8 135 29 13 03–16 − 0.909–1.543

 LMV 5 135 26 12 04–14 − 0.822–0.883

 MIF 6 135 27 13 10–22 − 1.496–1.244

Production

 FKG 117 135 43 10 10–18 − 0.208–0.415

 MKG 110 135 56 10 16–31 − 0.207–0.349

 PKG 72 135 41 9 08–14 − 0.231–0.557
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Downstream analysis
The number of  SNPGSMR to be tested for their proximity 
to known genes per exposure exceeded the range previ-
ously presented as  SNPEXP. This outcome was due to the 
different individual counts of  SNPGSMR for each unique 
trait combination. Furthermore, for each exposure, we 
identified both common and trait-specific SNPs. We 
included any  SNPGSMR in the data set associated with at 
least one of the significant reproduction traits per expo-
sure. Of the four selected exposures, we used 128 differ-
ent  SNPGSMR that exceeded the significance threshold per 
complex. The results of this selection were 47 genes being 
identified.

Thirty-two unique  SNPGSMR were analysed for BCS, 
and 12 nearby genes were identified, including GYS2 
on BTA5, KCNQ1 on BTA29, and NPFFR2 on BTA6. 
Similarly, 28  SNPGSMR were identified for KET analysis, 
enclosing ten genes, including ST8SIA1 on BTA5 and 

NPFFR2 on BTA6. Additionally, for OBS, we obtained 
40 different  SNPGSMR representing 14 genes, including 
LIN28A on BTA2 and INSR on BTA7. Finally, 53 different 
 SNPGSMR were detected for MKG, leading to the identifi-
cation of 22 genes, including PAAF1 on BTA15 and GHR 
on BTA20.

Of the four selected exposures, 18  SNPGSMR were pre-
sent in at least two different exposure traits involving 
nine genes. These genes included NPFFR2, AFF1 (both 
BTA6), DGAT1 (BTA14), NF2 (BTA17), and on BTAX 
GPC3, AFF2, TRPC5, NHS, and PUDP. All identified 
genes and overlaps between exposures are shown in 
Fig. 4.

Discussion
Genome‑wide association studies
We conducted a GWAS on several traits using 235,164 
different German Holstein dairy cows as input data 

Fig. 4 Venn diagram of the selected traits per complex for exposures. Results for the 47 different genes that were identified within the four selected 
exposure traits as having a significant effect on the outcome. Overall body score (OBS), ketosis (KET), body condition score (BCS) and milk kg (MKG)
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for the chosen MR approach. We observed significant 
genome-wide signals on the autosomes and BTAX for 
all tested traits, with most hits seen for performance 
traits and the known lowly heritable functional traits 
[48]. For instance, in the case of KET, we detected sev-
eral associated markers on BTA6, including ARS-
BFGL-NGS-118182, ARS-BFGL-NGS-17376, and 
BTB-01654826. Notably, Nayeri et al. [49] also identified 
ARS-BFGL-NGS-118182 as a marker for KET. Soares 
et  al. [50] described a window on BTA6 ranging from 
87,840,175 to 88,893,733 bp for subclinical KET, includ-
ing all three markers found in this study.

Moreover, several authors identified different SNPs 
next to the GC gene region (86,953,984  –  87,007,062 
bp) directly adjacent to BTA6, which are associated with 
ketosis or other metabolic disorders in Holstein dairy 
cattle [51–53]. This finding aligns with additional mark-
ers found on BTA6 for other metabolic traits (e.g. BTB-
00133212 for MIF). According to McCarthy et  al. [54], 
a larger sample size or meta-analysis could increase the 
statistical power needed to detect significant associa-
tions, especially for lower incidence or complex traits. 
Furthermore, the numerous hits on BTAX support 
Sanchez et  al.’s findings [55] that BTAX harbours great 
potential to obtain deeper insights into the genetic archi-
tecture of complex traits given the high number of mark-
ers and associated physiological pathways.

Variance components
We employed the biREML approach to estimate the 
direction and relative extent of interrelationships 
between the traits [39]. Due to computational con-
straints, we limited the number of animals in the biREML 
analysis to 48,118. Only those animals that showed 
expression for both phenotypes tested were included. 
The biREML analysis revealed weak genetic correlations 
between exposure and outcome in certain combinations 
with higher standard errors (see Table  2). This weak 
genetic correlation was especially noticeable for func-
tional traits like BCS and overall scores.

Furthermore, we used DRPs as phenotypes for our 
analyses, which were already adjusted based on a mean 
term [34]. Using DRPs proved advantageous for the 
GWAS as it increased variance within the partially 
binary-coded traits. However, it must be noted that pre-
correction could introduce bias when estimating vari-
ance components or genetic correlations, compared to 
potentially reduced bias within GWAS [56]. Similarly, it 
is crucial to avoid biased GWAS results as they can lead 
to biased MR outcomes [57]. The DRPs were collected at 
different stages of the routine breeding value estimation. 
As a result, some traits were corrected for the population 
mean and, therefore, inverted, for example a lower DRP 

value for MET implies a higher susceptibility, which is 
essential when interpreting the GSMR results in relation 
to the overall  bxy. biREML was also used to perform inde-
pendence control within the exposures and outcomes 
themselves, as this is one of the main rules for MR [12].

To address potential collider bias, Zhu et al. [17] origi-
nally implemented the mtCOJO (multi-trait-based con-
ditional and joint analysis) method. However, in this 
study, we did not attain the 200,000 markers required 
for LD correction [58, 59]. As previously reported in 
the literature (e.g. [60]), we identified strong dependen-
cies between the PKG, MKG, and FKG exposure traits 
and between individual traits from the metabolic and 
conformational domains. However, the analysis could 
not quantify three combinations: FSc and FSh versus 
NRc and BCS versus MTY. After removing the resid-
ual covariance, the estimation model revealed a strong 
genetic correlation among trait combinations (FSh-NRc 
 rG = − 0.994 ± 0.002, FSc-NRc  rG = − 0.985 ± 0.002, 
BCS-MTY  rG = − 0.988 ± 0.001).

Based on the reliability of our GSMR results, biREML 
had the potential to determine the direction and quanti-
fication of causal associations between two traits. When 
both methods were applied, the same DRPs and geno-
type data (except for BTAX) were subjected to the same 
potential limitations or sources of bias mentioned above 
(e.g. correction of the DRPs). The joint use of GSMR and 
biREML data enabled an investigation into the relation-
ship between traits based on SNPs from biREML and 
IVs identified from GSMR. The results for each expo-
sure trait were plotted to facilitate a comparison of the 
two approaches, and the overall correlation between the 
obtained  rG from biREML and  bxy of GSMR results was 
estimated (Additional file 5, Figures S5 to S7).

Results for the linear overall scores we obtained from 
both methods exhibited minimal correlation without 
statistical significance (e.g. OFL:  rG and  bxy r = − 0.01, 
p = 0.961; OCS:  rG and  bxy r = − 0.14, p = 0.630). Never-
theless, there were high correlations between the indi-
vidual direct traits (e.g. PKG:  rG and  bxy r = 0.92, p < 0.001; 
KET:  rG and  bxy r = 0.93, p < 0.001), which emphasise the 
informative value and suitability of our approach. The 
potential limitations resulting in non-significant esti-
mates or low correlations between methods could be 
attributed to the definition of the trait itself [61] or the 
independence of the individual traits used as instrumen-
tal variables [12].

Moreover, the linear overall scores do not directly 
quantify the traits; rather, they are extrapolated through 
other traits that are directly measured and subsequently 
indexed. This indirect quantification is evident when 
the results are compared between OBS  (rG and  bxy 
r = 0.46, p = 0.111) and BCS  (rG and  bxy r = 0.89, p < 0.001) 
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(Additional file 5, Figure  S5). Both traits are part of the 
complex conformation. BCS is scored directly and used 
as an independent trait, whereas OBS is indexed and con-
siders additional factors such as stature, body depth, and 
chest width.

Mendelian randomisation
Zhu et al.’s GSMR approach [17] has already been applied 
to smaller cattle cohorts [62, 63]. This study observed sig-
nificant effects for all tested exposure traits, with at least 
eight distinct reproduction-associated traits as outcomes. 
We identified and removed potential (horizontal) pleio-
tropic outliers following the HEIDI-outlier approach [26] 
for all these combinations. Notably, vertical pleiotropy 
does not invalidate the instrumental variable assump-
tions for MR, whereas horizontal pleiotropy would vio-
late them [12].

In general, three major assumptions must be fulfilled 
by the IVs [24, 25]: (1) the IV is associated with the expo-
sure, (2) the IV does not affect the outcome except poten-
tially via the exposure, and (3) the IV is not associated 
with the outcome due to confounding pathways. We ful-
filled these aspects by using a strict GWAS p-value sig-
nificance threshold after Bonferroni correction, which is 
considered putatively overly conservative [64] but helps 
to avoid potential bias.

We also applied a strict clumping filter (r2 = 0.05) to 
remove SNPs in LD blocks with the most significant 
SNPs per trait. The application reduced the correla-
tion between remaining SNPs while retaining those 
with the strongest trait-specific statistical evidence [65]. 
This approach was also relevant for confounding [58] 
and is supported by the assumption and testing for con-
stant  bxy under the hypothesis of direct trait-mediated 
effects. Thus, there is no heterogeneity in the variant-
specific estimates [12, 17]. Although previous studies 
have described general relationships (e.g. [52]), the main 
objective was identifying the potential IVs responsible 
for such effects within a large, somewhat undistorted 
dataset.

One potential limitation of the GSMR approach is the 
unavailability of exposure traits and their definitions. In 
contrast to human studies, where self-determined behav-
iours such as smoking [22], alcohol consumption [28], or 
physical activities [29] are frequently used as exposures, 
comparable characteristics are elusive or unattainable 
in dairy cattle husbandry. However, negative energy bal-
ance could theoretically be used as an estimation charac-
teristic instead of BCS as it does not directly display the 
breakdown of energy intake into allocation or acquisition 
over time [66], nor does it show clear interdependency 
with the investigated reproduction parameters [67]. In 
addition, measuring devices such as pedometers could be 

used to collect data on activity behaviour for exposure. 
However, it is worth noting that activity behaviour can be 
influenced by physiological processes that affect both the 
reproductive process [68] and diseases of the movement 
apparatus, such as lameness [69].

Furthermore, individual factors, such as management 
conditions, housing structure, herd hierarchy, or herd 
density, may serve as potential stratification factors for 
this  [70], as opposed to human studies that lack such 
stratifications. It is also important to note that not all 
traits have linear relationships, which is not accounted 
for in the linear approximation of GSMR [17].

For instance, human studies demonstrated a U-shaped 
relationship between body mass index and mortality [26]. 
These studies align with the findings of Roche et al. [71], 
who reported negative impacts on performance, repro-
duction, and metabolism in dairy cows with high and low 
BCS scores. However, the selected method enables the 
quantification and chromosomal localisation of the IVs as 
drivers of the observed interrelationship. As a result, we 
can more precisely understand the genetic architecture 
and distinguish between horizontal and vertical pleio-
tropic effects.

Regarding the breeding value estimation, the results 
can be employed to account for known and novel interac-
tions between traits. Moreover, achieving more accurate 
chromosomal localisation can enhance fine mapping or 
aid in choosing markers that offer greater informational 
value. Subsequently, the GSMR and variance component 
results could improve our understanding of the relation-
ship between complex traits and facilitate further consid-
eration of different traits and their associated weightings 
within the breeding schemes. A more accurate indexing 
of different traits could be achieved by better under-
standing their causal relationships.

Gene associations
In addition to the statistical evidence, we selected four 
traits to evaluate the possible physiological backgrounds 
shown by the IVs that might shed light on the causal 
associations found. We considered 47 different genes (38 
on autosomes and 9 on BTAX) obtained from 128 differ-
ent putative causal  SNPGSMR through database research 
and subsequent literature review. Additional file  6, and 
Table S6 provide a more detailed overview of the results 
for all 128 identified  SNPGSMR and their corresponding 
outcome traits.

As an illustration, the gene GYS2 (Glycogen Synthase 
2) was identified through ARS-BFGL-NGS-103973 on 
BTA5 at 89,065,689 bp for BCS and has significant puta-
tive effects on 11 reproduction traits. Tribout et al. [72] 
identified GYS2 as associated with protein yield, while 
Wathes et  al. [73] demonstrated up-regulated GYS2 
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expression in metabolically imbalanced Holstein Frie-
sian dairy cows. In humans, GYS2 has been linked to 
polycystic ovary syndrome and obesity-related condi-
tions [74]. These results directly link the observed causal 
connection between BCS conditions and reproductive 
performance. Furthermore, Dean [75] highlighted the 
importance of glycogen balance in mammals during early 
pregnancy and the contribution of GYS2 to endometrial 
glycogen levels.

Meanwhile, the gene NPFFR2 (neuropeptide FF recep-
tor 2) located on BTA6 was identified through the same 
causal SNP (BTA-68275-no-rs) for three exposures: 
MKG, KET, and BCS. It was significantly linked to 2, 8, 
and 12 different reproductive traits, respectively. Exam-
ples of known and previously described traits affected 
by NPFFR2 in cattle include dairy form, productive life 
[76], milk, fat and protein yield [77], somatic cell score 
[76, 78], longevity [79], and clinical mastitis [80]. NPFFR2 
is a functional G protein-coupled receptor involved in 
regulating the opioid system, cardiovascular function and 
neuroendocrine function [81]. Endogenous opioids inter-
act with gonadotropin secretion in various mammalian 
species [82, 83], emphasising the link with reproductive 
traits.

Likewise, the gene GHR (growth hormone receptor, 
on BTA20 at 31,933,394 bp) identified for MKG showed 
a significant association with four different reproduc-
tive traits. The role of GHR in beef and dairy cattle has 
been widely discussed in the literature, and various asso-
ciations have already been described, including growth, 
beef performance (e.g. [84]), and dairy performance (e.g. 
[85]). Waters et  al. [85] identified a potential biomarker 
for yield evaluation in a GHR-related SNP (on BTA20 at 
34,153,345 bp) within the untranslated medial exon. They 
also described the associations with lactation persistency 
[86], feed efficiency [87], and energy balance [88] as con-
sistent with the suggested interrelationship discovered.

For BCS on BTA29, KCNQ1 (potassium voltage-gated 
channel subfamily Q member 1) was found to have a sig-
nificant causal association with 11 different reproduc-
tion traits. Associations for cattle, including luteinising 
hormone [89], udder depth, and somatic cell score [72], 
have been described. Lafontaine and Sirard [90] high-
lighted the crucial role of DNA methylation of KCNQ1 
in bovine follicles, while Chen et al. [91] demonstrated a 
link between KCNQ1 and the large offspring syndrome 
in bovine embryos. In a human study, Gómez-Úriz et al. 
[92] further highlighted an interaction between obesity 
and ischaemic stroke with KCNQ1 methylation.

BTAX, the second-largest chromosome in the bovine 
genome [93], represents more than 40% of the SNPs 
significantly identified in this study but less than 20% of 
the genes identified. Currently, most GWAS studies in 

cattle, such as Sahana et  al. [80], exclude BTAX. How-
ever, Su et al. [94] demonstrated that considering mark-
ers on BTAX could improve the accuracy of genomic 
prediction. Moreover, Sanchez et  al. [55] showed that 
X-linked genes impact various traits. In our study, three 
out of the nine genes we identified, namely GPC3 (glypi-
can 3), MBNL3 (muscleblind-like splicing regulator 3), 
and TRPC5 (transient receptor potential cation channel 
subfamily C member 5), have previously been linked to 
dairy traits and stature [55]. Additionally, we found that 
the AFF2 gene (ALF transcription elongation factor 2) we 
identified on BTAX for KET and MKG was also reported 
in a recent study, associating it with milk urea nitrogen 
[95].

Although our study identified various SNPs, genes, and 
physiological processes that may be relevant to putative 
causal associations, we want to address the results of 
Waters et al. [85]. Using GHR as an example, they demon-
strated the impact that a marker’s position could have on 
the detected effects. Increasing marker density through 
sequencing or imputation [96] may enhance the results 
of GWAS and the detection of effects, thereby facilitat-
ing subsequent analyses. However, it is important to note 
that the limited accuracy of genotype data for GWAS 
may introduce bias in subsequent analyses [57]. Simula-
tions have demonstrated the effect of the chosen method 
on the accuracy of genotype imputation [97]. Moreover, 
accurately estimating the genetic architecture of complex 
traits requires a large number of individuals [98]. There-
fore, a large number of animals and a sufficient density of 
markers are also required to estimate causal associations 
successfully between these traits.

Conclusion
In conclusion, this study estimated the GWAS sum-
mary statistics for 25 traits involving 235,164 individuals. 
Genome-wide significant SNPs for all traits were identi-
fied. Furthermore, we estimated variance components 
between these traits and analysed their causal associa-
tions. The GSMR approach detected significant causal 
association effects on reproduction traits. Subsequent 
gene association screening confirmed physiologically 
plausible effects for four traits related to conformation, 
metabolism, and production.

Moreover, we identified novel associations, providing 
leads for further analysis. A large sample size ensured 
reliable results, even for complex traits with strict thresh-
olds. These findings can enhance our understanding of 
the genetic structure of these traits and their interrela-
tionship beyond genetic correlation, which can be con-
sidered in future breeding strategies to preserve health 
and production simultaneously.
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Additional file 1. Tables S1 to S2. Genetic correlation estimates. Table S1 
displays the SNP-based genetic correlation  (rG) estimates among exposure 
traits. Table S2 displays the SNP-based genetic correlation  (rG) estimates 
among outcome traits. Negative values are displayed in red, and  rG > 
|0.200| is in bold. The standard error (SE) for each combination is displayed 
in parentheses. The red square corresponds to the failed combination.

Additional file 2. Tables S3 to S4. GWAS results. Results for genome-wide 
association studies for 12 exposure (complex of conformation, metabo-
lism and production) and 13 outcome traits (all reproduction) surpassing 
the genome-wide significance threshold after Bonferroni-correction (p = 
1.11 *  10-6 [(0.05/44,994), -  log10 (P) ≈ 5.95]. For each SNP per trait surpass-
ing the significance threshold, the chromosome (Chr), marker localisation 
in base pairs (bp) and marker name (SNP) are given. Further, the respective 
alleles and frequencies (A1, A2, Freq), the signed Z-scores (Zscore) and the 
p-value (p).

Additional file 3. Figures S1 to S4. Manhattan plots. Manhattan plots for 
the genome-wide association studies for the remaining exposure (com-
plex of conformation, metabolism and production) and outcome traits (all 
reproduction) not shown within the manuscript. Negative decadic loga-
rithm of p-value of each SNP is shown on the y-axes, and on the x-axes, 
the 29 autosomes and X chromosome are shown. The red line represents 
the significance threshold on genome-wide level p = 1.11 *  10-6. The 
genomic inflation factor was fixed to 1 due to the genomic correction flag 
used by METAL for merging the cohorts together.

Additional file 4. Table S5. GSMR result table. Result tables for the GSMR 
analysis including all 156 combinations (135 significant, 21 non-signifi-
cant). Shown are exposure traits of all complexes against the individual 
outcome traits (reproduction), estimated effect per combination  (bxy) 
including standard error (se) and p-value for the test statistic  (pGSMR). The 
number of SNPs after filtering (nsnp) and the number of SNPs tested 
within the run  (SNPINDEX). Last, the threshold for significance is given (pGSMR 
< (0.05/SNPINDEX =  pthresh) and if the specific combination surpassed this 
(significant/non-significant). Traits and abbreviations are listed separately 
and given in the main manuscript, Table 1.

Additional file 5. Figure S5 to S7. Correlation between variance compo-
nents and GSMR. For all putative exposure traits, sorted by the three com-
plexes conformation, metabolism and production, results for the variance 
component estimation  (rG) and the GSMR result  (bxy) are plotted against 
each other for all exposure (Trait). Each data point is labelled with the cor-
responding abbreviation of the reproduction trait. Number of significant 
outcomes (No. signif. outcomes) is stated, and the non-significant traits 
are named (n.s. outcomes). Further, the range of  SNPGSMR identified for all 
corresponding outcomes is given (range  SNPGSMR, details see Additional 
file 4, Table S5). The estimated correlation between variance component 
estimation and the GSMR results (r(rG, bxy)) is stated together with the cor-
responding p-value (p-value) of correlation estimation.

Additional file 6. Table S6. Downstream analysis results top traits. Four traits 
(BCS, OBS, KET, MKG) representing the three different complexes (con-
formation, metabolism and production) were further selected and pro-
cessed. The table displays all the identified SNPs within the four exposure 
traits in at least one combination with an outcome. Chromosome (Chr) 
and marker localisation in base pairs (bp) are given, as well as individual 
identifiers (rsNumbers) and marker name (SNP). Next, the 13 different out-
come traits tested (CEd, CEm, CFc, DOc, FSc, FSh, MET, NGV, NRc, NRh, SBd, 
SBm and ZYS) are listed. A black cross indicates a significant identification 
within the GSMR approach, a red cross non-significant result. Empty fields 
indicate no association at all was identified. The putative causal exposure 
trait per SNP (Exposure) is given and reveals which of the four tested 
was relevant here. Last, the identified genes, including the gene symbol 
(Genes) within a 1000 bp up and downstream of the identified marker.
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