

Datum: 09.06.2022 Nr.: 6

Inhaltsverzeichnis

	<u>Seite</u>
Philosophische Fakultät:	
Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven	
Master-Studiengang "Arabistik/Islamwissenschaft"	5524
Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven	
Master-Studiengang "Klassische Archäologie"	5595
Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven	
Master-Studiengang "Kunstgeschichte"	5632
Fakultät für Mathematik und Informatik:	
Modulverzeichnis zur Prüfungs- und Studienordnung für den Bachelor-	
Studiengang "Mathematical Data Science"	5666
Modulverzeichnis zur Prüfungs- und Studienordnung für den Bachelor-	
Studiengang "Mathematik"	5839
Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven	
Master-Studiengang "Mathematik"	6232

Herausgegeben von dem Präsidenten der Georg-August-Universität Göttingen

Fakultät für Biologie und Psychologie:

Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Computational Biology and Bioinformatics"

6783

Modulverzeichnis zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Psychologie: Klinische Psychologie und Psychotherapie" 6870

Philosophische Fakultät:

Nach Beschluss des Fakultätsrats der Philosophischen Fakultät vom 20.04.2022 sowie nach Stellungnahme des Senats vom 18.05.2022 hat das Präsidium der Georg-August-Universität Göttingen am 25.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Arabistik/Islamwissenschaft" genehmigt (§ 44 Abs. 1 Satz 2; § 41 Abs. 2 Satz 2 NHG; §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II zum 01.10.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Arabistik/ Islamwissenschaft" (Amtliche Mitteilungen I Nr. 9/2011 S. 530, zuletzt geaendert durch Amtliche Mitteilungen I Nr. 26/2022 S. 481)

Module

B.Antik.25: Hebräisch I	5542
B.Ara.25: Exkursion in die arabische Welt	5543
B.Ara.26-1: Zweitsprache der arabischen und islamischen Welt I	5545
B.Ara.26-2: Zweitsprache der arabischen und islamischen Welt II	5546
B.Ira.101a: Einführung in das Neupersische I	5547
B.Ira.102a: Einführung in das Neupersische II	5548
B.JudC.01: Neuhebräisch I	5549
B.JudC.02: Neuhebräisch II	5550
M.Ara.01: Textlektüre und Diskussion für Fortgeschrittene	5551
M.Ara.02: Master-Kolloquium	5552
M.Ara.04: Geschichte und Kultur des Islams	5553
M.Ara.04a: Geschichte und Kultur des Islams	5554
M.Ara.05: Religion des Islams	5555
M.Ara.05a: Religion des Islams	5556
M.Ara.06: Arabische Literatur	5557
M.Ara.06a: Arabische Literatur	5558
M.Ara.07: Islamisches Recht	5559
M.Ara.07a: Islamisches Recht	5560
M.Ara.08-1: Fachsprache / Rechtssprache I	5561
M.Ara.08-2: Fachsprache / Rechtssprache II	5562
M.Ara.09: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen	5563
M.Ara.10: Islamische Kultur, Vergangenheit und Gegenwart	5564
M.Ara.501: Advanced Reading and Discussion	5565
M.Ara.502: Master Colloquium	5566
M.Ara.506: Arabic Literature	5567
M.Ara.506a: Arabic Literature	5568
M.Ara.509: Advanced Arabic Reading and Writing	5569
M.Ara.510: Islamic Culture, Past and Present	5570
M.Ara.601: Methods and Theories in Arabic-Islamic Studies	5571

Inhaltsverzeichnis

M.Ara.601a: Methods and Theories in Arabic-Islamic Studies	5572
M.Ara.602: Hadith Studies	5573
M.Ara.602a: Hadith Studies	5574
M.Ara.603: Ethics and Education in Islam	5575
M.Ara.603a: Ethics and Education in Islam	5576
M.Ara.604: Secular Modernity and Islam	5577
M.Ara.604a: Secular Modernity and Islam	5578
M.IntTheol.14-01: Theories of Religion	5579
S.RW.0311HA: Strafrecht I	5581
S.RW.0311K: Strafrecht I	5583
S.RW.1220: Internationaler Menschenrechtsschutz	5585
S.RW.1416HA: Allgemeine Staatslehre	5587
S.RW.1416K: Allgemeine Staatslehre	5588
SK.Ara.526-1: Second Language of the Arab and Muslim World I	5589
SK.Ara.526-2: Second Language of the Arab and Muslim World II	5590
SK.Ara.701: Arabic Language Course in the Middle East	5591
SK.Ara.702: Arabic-Islamic Studies Abroad	5592
SK.IKG-IKK.12-1: Interkulturelles Kompetenztraining - Fokus: Arab*isch-West*liche Perspektiven (Joint Classroom Format)	5593

Übersicht nach Modulgruppen

I. Master-Studiengang "Arabistik/Islamwissenschaft"

Es müssen mindestens 120 C erworben werden; Module, die bereits im Rahmen des Bachelorstudiums absolviert wurden, können nicht berücksichtigt werden; Prüfungsleistungen können jeweils nur in einem Modul dieses Studiengangs berücksichtigt werden.

1. Fachstudium "Arabistik/Islamwissenschaft" im Umfang von 78 C mit dem Studienschwerpunkt "Islamisches Recht"

a. Pflichtmodule

Es müssen folgende Module im Umfang von insgesamt 16 C erfolgreich absolviert werden:

M.Ara.01: Textlektüre und Diskussion für Fortgeschrittene (6 C, 4 SWS)	5551
M.Ara.02: Master-Kolloquium (4 C, 1 SWS)	5552

M.Ara.09: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen (6 C, 2 SWS)..... 5563

b. Studienschwerpunkt "Islamisches Recht"

Es müssen Module im Umfang von wenigstens 44 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden:

aa. Wahlpflichtmodule I

Es müssen folgende Module im Umfang von insgesamt 32 C erfolgreich absolviert werden:

M.Ara.05: Religion des Islams (8 C, 2 SWS)	. 5555
M.Ara.07: Islamisches Recht (8 C, 2 SWS)	5559
M.Ara.08-1: Fachsprache / Rechtssprache I (6 C, 2 SWS)	.5561
M.Ara.08-2: Fachsprache / Rechtssprache II (4 C, 2 SWS)	.5562
S.RW.1220: Internationaler Menschenrechtsschutz (6 C, 2 SWS)	.5585

bb. Wahlpflichtmodule II

Es müssen zwei der folgenden Module im Umfang von wenigstens 12 C erfolgreich absolviert werden. Es kann jeweils nur ein Modul der gleichen Bezeichnung absolviert werden, also entweder S.RW.1416K oder S.RW.1416HA bzw. S.RW.0311K oder S.RW.0311HA:

S.RW.0311HA: Strafrecht I (11 C, 7 SWS)	5581
S.RW.0311K: Strafrecht I (8 C, 7 SWS)	.5583
S.RW.1416HA: Allgemeine Staatslehre (7 C, 2 SWS)	5587
S.RW.1416K: Allgemeine Staatslehre (4 C, 2 SWS)	.5588

cc. Wahlpflichtmodule III

Anstelle eines der Module S.RW.0311K oder S.RW.0311HA nach Buchstaben bb) können auf Antrag andere Module der Juristischen Fakultät im Umfang von insgesamt mindestens 8 C absolviert werden. Der Antrag ist an die Studiendekanin oder den Studiendekan zu richten; er begründet keinen Rechtsanspruch und kann ohne Begründung abgelehnt werden.

c. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt wenigstens 18 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden:

aa. Wahlpflichtmodule I

Es muss wenigstens eines der nachfolgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/zweite semitische Sprache); weitere gleichwertige Module können angerechnet werden.

B.Antik.25: Hebräisch I (12 C, 10 SWS)	.5542
B.Ara.26-1: Zweitsprache der arabischen und islamischen Welt I (6 C, 4 SWS)	5545
B.Ara.26-2: Zweitsprache der arabischen und islamischen Welt II (6 C, 4 SWS)	5546
B.Ira.101a: Einführung in das Neupersische I (6 C, 4 SWS)	.5547
B.Ira.102a: Einführung in das Neupersische II (6 C, 4 SWS)	.5548
B.JudC.01: Neuhebräisch I (6 C, 4 SWS)	5549
B.JudC.02: Neuhebräisch II (6 C, 4 SWS)	5550

bb. Wahlpflichtmodule II

Es muss eines der nachfolgenden Module im Umfang von 6 C erfolgreich absolviert werden:

M.Ara.04a: Geschichte und Kultur des Islams (6 C, 2 SWS)	5554
M.Ara.06a: Arabische Literatur (6 C, 2 SWS)	5558

d. Professionalisierungsbereich

Es müssen Module im Umfang von 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden. Sofern ausreichende Kenntnisse der englischen Sprache nachgewiesen werden, kann alternativ folgendes Modul gewählt werden:

M.Ara.10: Islamische Kultur, Vergangenheit und Gegenwart (8 C, 2 SWS).......5564

e. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

2. Fachstudium "Arabic-Islamic Studies" im Umfang von 78 C mit dem Studienschwerpunkt "Intellectual Histories of the Arab World"

a. Zugangsvoraussetzungen

Zugangsvoraussetzung für die Belegung der Studienoption ist der Nachweis ausreichender Englischkenntnisse. Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, weisen ausreichende Englischkenntnisse mit standardisierten bzw. akkreditierten Zertifikaten mindestens auf dem Niveau B2 des Gemeinsamen europäischen Referenzrahmen für Sprachen des Europarats (GeR) nach.

b. Pflichtmodule

Es müssen folgende Module im Umfang von insgesamt 16 C erfolgreich absolviert werden:

M.Ara.501: Advanced Reading and Discussion (6 C, 4 SWS)	5565
M.Ara.502: Master Colloquium (4 C, 1 SWS)	.5566
M.Ara.509: Advanced Arabic Reading and Writing (6 C. 2 SWS)	5569

c. Studienschwerpunkt "Intellectual Histories of the Arab World"

Es müssen Wahlpflichtmodule nach Maßgabe der nachfolgenden Bestimmungen im Umfang von insgesamt wenigstens 50 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule I

Es müssen vier der folgenden Module im Umfang von insgesamt 32 C erfolgreich absolviert werden:

M.Ara.506: Arabic Literature (8 C, 2 SWS)	5567
M.Ara.601: Methods and Theories in Arabic-Islamic Studies (8 C, 2 SWS)	5571
M.Ara.602: Hadith Studies (8 C, 2 SWS)	5573
M.Ara.603: Ethics and Education in Islam (8 C, 2 SWS)	5575
M.Ara.604: Secular Modernity and Islam (8 C, 2 SWS)	5577

hh Wahlnflichtmodule II

DD. Wanipriichtmodule ii
Es müssen drei der folgenden Module im Umfang von 18 C erfolgreich absolviert werden:
B.Ara.25: Exkursion in die arabische Welt (6 C, 2 SWS)5543
M.Ara.506a: Arabic Literature (6 C, 2 SWS)
M.Ara.601a: Methods and Theories in Arabic-Islamic Studies (6 C, 2 SWS)5572
M.Ara.602a: Hadith Studies (6 C, 2 SWS)
M.Ara.603a: Ethics and Education in Islam (6 C, 2 SWS)
M.Ara.604a: Secular Modernity and Islam (6 C, 2 SWS)
M.IntTheol.14-01: Theories of Religion (6 C, 2 SWS)
SK.Ara.701: Arabic Language Course in the Middle East (6 C)5591

SK.Ara.702: Arabic-Islamic Studies Abroad (6 C)5592
d. Wahlpflichtmodule
Es müssen zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/ zweite semitische Sprache). Gleichwertige Module können angerechnet werden.
SK.Ara.526-1: Second Language of the Arab and Muslim World I (6 C, 4 SWS) 5589
SK.Ara.526-2: Second Language of the Arab and Muslim World II (6 C, 4 SWS)5590
B.Ira.101a: Einführung in das Neupersische I (6 C, 4 SWS)5547
B.Ira.102a: Einführung in das Neupersische II (6 C, 4 SWS)5548
B.JudC.01: Neuhebräisch I (6 C, 4 SWS)5549
B.JudC.02: Neuhebräisch II (6 C, 4 SWS)5550
B.Antik.25: Hebräisch I (12 C, 10 SWS)5542
e. Professionalisierungsbereich
Es müssen Module im Umfang von 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen

aa. Angebote für ausländische Studierende mit geringen Deutschkenntnissen

erfolgreich absolviert werden. Daneben steht auch das folgende Modul zur Auswahl:

Ausländische Studierende, die nicht über Deutschkenntnisse wenigstens auf dem Niveau DSH-1 verfügen, können optional abweichend von Buchstabe d Module im Umfang von insgesamt wenigstens 12 C aus dem Modulverzeichnis zur Prüfungsordnung für die Deutsche Sprachprüfung für den Hochschulzugang ausländischer Studienbewerberinnen und Studienbewerber (DSH) erfolgreich absolvieren.

f. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

3. Fachstudium "Arabistik/Islamwissenschaft" im Umfang von 42 C

a. Pflichtmodule

Es müssen folgende Module im Umfang von insgesamt 10 C erfolgreich absolviert werden:

b. Wahlpflichtmodule

Es müssen Wahlpflichtmodule nach Maßgabe der nachfolgenden Bestimmungen im Umfang von insgesamt wenigstens 32 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule I

Es müssen zwei der folgenden Module im Umfang von insgesamt 12 C erfolgreich absolviert werden:

M.Ara.04a: Geschichte und Kultur des Islams (6 C, 2 SWS)	5554
M.Ara.05a: Religion des Islams (6 C, 2 SWS)	5556
M.Ara.06a: Arabische Literatur (6 C, 2 SWS)	5558
M.Ara.07a: Islamisches Recht (6 C, 2 SWS)	5560
M.Ara.09: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen (6 C, 2 SWS)	5563

bb. Wahlpflichtmodule II

Es muss eines der folgenden Module im Umfang von 8 C erfolgreich absolviert werden:

M.Ara.04: Geschichte und Kultur des Islams (8 C, 2 SWS)	5553
M.Ara.05: Religion des Islams (8 C, 2 SWS)	5555
M.Ara.06: Arabische Literatur (8 C, 2 SWS)	.5557
M.Ara.07: Islamisches Recht (8 C, 2 SWS)	.5559

cc. Wahlpflichtmodule III

Es muss wenigstens eines der nachfolgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/zweite semitische Sprache); weitere gleichwertige Module können angerechnet werden:

B.Antik.25: Hebräisch I (12 C, 10 SWS)	5542
B.Ara.26-1: Zweitsprache der arabischen und islamischen Welt I (6 C, 4 SWS)	. 5545
B.Ara.26-2: Zweitsprache der arabischen und islamischen Welt II (6 C, 4 SWS)	. 5546
B.Ira.101a: Einführung in das Neupersische I (6 C, 4 SWS)	5547
B.Ira.102a: Einführung in das Neupersische II (6 C, 4 SWS)	5548
B.JudC.01: Neuhebräisch I (6 C, 4 SWS)	. 5549
B.JudC.02: Neuhebräisch II (6 C, 4 SWS)	. 5550

c. Studienschwerpunkt "Islamisches Recht"

Studierende können im Rahmen des Fachstudiums Arabistik/Islamwissenschaft einen Studienschwerpunkt "Islamisches Recht" absolvieren. Dazu müssen abweichend von Buchstaben b) folgende Wahlpflichtmodule im Umfang von insgesamt wenigstens 32 C erfolgreich absolviert werden. Von den Modulen S.RW.1416K und S.RW.1416HA kann nur eines absolviert werden:

M.Ara.05a: Religion des Islams (6 C, 2 SWS)	5556
M.Ara.07a: Islamisches Recht (6 C, 2 SWS)	.5560
M.Ara.08-1: Fachsprache / Rechtssprache I (6 C, 2 SWS)	.5561
M.Ara.08-2: Fachsprache / Rechtssprache II (4 C, 2 SWS)	5562
S.RW.1220: Internationaler Menschenrechtsschutz (6 C, 2 SWS)	.5585
S.RW.1416HA: Allgemeine Staatslehre (7 C, 2 SWS)	5587
S.RW.1416K: Allgemeine Staatslehre (4 C, 2 SWS)	.5588

d. Fachexterne Modulpakete

Studierende haben ein zulässiges fachexternes Modulpaket im Umfang von 36 C oder zwei zulässige fachexterne Modulpakete im Umfang von jeweils 18 C erfolgreich zu absolvieren.

e. Professionalisierungsbereich

Es müssen Module im Umfang von 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden. Sofern ausreichende Kenntnisse der englischen Sprache nachgewiesen werden, kann alternativ folgendes Modul gewählt werden:

M.Ara.10: Islamische Kultur, Vergangenheit und Gegenwart (8 C, 2 SWS)......5564

f. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

4. Fachstudium "Arabic-Islamic Studies" im Umfang von 42 C mit dem Studienschwerpunkt "Intellectual Histories of the Arab World"

a. Zugangsvoraussetzungen

Zugangsvoraussetzung für die Belegung der Studienoption ist der Nachweis ausreichender Englischkenntnisse. Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, weisen ausreichende Englischkenntnisse mit standardisierten bzw. akkreditierten Zertifikaten mindestens auf dem Niveau B2 des Gemeinsamen europäischen Referenzrahmen für Sprachen des Europarats (GeR) nach.

b. Pflichtmodule

Es müssen folgende Module im Umfang von insgesamt 10 C erfolgreich absolviert werden:

M.Ara.501: Advanced Reading and Discussion	(6 C, 4 SWS)5565
M.Ara.502: Master Colloquium (4 C, 1 SWS)	5566

c. Studienschwerpunkt "Intellectual Histories of the Arab World"

Es müssen Wahlpflichtmodule nach Maßgabe der nachfolgenden Bestimmungen im Umfang von insgesamt wenigstens 32 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule I

Es müssen zwei der folgenden Module im Umfang von insgesamt 12 C erfolgreich absolviert werden. Es muss mindestens eines der Module M.Ara.601a-604a belegt werden:

B.Ara.25: Exkursion in die arabische Welt (6 C, 2 SWS)5543
M.Ara.506a: Arabic Literature (6 C, 2 SWS)
M.Ara.509: Advanced Arabic Reading and Writing (6 C, 2 SWS)
M.Ara.601a: Methods and Theories in Arabic-Islamic Studies (6 C, 2 SWS)5572
M.Ara.602a: Hadith Studies (6 C, 2 SWS)
M.Ara.603a: Ethics and Education in Islam (6 C, 2 SWS)
M.Ara.604a: Secular Modernity and Islam (6 C, 2 SWS)5578
M.IntTheol.14-01: Theories of Religion (6 C, 2 SWS)
SK.Ara.701: Arabic Language Course in the Middle East (6 C)5591
SK.Ara.702: Arabic-Islamic Studies Abroad (6 C)
bb. Wahlpflichtmodule II
Es muss eines der folgenden Module im Umfang von 8 C erfolgreich absolviert werden:
M.Ara.601: Methods and Theories in Arabic-Islamic Studies (8 C, 2 SWS)5571
M.Ara.602: Hadith Studies (8 C, 2 SWS)
M.Ara.603: Ethics and Education in Islam (8 C, 2 SWS)
M.Ara.604: Secular Modernity and Islam (8 C, 2 SWS)5577
cc. Wahlpflichtmodule III
Es müssen zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/zweite semitische Sprache). Gleichwertige Module können angerechnet werden:
SK.Ara.526-1: Second Language of the Arab and Muslim World I (6 C, 4 SWS)5589
SK.Ara.526-1: Second Language of the Arab and Muslim World I (6 C, 4 SWS)
SK.Ara.526-2: Second Language of the Arab and Muslim World II (6 C, 4 SWS)5590
SK.Ara.526-2: Second Language of the Arab and Muslim World II (6 C, 4 SWS)
SK.Ara.526-2: Second Language of the Arab and Muslim World II (6 C, 4 SWS)

d. Fachexterne Modulpakete

Studierende haben ein zulässiges fachexternes Modulpaket im Umfang von 36 C oder zwei zulässige fachexterne Modulpakete im Umfang von jeweils 18 C erfolgreich zu absolvieren. Geeignete englischsprachige Modulpakete, die zur Auswahl stehen, können der Rahmenprüfungsordnung für Master-Studiengänge der Philosophischen Fakultät entnommen werden.

e. Professionalisierungsbereich

Es müssen Module im Umfang von 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden. Daneben stehen auch die folgenden Module zur Auswahl:

aa. Angebote für ausländische Studierende mit geringen Deutschkenntnissen

Ausländische Studierende, die nicht über Deutschkenntnisse wenigstens auf dem Niveau DSH-1 verfügen, können optional abweichend von Buchstabe e Module im Umfang von insgesamt wenigstens 12 C aus dem Modulverzeichnis zur Prüfungsordnung für die Deutsche Sprachprüfung für den Hochschulzugang ausländischer Studienbewerberinnen und Studienbewerber (DSH) erfolgreich absolvieren.

f. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

II. Modulpaket "Arabistik/Islamwissenschaft" im Umfang von 36 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Bewerberinnen und Bewerber müssen Leistungen im Bereich der arabischen Sprache im Umfang von wenigstens 30 Anrechnungspunkten nachweisen. Ersatzweise kann eine Eingangssprachprüfung abgelegt werden.

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt 36 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden. Module, die bereits im Rahmen des Bachelorstudiums absolviert wurden, können nicht berücksichtigt werden; Prüfungsleistungen können jeweils nur in einem Modul berücksichtigt werden.

a. Wahlpflichtmodule I

Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden:

M.Ara.01: Textlektüre und Diskussion für Fortgeschrittene (6 C, 4 SWS).......5551

b. Wahlpflichtmodule II

Es muss wenigstens eines der nachfolgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/zweite semitische Sprache); weitere gleichwertige Module können angerechnet werden:

B.Antik.25: Hebräisch I (12 C, 10 SWS)	.5542
B.Ara.26-1: Zweitsprache der arabischen und islamischen Welt I (6 C, 4 SWS)	5545
B.Ara.26-2: Zweitsprache der arabischen und islamischen Welt II (6 C, 4 SWS)	5546
B.Ira.101a: Einführung in das Neupersische I (6 C, 4 SWS)	.5547
B.Ira.102a: Einführung in das Neupersische II (6 C, 4 SWS)	5548
B.JudC.01: Neuhebräisch I (6 C, 4 SWS)	5549
B.JudC.02: Neuhebräisch II (6 C, 4 SWS)	5550

c. Wahlpflichtmodule III

Es müssen drei der folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

M.Ara.04a: Geschichte und Kultur des Islams (6 C, 2 SWS)	5554
M.Ara.05a: Religion des Islams (6 C, 2 SWS)	5556
M.Ara.06a: Arabische Literatur (6 C, 2 SWS)	5558
M.Ara.07a: Islamisches Recht (6 C, 2 SWS)	5560
M.Ara.09: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen (6 C, 2 SWS)5	5563

III. Modulpaket "Arabistik/Islamwissenschaft" im Umfang von 18 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Bewerberinnen und Bewerber müssen Leistungen im Bereich der arabischen Sprache im Umfang von wenigstens 20 Anrechnungspunkten nachweisen. Ersatzweise kann eine Eingangssprachprüfung abgelegt werden.

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt 18 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden. Module, die bereits im Rahmen des Bachelorstudiums absolviert wurden, können nicht berücksichtigt werden; Prüfungsleistungen können jeweils nur in einem Modul berücksichtigt werden.

a. Wahlpflichtmodule I

Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden:

M.Ara.01: Textlektüre und Diskussion für Fortgeschrittene (6 C, 4 SWS)......5551

b. Wahlpflichtmodule II

Es müssen zwei der folgenden Module im Umfang von insgesamt 12 C erfolgreich absolviert werden:

M.Ara.04a: Geschichte und Kultur des Islams (6 C, 2 SWS)	. 5554
M.Ara.05a: Religion des Islams (6 C, 2 SWS)	. 5556
M.Ara.06a: Arabische Literatur (6 C, 2 SWS)	5558
M.Ara.07a: Islamisches Recht (6 C, 2 SWS)	5560
M Ara 00: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen (6.C. 2.SWS)	5563

IV. Modulpaket "Islamisches Recht" im Umfang von 36 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Bewerberinnen und Bewerber müssen Leistungen im Bereich der arabischen Sprache im Umfang von wenigstens 30 Anrechnungspunkten nachweisen. Ersatzweise kann eine Eingangssprachprüfung abgelegt werden.

2. Wahlpflichtmodule

Es müssen folgende sechs Module im Umfang von insgesamt wenigstens 36 C erfolgreich absolviert werden. Von den Modulen S.RW.1416K und S.RW.1416HA kann nur eines absolviert werden:

M.Ara.05: Religion des Islams (8 C, 2 SWS)	5555
M.Ara.07: Islamisches Recht (8 C, 2 SWS)	.5559
M.Ara.08-1: Fachsprache / Rechtssprache I (6 C, 2 SWS)	. 5561
M.Ara.08-2: Fachsprache / Rechtssprache II (4 C, 2 SWS)	5562
S.RW.1220: Internationaler Menschenrechtsschutz (6 C, 2 SWS)	.5585
S.RW.1416K: Allgemeine Staatslehre (4 C, 2 SWS)	.5588
S.RW.1416HA: Allgemeine Staatslehre (7 C, 2 SWS)	5587

V. Modulpaket "Intellectual Histories of the Arab World" im Umfang von 36 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

- i. Bewerberinnen und Bewerber müssen Leistungen im Bereich der arabischen Sprache im Umfang von wenigstens 30 Anrechnungspunkten nachweisen. Ersatzweise kann eine Eingangssprachprüfung abgelegt werden.
- ii. Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, müssen über ausreichende Kenntnisse der englischen Sprache verfügen. Ausreichende Englischkenntnisse sind mit standardisierten bzw. akkreditierten Zertifikaten mindestens auf dem Niveau B2 des Gemeinsamen europäischen Referenzrahmen für Sprachen des Europarats (GeR) nachzuweisen. Als Nachweis dienen insbesondere:

- a) UNIcert®: mind. Zertifikat UNIcert® II;
- b) NULTE-Zertifikate: mind. Niveau B2;
- c) Cambridge English Scale: mind. 160 Punkte;
- d) "International English Language Testing System" (IELTS Academic): mind. Band 5.5;
- e) "Test of English as a Foreign Language, internet-based test" (TOEFL iBT): mind. 87 Punkte;
- f) Global Scale of English (Pearson Academic): mind. 59 Punkte;
- g) Sonstiger Nachweis auf dem Niveau B2 oder höher nach GeR.

Das erfolgreiche Absolvieren des Tests (a-f) darf nicht länger als drei Jahre vor dem Eingang des Zulassungsantrags liegen. Als Nachweis ausreichender Kenntnisse der englischen Sprache gelten auch ein mindestens einjähriger Studien- oder Berufsaufenthalt in einem Land, in dem Englisch die Amtssprache ist oder der erfolgreiche Abschluss eines mindestens zweijährigen englischsprachigen Studiengangs. Der Nachweis über ausreichende Kenntnisse der englischen Sprache ist bei der Einschreibung für ein Wintersemester bis zum 30.09., bei Einschreibung für ein Sommersemester bis zum 31.03. gegenüber der Philosophischen Fakultät zu erbringen; der Nachweis ist Immatrikulationsvoraussetzung; eine bedingte Einschreibung findet nicht statt. Über die Gleichwertigkeit weiterer Nachweise entscheidet im Einzelfall die Auswahlkommission; diese kann für ihre Entscheidung ein Fachgutachten einer anderen Einrichtung (z.B. ZESS) einholen.

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt 36 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

a. Wahlpflichtmodule I

Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden:

b. Wahlpflichtmodule II

Es müssen zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden (zweite Sprache des islamischen Kulturraums/zweite semitische Sprache). Gleichwertige Module können angerechnet werden:

SK.Ara.526-1: Second Language of the Arab and Muslim World I (6 C, 4 SWS)	. 5589
SK.Ara.526-2: Second Language of the Arab and Muslim World II (6 C, 4 SWS)	5590
B.Ira.101a: Einführung in das Neupersische I (6 C, 4 SWS)	5547
B.Ira.102a: Einführung in das Neupersische II (6 C, 4 SWS)	5548
B.JudC.01: Neuhebräisch I (6 C, 4 SWS)	5549
B.JudC.02: Neuhebräisch II (6 C, 4 SWS)	5550
B.Antik.25: Hebräisch I (12 C, 10 SWS)	5542

c. Wahlpflichtmodule III

Es müssen drei der folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

B.Ara.25: Exkursion in die arabische Welt (6 C, 2 SWS)......5543

M.Ara.506a: Arabic Literature (6 C, 2 SWS)	5568
M.Ara.509: Advanced Arabic Reading and Writing (6 C, 2 SWS)	5569
M.Ara.601a: Methods and Theories in Arabic-Islamic Studies (6 C, 2 SWS)	5572
M.Ara.602a: Hadith Studies (6 C, 2 SWS)	5574
M.Ara.603a: Ethics and Education in Islam (6 C, 2 SWS)	5576
M.Ara.604a: Secular Modernity and Islam (6 C, 2 SWS)	5578
M.IntTheol.14-01: Theories of Religion (6 C, 2 SWS)	5579
SK.Ara.701: Arabic Language Course in the Middle East (6 C)	5591
SK.Ara.702: Arabic-Islamic Studies Abroad (6 C)	5592

VI. Modulpaket "Intellectual Histories of the Arab World" im Umfang von 18 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

- i. Bewerberinnen und Bewerber müssen Leistungen im Bereich der arabischen Sprache im Umfang von wenigstens 20 Anrechnungspunkten nachweisen. Ersatzweise kann eine Eingangssprachprüfung abgelegt werden.
- ii. Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, müssen über ausreichende Kenntnisse der englischen Sprache verfügen. Ausreichende Englischkenntnisse sind mit standardisierten bzw. akkreditierten Zertifikaten mindestens auf dem Niveau B2 des Gemeinsamen europäischen Referenzrahmen für Sprachen des Europarats (GeR) nachzuweisen. Als Nachweis dienen insbesondere:
- a) UNIcert®: mind. Zertifikat UNIcert® II;
- b) NULTE-Zertifikate: mind. Niveau B2;
- c) Cambridge English Scale: mind. 160 Punkte;
- d) "International English Language Testing System" (IELTS Academic): mind. Band 5.5;
- e) "Test of English as a Foreign Language, internet-based test" (TOEFL iBT): mind. 87 Punkte;
- f) Global Scale of English (Pearson Academic): mind. 59 Punkte;
- g) Sonstiger Nachweis auf dem Niveau B2 oder höher nach GeR.

Das erfolgreiche Absolvieren des Tests (a-f) darf nicht länger als drei Jahre vor dem Eingang des Zulassungsantrags liegen. Als Nachweis ausreichender Kenntnisse der englischen Sprache gelten auch ein mindestens einjähriger Studien- oder Berufsaufenthalt in einem Land, in dem Englisch die Amtssprache ist oder der erfolgreiche Abschluss eines mindestens zweijährigen englischsprachigen Studiengangs. Der Nachweis über ausreichende Kenntnisse der englischen Sprache ist bei der Einschreibung für ein Wintersemester bis zum 30.09., bei Einschreibung für ein Sommersemester bis zum 31.03. gegenüber der Philosophischen Fakultät zu erbringen; der Nachweis ist Immatrikulationsvoraussetzung; eine bedingte Einschreibung findet nicht statt. Über die Gleichwertigkeit weiterer Nachweise entscheidet im Einzelfall die Auswahlkommission; diese kann für ihre Entscheidung ein Fachgutachten einer anderen Einrichtung (z.B. ZESS) einholen.

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt 18 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden:	
M.Ara.501: Advanced Reading and Discussion (6 C, 4 SWS)	. 5565
b. Wahlpflichtmodule II	
Es müssen zwei der folgenden Module im Umfang von insgesamt 12 C erfolgreich absolviert werden:	
B.Ara.25: Exkursion in die arabische Welt (6 C, 2 SWS)	.5543

a. Wahlpflichtmodule I

Georg-August-Universität Göttingen	12 C 10 SWS
Modul B.Antik.25: Hebräisch I	10 3003
English title: Biblical Hebrew I	

Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden	Präsenzzeit:
Elementarkenntnisse des Biblischen Hebräisch mit den Elementen:	140 Stunden
- Elementarlehre: Hebräische Schrift, Phonetik und Silbenstruktur	Selbststudium:
- Semantik und Lexematik: Wortschatzarbeit und Wortbildungslehre	220 Stunden
- Morphologie: nominale und verbale Flexion	
- Wort- und Satzsyntax	
- Übersetzungspraxis	
- Lektüre- und Klausurübungen	

Lehrveranstaltung: Kurs: Hebräisch I	8 SWS
Prüfung: Klausur (180 Minuten) und mündliche Prüfung (ca. 35 Minuten)	
Prüfungsvorleistungen:	
regelmäßige Teilnahme	
Prüfungsanforderungen:	
Klausur: Übersetzung eines mittelschweren Textes aus dem hebräischen	
Alten Testament (ca. zehn BHS-Zeilen) und Bestimmung von zehn	
Formen.	
Mündliche Prüfung: ca. 20 Min. Vorbereitung und ca. 15 Min. Prüfungsgespräch:	
Übersetzung von zwei Bibelversen mit Erläuterung von Formen und Syntax.	
Die Studierenden weisen in der Prüfung grundlegende Kenntnisse der hebräischen	
Grammatik (Elementar-, Formenlehre und Syntax), Übersetzungspraxis und	
grundsätzliche Lektürefähigkeit von Texten der Hebräischen Bibel nach.	

Lehrveranstaltung: Kurs: Lektüre- und Klausurkurs zu Hebräisch I	2 SWS
--	-------

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Sprache: Deutsch	Modulverantwortliche[r]: apl. Prof. Dr. Thilo Alexander Rudnig
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 2
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen Modul B.Ara.25: Exkursion in die arabische Welt English title: Excursion to the Muslim World

Lernziele/Kompetenzen:

Durch die Teilnahme an Blockveranstaltungen, in denen sich die Studierenden auf die üblicherweise in der Zeit nach dem Vorlesungsende des Wintersemesters stattfindende landeskundliche Exkursion in ein arabisches Land vorbereiten, erwerben die Studierenden die Kompetenz, wichtige Stationen der Geschichte, Landeskunde und Kultur des besuchten Landes/der besuchten Länder darzustellen, zu erläutern und in ihren Kontext einzuordnen. Durch die Vorbereitung werden die Studierenden befähigt, größtmöglichen Gewinn aus der Reise zu ziehen und sowohl inhaltlich als auch sprachlich von der Exkursion zu profitieren. Durch die Teilnahme an der Exkursion in ein arabisches Land werden die Studierenden in die Lage versetzt, erlernte arabische Sprachkenntnisse auf einfachem Niveau in Alltagssituationen anzuwenden und die Unterschiede zwischen Hochsprache und Dialekt durch direktes Erleben zu verstehen. Darüber hinaus erwerben sie interkulturelle Kompetenz, z. B. im Rahmen von Besuchen von Bildungseinrichtungen des Gastlandes/der Gastländer und durch gemeinsam mit den Gastgebern erarbeitete Projekte zu kulturellen und geschichtlichen Themen.

Durch die während der Exkursion durchgeführten relevanten Lehrveranstaltungen sind die Studierenden ferner in der Lage, das während der Vorbereitung erarbeitete Wissen zu vertiefen, zu erweitern und vor Ort anzuwenden.

Die Kosten der Exkursion tragen die Teilnehmer/innen selbst; es werden jedes Jahr Zuschüsse beantragt.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden

Lehrveranstaltung: Blockseminare	2 SWS
Lehrveranstaltung: Exkursion (ca. vier Wochen)	
Prüfung: Referat (ca. 20 Minuten)	6 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme	

Prüfungsanforderungen: Vertiefte Kenntnisse der Landeskunde, Geschichte und Kultur des Gastlandes/der Gastländer

Zugangsvoraussetzungen: B.Ara.01, B.Ara.02	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Akram Bishr
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

viodul B.Ara.25 - Version 3	
20	1

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Ara.26-1: Zweitsprache der arabischen und islamischen Welt I English title: Second Language of the Arab and Muslim World I Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Teilnahme an diesem Modul sind die Studierenden in der Lage, die Präsenzzeit: Schrift der unterrichteten Sprache zu lesen und zu schreiben. Ferner verfügen sie über 56 Stunden die Fähigkeit, die Grundregeln der Phonetik, Silbenstruktur, Morphologie, Wortbildung Selbststudium: und Syntax zu verstehen und in einfachen Übungs- und Übersetzungssituationen 124 Stunden anzuwenden. Darüber hinaus besitzen sie Grundkenntnisse des Wortschatzes der jeweiligen Sprache. Lehrveranstaltung: Sprachkurs 4 SWS 6 C Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Beherrschung der Schrift der unterrichteten Sprache. Kenntnis über die wichtigsten Elemente der Grammatik und Wortbildung sowie den Grundwortschatz der jeweiligen Sprache. Aktive Anwendung in Übungen und Übersetzungen. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Irene Schneider Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 20

20

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Ara.26-2: Zweitsprache der arabischen und islamischen Welt II English title: Second Language of the Arab and Muslim World II Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Teilnahme an diesem Modul (in Fortsetzung von B.Ara.26-1) Präsenzzeit: verfügen die Studierenden über die Fähigkeit, die Regeln der Morphologie, Wortbildung 56 Stunden und Syntax der unterrichteten Sprache auf fortgeschrittenem Niveau zu erläutern. Selbststudium: Zusätzlich dazu sind sie – im Falle moderner Sprachen - in der Lage kürzere 124 Stunden Konversationen zu führen und sich auf Basisniveau mit einem fundierten Wortschatz zu verständigen bzw. – im Falle alter Sprachen – einfache Texte zu verstehen und zu übersetzen. Lehrveranstaltung: Sprachkurs 4 SWS Prüfung: Klausur (90 Minuten) 6 C Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Fortgeschrittene Kenntnisse der wichtigsten Elemente der Grammatik und Wortbildung der unterrichteten Sprache. Fortgeschrittener Grundwortschatz der jeweiligen Sprache. Aktive Anwendung in Übungen und Übersetzungen. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: B.Ara.26-1 keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Irene Schneider Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen Modul B.Ira.101a: Einführung in das Neupersische I English title: Introduction to Modern Persian I

Lernziele/Kompetenzen:	Arbeitsaufwand:
Schreib und Lesekenntnisse der arabisch-persischen Schrift.	Präsenzzeit:
Grundwortschatz Grundkenntnisse der Grammatik der persischen Schriftsprache. Fähigkeit zur Lektüre einfacher Texte.	56 Stunden Selbststudium: 124 Stunden
 Anwenden des Erlernten durch eigenständig angefertigte Übungen und Übersetzungen. Erwerb von landeskundlichen Kenntnissen 	

Lehrveranstaltung: Sprachkurs (Sprachkurs)	4 SWS
Prüfung: Klausur (60 Minuten)	6 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme; Hausaufgaben (max. 46 Seiten)	
Prüfungsanforderungen:	
Beherrschung der arabisch-persischen Schrift	
Kenntnis der wichtigsten Grundlagen der persischen Grammatik	
Grundwortschatz Persisch	
Aktive Anwendung in Übungen und Übersetzungen	
Nachweis der Übersetzungsfähigkeit von einfachen Texten Deutsch-Persisch/	
Persisch-Deutsch	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Eva Orthmann
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 1
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen Modul B.Ira.102a: Einführung in das Neupersische II English title: Introduction to Modern Persian II

Lernziele/Kompetenzen:	Arbeitsaufwand:
Grundkenntnisse der Grammatik der persischen Sprache (Fortsetzung)	Präsenzzeit:
Erweiterung des Wortschatzes	56 Stunden
Erlernen der Grundmerkmale der persischen Umgangssprache und der	Selbststudium:
wichtigsten grammatischen Unterschiede zwischen Schrift- und Umgangssprache.	124 Stunden
Übersetzung persisch-deutscher und deutsch-persischer Texte	
Landeskundliche Kenntnisse	
Lehrveranstaltung: Sprachkurs (Sprachkurs)	4 SWS
Prüfung: Schriftliche und mündliche Prüfung (60 Minuten)	6 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme; Hausaufgaben (max. 46 Seiten)	
Prüfungsanforderungen:	
Kenntnisse der Grundlagen der persischen Grammatik	
Erweiterter Grundwortschatz	
Nachweis der Übersetzungsfähigkeit von einfachen Texten Deutsch-Persisch/ Persisch-Deutsch	

Zugangsvoraussetzungen: B.Ira.101a	Empfohlene Vorkenntnisse: Beherrschung des persischen Alphabets und Grundkenntnisse der persischen Grammatik
Sprache: Deutsch, Persisch	Modulverantwortliche[r]: Language instructor
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 2
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttinge Modul B.JudC.01: Neuhebräisch I English title: Modern Hebrew I	en	6 C 4 SWS
Lernziele/Kompetenzen: Grundlegende Einführung in das moderne, h (Schrift, Grammatik, Vokabular); Fähigkeit zu Zeitungslektüre.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Sprachkurs Neuhebräisch I Prüfung: Klausur (60 Minuten) Prüfungsanforderungen: Lesen und Verstehen einfacher Texte in modernem Hebräisch		4 SWS 6 C
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Hans-Jürgen Becker	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen Modul B.JudC.02: Neuhebräisch II English title: Modern Hebrew II		6 C 4 SWS
Lernziele/Kompetenzen: Fähigkeit zum Lesen und Verstehen punktierter und unpunktierter neuhebräischer Texte der spätantiken (Mischnahebräisch) und der modernen Sprachstufe; Fähigkeit zur Übersetzung hebräischsprachiger wissenschaftlicher Literatur mit Hilfsmitteln.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Sprachkurs "Neuhebräisch II" Prüfung: Klausur (60 Minuten) Prüfungsanforderungen: Lesen und Verstehen komplexerer, punktierter und unpunktierter neuhebräischer Texte		4 SWS 6 C
Zugangsvoraussetzungen: B.JudC.01 oder Äquivalent	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Hans-Jürgen Becker	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen Modul M.Ara.01: Textlektüre und Diskussion für Fortgeschrittene English title: Advanced Reading and Discussion

Lernziele/Kompetenzen:	Arbeitsaufwand:
Die Studierenden erweitern in diesem Modul ihre Sprachkenntnisse im Lesen,	Präsenzzeit:
Verstehen, Hören und Sprechen. Zentrale Lerninhalte sind die Lektüre verschiedener	56 Stunden
Textformen, schriftlicher Ausdruck, verstehendes Hören sowie insbesondere aktive	Selbststudium:
Sprachpraxis in Form von Diskussionen und Präsentationen. Die Studierenden sind in	124 Stunden
der Lage, mündlich und schriftlich zu kommunizieren. Sie können Anwendungsbereiche	
des modernen Hocharabisch analysieren und das Arabische aktiv anwenden.	
Unterrichtssprache ist Arabisch.	
Lehrveranstaltung: Textlektüre Arabisch	2 SWS
	2 SWS
Lehrveranstaltung: Arabische Konversation	2 3003
Prüfung: Klausur (120 Minuten)	6 C
Prüfungsvorleistungen:	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Sprache: Arabisch	Modulverantwortliche[r]: Prof. Dr. Riem Spielhaus
Angebotshäufigkeit: jedes Wintersemester	Dauer: 2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Verstehen anspruchsvoller arabischer Texte. Eigenständige Wiedergabe arabischer

Dokumente. Selbständiges Verfassen arabischer Texte.

Regelmäßige Teilnahme **Prüfungsanforderungen:**

Georg-August-Universität Götting		4 C 1 SWS
Modul M.Ara.02: Master-Kolloquiu English title: Master Colloquium		
Lernziele/Kompetenzen: Studierende präsentieren und diskutieren das Thema ihrer Masterarbeit. Dabei werden sie sowohl durch die Beratung des/der Professors/Professorin als auch durch die Evaluierung und Rückmeldungen der anderen Teilnehmenden befähigt, ihr wissenschaftliches Vorhaben formal, methodisch und inhaltlich angemessen zu gestalten. Besondere Berücksichtigung findet hier die Herausforderung, in der Masterarbeit sowohl fremdsprachliche Kompetenz nachzuweisen als auch die entsprechende inhaltliche Fragestellung auf dem neuesten Stand der Forschung zu präsentieren.		Arbeitsaufwand: Präsenzzeit: 14 Stunden Selbststudium: 106 Stunden
Lehrveranstaltung: Kolloquium		1 SWS
Prüfung: Referat (ca. 30 Minuten), unben Prüfungsvorleistungen: regelmäßige Teilnahme		
Prüfungsanforderungen: Erstellung, Präsentation und Diskussion eines Konzepts zur Abschlussarbeit		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen Modul M.Ara.04: Geschichte und Kultur des Islams English title: Islamic History and Culture

Lernziele/Kompetenzen:

Die Studierenden werden in diesem Modul in die Lage versetzt, einen historischen bzw. kulturwissenschaftlichen Zusammenhang selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden an die theoretischen Grundlagen historischer Forschung herangeführt und lernen, historische Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Epochen der islamischen Geschichte sowie wechselnden Bereichen vom Islam geprägter Kulturen werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt. Durch das Verfassen einer Hausarbeit lernen die Studierenden, eine wissenschaftliche Fragestellung aus dem vorgegebenen Themengebiet zu formulieren und mit Hilfe von Quellen und Fachliteratur eigenständig zu bearbeiten.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 212 Stunden

Lehrveranstaltung: Independent Studies (Quellenarbeit)	
Lehrveranstaltung: Seminar	2 SWS
Prüfung: Referat (ca. 20 Min.) und Hausarbeit (max. 20 Seiten)	8 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme	

Prüfungsanforderungen:

Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte Kenntnisse eines historischen kulturhistorischen Themas.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Irene Schneider
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	
20	

Bemerkungen:

Das Modul M.Ara.04 kann nicht gemeinsam mit dem Modul M.Ara.04a belegt werden.

Georg-August-Universität Göttingen		6 C
Modul M.Ara.04a: Geschichte und Kultur des Islams English title: Islamic History and Culture		2 SWS
Lernziele/Kompetenzen: Die Studierenden werden in diesem Modul in die Lage versetzt, einen historischen bzw. kulturwissenschaftlichen Zusammenhang selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden an die theoretischen Grundlagen historischer Forschung herangeführt und lernen, historische Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Epochen der islamischen Geschichte sowie wechselnden Bereichen vom Islam geprägter Kulturen werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden
Lehrveranstaltung: Seminar		2 SWS
Lehrveranstaltung: Independent Studies (Quellenarbeit)		
Prüfung: Referat (ca. 20 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme		6 C
Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Se Kenntnisse eines historischen kulturhistorischen Th		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider	
Angebotshäufigkeit: jährlich	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		
20 ————————————————————————————————————		

Das Modul M.Ara.04a kann nicht gemeinsam mit dem Modul M.Ara.04 belegt werden.

Georg-August-Universität Göttingen 8 C 2 SWS Modul M.Ara.05: Religion des Islams English title: Islamic Religion Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden werden in diesem Modul in die Lage versetzt, einen religions-Präsenzzeit: 28 Stunden bzw. geistesgeschichtlichen Zusammenhang selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden Selbststudium: an die theoretischen Grundlagen der Forschung zur islamischen Religions- und 212 Stunden Geistesgeschichte herangeführt und lernen, religionswissenschaftliche Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Feldern der islamischen Religions- und Geistesgeschichte werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt. Durch das Verfassen einer Hausarbeit lernen die Studierenden, eine wissenschaftliche Fragestellung aus dem vorgegebenen Themengebiet zu formulieren und mit Hilfe von Quellen und Fachliteratur eigenständig zu bearbeiten. Lehrveranstaltung: Independent Studies (Quellenarbeit) 2 SWS Lehrveranstaltung: Seminar Prüfung: Referat (ca. 20 Min.) und Hausarbeit (max. 20 Seiten) 8 C Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte Kenntnisse eines Themas aus den Bereichen Religion und Geistesgeschichte.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine
Keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Irene Schneider
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
20	

Bemerkungen:

Das Modul M.Ara.05 kann nicht gemeinsam mit dem Modul M.Ara.05a belegt werden.

Georg-August-Universität Göttingen Modul M.Ara.05a: Religion des Islams English title: Islamic Religion

Lernziele/Kompetenzen: Die Studierenden werden in diesem Modul in die Lage versetzt, einen religionsbzw. geistesgeschichtlichen Zusammenhang selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden an die theoretischen Grundlagen der Forschung zur islamischen Religions- und Geistesgeschichte herangeführt und lernen, religionswissenschaftliche Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Feldern der islamischen Religions- und Geistesgeschichte werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt. Lehrveranstaltung: Seminar

Lehrveranstaltung: Seminar	2 SWS
Lehrveranstaltung: Independent Studies (Quellenarbeit)	
Prüfung: Referat (ca. 20 Minuten)	6 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme	
Prüfungsanforderungen:	
Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte	
Kenntnisse eines Themas aus den Bereichen Religion und Geistesgeschichte	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Irene Schneider
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	
20	

Bemerkungen:

Das Modul M.Ara.05a kann nicht gemeinsam mit dem Modul M.Ara.05 belegt werden.

Georg-August-Universität Göttingen 8 C 2 SWS Modul M.Ara.06: Arabische Literatur English title: Arabic Literature Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden lernen in diesem Modul, Texte aus der Vielfalt des arabischen Präsenzzeit: 28 Stunden Schrifttums selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden in die arabische Poesie und Prosaliteratur Selbststudium: aus Vergangenheit und Gegenwart eingeführt. Textzeugnisse aus verschiedenen 212 Stunden Gebieten und Genres der arabischen Literatur werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt. Durch das Verfassen einer Hausarbeit lernen die Studierenden, eine wissenschaftliche Fragestellung aus dem vorgegebenen Themengebiet zu formulieren und mit Hilfe von Quellen und Fachliteratur eigenständig zu bearbeiten. Lehrveranstaltung: Seminar 2 SWS Lehrveranstaltung: Independent Studies (Quellenarbeit) Prüfung: Referat (ca. 20 Min.) und Hausarbeit (max. 20 Seiten) 8 C Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte Kenntnisse eines Themas aus den Bereichen Poesie und Prosa. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Irene Schneider Dauer: Angebotshäufigkeit: iährlich 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 20 Bemerkungen:

Das Modul M.Ara.06 kann nicht gemeinsam mit dem Modul M.Ara.06a belegt werden.

Georg-August-Universität Göttingen		6 C
Modul M.Ara.06a: Arabische Literatur English title: Arabic Literature		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand
Die Studierenden lernen in diesem Modul, Texte aus der Vielfalt des arabischen Schrifttums selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden in die arabische Poesie und Prosaliteratur aus Vergangenheit und Gegenwart eingeführt. Textzeugnisse aus verschiedenen Gebieten und Genres der arabischen Literatur werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt.		152 Stunden
Lehrveranstaltung: Seminar		2 SWS
Lehrveranstaltung: Independent Studies (Quellenarbeit)		
Prüfung: Referat (ca. 20 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme		6 C
Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte Kenntnisse eines Themas aus den Bereichen Poesie und Prosa.		е
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider	
Angebotshäufigkeit: jährlich	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester	:
Maximale Studierendenzahl:		

Das Modul M.Ara.06a kann nicht gemeinsam mit dem Modul M.Ara.06 belegt werden.

Georg-August-Universität Göttingen 8 C 2 SWS Modul M.Ara.07: Islamisches Recht English title: Islamic Law Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden werden in diesem Modul in die Lage versetzt, einen Präsenzzeit: rechtstheoretischen oder rechtspraktischen Zusammenhang selbständig zu analysieren 28 Stunden und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie Selbststudium: 212 Stunden werden an die theoretischen Grundlagen der Forschung zum islamischen Recht herangeführt und lernen, juristische Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Feldern des islamischen Rechts werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt. Durch das Verfassen einer Hausarbeit lernen die Studierenden, eine wissenschaftliche Fragestellung aus dem vorgegebenen Themengebiet zu formulieren und mit Hilfe von Quellen und Fachliteratur eigenständig zu bearbeiten. 2 SWS Lehrveranstaltung: Seminar Lehrveranstaltung: Independent Studies (Quellenarbeit) Prüfung: Referat (ca. 20 Minuten) 3 C 5 C Prüfung: Hausarbeit (max. 20 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte Kenntnisse eines Themas aus dem Bereich Recht. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Irene Schneider Angebotshäufigkeit: Dauer: iährlich 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 20 Bemerkungen:

Das Modul M.Ara.07 kann nicht gemeinsam mit dem Modul M.Ara.07a belegt werden.

Georg-August-Universität Göttingen		6 C
Modul M.Ara.07a: Islamisches Recht English title: Islamic Law		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden werden in diesem Modul in die Lage versetzt, einen rechtstheoretischen oder rechtspraktischen Zusammenhang selbständig zu analysieren und zu diesem Zweck eigenständig Quellen heranzuziehen und auszuwerten. Sie werden an die theoretischen Grundlagen der Forschung zum islamischen Recht herangeführt und lernen, juristische Fragestellungen mit philologischer Analyse zu verbinden. Textzeugnisse aus verschiedenen Feldern des islamischen Rechts werden erschlossen, diskutiert und in den Kontext aktueller wissenschaftlicher Diskussionen gestellt.		Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden
Lehrveranstaltung: Seminar		2 SWS
Lehrveranstaltung: Independent Studies (Quellena	arbeit)	
Prüfung: Referat (ca. 20 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme Prüfungsanforderungen: Selbständig auf der Grundlage von Quellen und Sekundärliteratur erarbeitete vertiefte		6 C
Kenntnisse eines Themas aus dem Bereich Recht.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider	
Angebotshäufigkeit: jährlich	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		
Bemerkungen:		

Das Modul M.Ara.07a kann nicht gemeinsam mit dem Modul M.Ara.07 belegt werden.

Georg-August-Universität Göttingen Modul M.Ara.08-1: Fachsprache / Rechtssprache I		6 C 2 SWS
English title: Technical Language and Legal Terminology I		
Lernziele/Kompetenzen: Die Studierenden erlangen in diesem Modul die Fähigkeit, sich mit vormodernen Rechtstexten auseinanderzusetzen und sie zu analysieren. Sie verfügen über		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kenntnisse der klassischen Rechtsliteratur verschiedener Rechtsbereiche, welche sie durch die Übersetzung aus dem Arabischen ins Deutsche erwerben. Dabei erarbeiten sie sich die Kompetenzen die Rechtsbegriffe zu übersetzen und in ihren historischen Kontext einzuordnen. Ein Schwerpunkt ist die Auseinandersetzung mit der begriffsgeschichtlichen Entwicklung der Termini mit Bezug auf die für die Moderne erworbenen Kenntnisse.		Selbststudium: 152 Stunden
Lehrveranstaltung: Sprachkurs		2 SWS
Lehrveranstaltung: Independent Studies (Quellenarbeit)		
Prüfung: Referat (ca. 20 Minuten) Prüfungsvorleistungen: Regelmäßige Teilnahme; Portfolio (max. 14 – 20 Seiten)		6 C
Prüfungsanforderungen: Kenntnisse der Rechtssprache und Rechtstermini für klassisches Recht und verschiedene Rechtsbereiche und der Begriffsgeschichte.		
Zugangsvoraussetzungen:Empfohlene Vorkenntnisse:keineB.Ara.09 oder vergleichbare Arabi		schkenntnisse
Sprache: Deutsch, Arabisch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	

Maximale Studierendenzahl:

20

Georg-August-Universität Göttingen Modul M.Ara.08-2: Fachsprache / Rechtssprache II English title: Technical Language and Legal Terminology II

Lernziele/Kompetenzen: Aufbauend auf M.Ara 08.1 erwerben die Absolventinnen und Absolventen in diesem Modul Kenntnisse über Rechtstexte aus der Moderne, hier vor allem Gesetzestexte aber auch Gerichtsurteile und internationale Konventionen etc, sie können Übersetzungsprozesse reflektieren und übersetzerische Entscheidungen vor dem Hintergrund von Theorien und Methoden der Übersetzungswissenschaft mit einem Schwerpunkt in den Translational Studies begründen. Neben den Übersetzungskompetenzen wird die Analysefähigkeit der Rechtsterminologie, die in ihrer historischen Entstehung und im Rahmen ihrer modernen Anwendung erarbeitet

Lehrveranstaltung: Sprachkurs	2 SWS
Lehrveranstaltung: Independent Studies (Quellenarbeit)	
Prüfung: Portfolio (max. 14 – 20 Seiten)	4 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme	

Prüfungsanforderungen:

wird, erlangt.

Kenntnisse der Rechtssprache und Rechtstermini für modernes Recht in verschiedenen Rechtsbereichen und Kenntnis der Hauptgattungen von Rechtstexten. Die Studierenden weisen die Fähigkeit einer reflektierten Auseinandersetzung mit verschiedenen Rechtstexten nach, sie weisen nach, dass sie translatorische Grundtechniken anwenden und übersetzerische Entscheidungen vor dem Hintergrund von Theorien der Übersetzungswissenschaft begründen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Arabisch	Modulverantwortliche[r]: Prof. Dr. Irene Schneider
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

6 C Georg-August-Universität Göttingen 2 SWS Modul M.Ara.09: Vertiefte Lektüre und schriftlicher Sprachgebrauch des Arabischen English title: Advanced Arabic Reading and Writing Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Teilnahme an diesem Modul sind die Studierenden in der Lage, Präsenzzeit: anspruchsvolle klassisch-arabische, vor allem aber Texte des modernen Hocharabisch 28 Stunden zu verstehen, grammatikalisch zu analysieren und zu übersetzen. Ferner sind sie in Selbststudium: der Lage, die arabische Sprache aktiv im schriftlichen Sprachgebrauch (z. B. in der 152 Stunden Übersetzung von Texten aus dem Deutschen, Nacherzählungen und eigenständiger, schriftlicher Textformulierung) einzusetzen. Lehrveranstaltung: Sprachübung 2 SWS 6 C Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Regelmäßige Teilnahme Prüfungsanforderungen: Verständnis und Übersetzung anspruchsvoller Texte, erweiterte Kenntnisse der arabischen Grammatik, Fähigkeit zum aktiven schriftlichen arabischen Sprachgebrauch Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** M.Ara.01 keine Sprache: Modulverantwortliche[r]: Deutsch, Arabisch Prof. Dr. Riem Spielhaus Dauer: Angebotshäufigkeit: iedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig

Maximale Studierendenzahl:

20

Georg-August-Universität Göttingen 8 C 2 WLH Module M.Ara.10: Islamic Culture, Past and Present Workload: Learning outcome, core skills: Participation in the module enables students to analyze topics from the realm of Islamic Attendance time: Culture independently and in detail. To this aim, they will learn to conduct research on, 28 h understand and interpret a given set of Arabic primary sources. They will be introduced Self-study time: to methods of historical, legal, critical and/or philological analysis, which they are to 212 h apply to a given set of research questions. The scope of the module encompassed Arabic texts from all historical periods of Islamic culture and all geographic regions of the Islamicate world. These texts will be studied in the context of current scholarly discussions and previous research results. The course will be taught in English. Course: Islamic Culture in Past and Present (Seminar) 2 WLH 5 C Examination: Term Paper (max. 20 pages) **Examination prerequisites:** Regular participation Course: Independent Studies (source work) 3 C **Examination: Oral Presentation (approx. 20 minutes) Examination requirements:** Individual work and knowledge on a given topic from the fields of Islamic culture, based on Arabic sources and secondary literature.

Admission requirements: 20 C Arabic or equivalent Arabic language proficiency	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Riem Spielhaus
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

The module can be credited in the area of key competences, especially by students of the Master programmes "Arabic Studies/Islamic Studies" and "Iranian and Persianate Studies".

Georg-August-Universität Göttingen Module M.Ara.501: Advanced Reading and Discussion 6 C 4 WLH

Learning outcome, core skills:	Workload:
In this module, students enhance their reading, comprehension, listening and	Attendance time:
speaking language skills. The course content is focused on reading different kinds of	56 h
texts, of written expression, listening comprehension and especially active language	Self-study time:
practice in the form of discussions and presentations. The students are able to	124 h
communicate orally and in writing. They are capable of analyzing the usage of Modern	
Standard Arabic and can actively use the language. The course will be taught in Arabic.	

Course: Reading Arabic texts	2 WLH
Course: Arabic conversation	2 WLH
Examination: Written examination (120 minutes)	6 C
Examination prerequisites:	
regular participation	
Examination requirements:	
Students should be able to understand complex Arabic texts, reproduce Arabic	
documents in their own words, and write Arabic texts independently.	

Admission requirements:	Recommended previous knowledge: none
Language: Arabisch	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: each winter semester	Duration: 2 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen	4 C 1 WLH
Module M.Ara.502: Master Colloquium	

Module W.Ara.502: Master Colloquium	
Learning outcome, core skills:	Workload:
Students present and discuss the topic of their Master thesis. Here, both the advice of	Attendance time:
the instructor and the feedback from the other participants enable them to plan their	14 h
academic project adequately in term of form, method and content. Special consideration	Self-study time:
is given to the challenge of demonstrating foreign language proficiency as well as	106 h
presenting their subject of inquiry at the current state of research in the Master thesis.	
Course: Colloquium	1 WLH
Examination: Oral Presentation (approx. 30 minutes), not graded	4 C
Examination prerequisites:	
regular participation	
Examination requirements:	
Preparation, presentation and discussion of a concept for the final thesis.	

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Toolg Magaet Oniversitat Cottingen	8 C
Module M.Ara.506: Arabic Literature	2 WLH

Module M.Ara.506: Arabic Literature	2 WLH
Learning outcome, core skills:	Workload:
In this module, students are taught how to analyze texts from the diverse Arabic	Attendance time:
literatures independently, consulting and utilizing sources for this purpose. They are	28 h
introduced to Arabic poetry and prose of the past and the present. Text sources from	Self-study time:
different fields and genres of Arabic literature are studied, discussed and placed in the context of current scholarly debate.	212 h
By writing a term paper, the students learn how to formulate an academic question	
pertaining to the given subject area and to deal with it on their own using sources and specialist literature.	
Course: Seminar	2 WLH
Course: Independent Studies	
Examination: Oral presentation (approx. 20 minutes) and term paper (max. 20	8 C
pages)	
Examination prerequisites:	
regular participation	
Examination requirements:	
Advanced knowledge of a subject concerning poetry and prose acquired independently	
by the study of Arabic sources and the secondary literature.	

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Goorg August Chitorollar Collingon	6 C 2 WLH
Module M.Ara.506a: Arabic Literature	2 WLH

Learning outcome, core skills:	Workload:
In this module, students are taught how to analyze texts from the diverse Arabic	Attendance time:
literatures independently, consulting and utilizing sources for this purpose. They are	28 h
introduced to Arabic poetry and prose of the past and the present. Text sources from	Self-study time:
different fields and genres of Arabic literature are studied, discussed and placed in the	152 h
context of current scholarly debates.	
Course: Seminar	2 WLH
Course: Independent Studies	
Examination: Oral Presentation (approx. 20 minutes)	6 C
Examination prerequisites:	
regular participation	
Examination requirements:	
Advanced knowledge of a subject concerning poetry and prose acquired independently	
by the study of Arabic sources and the secondary literature.	
	1

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen	6 C	
Module M.Ara.509: Advanced Arabic Read	2 WLH	
Learning outcome, core skills:		Workload:
On successful completion of this module, students are	e able to understand complex	Attendance time:
Arabic texts, analyze them grammatically and translat	e them. They also have a good	28 h
command of written Arabic (e.g. in translating texts from	om English into Arabic, reproducing	Self-study time:
or formulating their own texts in writing).		152 h
Course: Language exercise		2 WLH
Examination: Written examination (120 minutes)		6 C
Examination prerequisites:		
regular participation		
Examination requirements:		
The ability to understand and translate complex Arabic texts, enhanced knowledge		
of Arabic grammar, active use of the written language.		
Admission requirements:	Recommended previous knowle	dge:
M.Ara.501	none	
Language:	Person responsible for module:	
Arabisch, English	Prof. Dr. Jens Scheiner	
Course frequency:	Duration:	
each winter semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice		
Maximum number of students:		
20		

Georg-August-Universität Göttingen	8 C
Module M.Ara.510: Islamic Culture, Past and Present	2 WLH
Learning outcome, core skills:	Workload: Attendance time:
Participation in the module enables students to analyze topics from the realm of Islamic Culture independently and in detail. To this aim, they will learn to conduct research on, understand and interpret a given set of Arabic primary sources. They will be introduced to methods of historical, legal, critical and/or philological analysis, which they are to apply to a given set of research questions.	28 h Self-study time: 212 h
The scope of the module encompassed Arabic texts from all historical periods of Islamic culture and all geographic regions of the Islamicate world. These texts will be studied in the context of current scholarly discussions and previous research results. The course will be taught in English.	
Course: Islamic Culture in Past and Present (Seminar)	2 WLH
Examination: Term Paper (max. 20 pages) Examination prerequisites: regular participation	5 C
Course: Independent Studies	

Examination requirements:

Examination: Oral Presentation (approx. 20 minutes)

Individual work and knowledge on a given topic from the fields of Islamic culture, based on Arabic sources and secondary literature.

Admission requirements: 20 C Arabic or equivalent Arabic language proficiency	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Jens Scheiner
Course frequency: Infrequently	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

The module can be credited in the area of key competences, especially by students of the Master programmes "Arabic Studies/Islamic Studies" and "Iranian and Persianate Studies".

3 C

Georg-August-Universität Göttingen Module M.Ara.601: Methods and Theories in Arabic-Islamic Studies

Learning outcome, core skills:

Students deepen their knowledge of methods and theories used in the current discourses of Arabic and Islamic studies. These research approaches and tools are explored with regard to Arabic primary sources, modern research studies, audiovisual evidence as well as information available on the internet, and will be analyzed in the context of the Middle East.

Students will thus be able to reflect critically on the intellectual trajectories and historical dimensions of current political, religious, and social discourses in Islamicate societies and productively apply this knowledge to current Islam-related debates.

Students write a term paper, by which they demonstrate the ability to deal academically with questions pertaining to the given subject areas, based on their knowledge of Arabic primary sources and the specialist secondary literature.

Workload:

212 h

Attendance time: 28 h Self-study time:

Course: Seminar

Course: Independent Studies

Examination: Oral presentation (approx. 20 minutes) and term paper (max. 20 pages)

Examination prerequisites: regular participation

Examination requirements:

Students will be able to engage in methodological and theoretical discussions based on the analysis of textual and audiovisual evidence.

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Kata Moser
Course frequency:	Duration:
Number of repeat examinations permitted:	1 semester[s] Recommended semester:
twice Maximum number of students:	
20	

Additional notes and regulations:

Das Modul M.Ara.601 kann nicht gemeinsam mit dem Modul M.Ara.601a belegt werden.

Georg-August-Universität Göttingen Module M.Ara.601a: Methods and Theories in Arabic-Islamic Studies 6 C 2 WLH

Learning outcome, core skills: Students deepen their knowledge of methods and theories used in the current discourses of Arabic and Islamic studies. These research approaches and tools are explored with regard to Arabic primary sources, modern research studies, audiovisual evidence as well as information available on the internet, and will be analyzed in the context of the Middle East. Students will thus be able to reflect critically on the intellectual trajectories and historical dimensions of current political, religious, and social discourses in Islamicate societies and productively apply this knowledge to current Islam-related debates.

2 WLH
6 C

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Kata Moser
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.601a kann nicht gemeinsam mit dem Modul M.Ara.601 belegt werden.

Georg-August-Universität Göttingen Module M.Ara.602: Hadith Studies 8 C 2 WLH

Workload: Learning outcome, core skills: Students are familiarized with Hadith studies and learn how to apply the isnad-cum-matn Attendance time: analysis. This innovative analytical tool in Islamic Studies combines the investigation 28 h of the transmission (isnads) and the content (matns) of prophetic traditions. Students Self-study time: are introduced to the theoretical foundations, research history and most important 212 h Arabic Hadith compendia. Various sources from the field of Hadith and bio-biographical dictionaries are studied and placed in the context of current scholarly debates. Students will thus be able to critically reflect the intellectual trajectories and historical dimensions of political, religious, and social discourses in Islamicate societies and productively apply this knowledge to current Islam-related debates. Students write a term paper, by which they demonstrate the ability to deal academically

with questions pertaining to the given subject areas, based on their knowledge of Arabic

primary sources and the specialist secondary literature.

Course: Seminar	2 WLH
Course: Independent Studies	
Examination: Oral presentation (approx. 20 minutes) and term paper (max. 20	8 C
pages)	
Examination prerequisites:	
regular participation	
Examination requirements:	
Advanced knowledge of a subject related to Hadith studies and isnad-cum-matn	
analysis acquired independently by the study of Arabic primary sources and the	
secondary literature.	

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Jens Scheiner
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students:	

Additional notes and regulations:

Das Modul M.Ara.602 kann nicht gemeinsam mit dem Modul M.Ara.602a belegt werden.

occig ragact cintorchat collingen	6 C
Module M.Ara.602a: Hadith Studies	2 WLH

Learning outcome, core skills: Students are familiarized with Hadith studies and learn how to apply the *isnad-cum-matn* analysis. This innovative analytical tool in Islamic Studies combines the investigation of the transmission (*isnads*) and the content (*matns*) of prophetic traditions. Students are introduced to the theoretical foundations, research history and most important Arabic Hadith compendia. Various sources from the field of Hadith and bio-biographical dictionaries are studied and placed in the context of current scholarly debates. Students will thus be able to critically reflect the intellectual trajectories and historical dimensions of political, religious, and social discourses in Islamicate societies and

productively apply this knowledge to current Islam-related debates.

Course: Seminar	2 WLH
Course: Independent Studies	
Examination: Oral Presentation (approx. 20 minutes)	6 C
Examination prerequisites:	
regular participation	
Examination requirements:	
Advanced knowledge of a subject related to Hadith studies and isnad-cum-matn	
analysis acquired independently by the study of Arabic primary sources and the	
secondary literature.	

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Jens Scheiner
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.602a kann nicht gemeinsam mit dem Modul M.Ara.602 belegt werden.

Georg-August-Universität Göttingen Module M.Ara.603: Ethics and Education in Islam

Learning outcome, core skills:

Students learn to analyze issues relating to ethics and education in Islam while utilizing an array of Arabic primary sources and modern research studies. They are made familiar with the theoretical framework of research on moral concepts, the perception of knowledge (in its interaction with faith) and learning in Islam, and connect respective thematic questions to philological-historical analysis. Textual sources from different areas of Islam's intellectual history (esp. 7th-15thcentury) are studied in detail and examined in due consideration of current scholarly debates.

Students will thus be able to critically reflect the intellectual trajectories and historical dimensions of political, religious, and social discourses in Islamicate societies and productively apply this knowledge to current Islam-related debates.

Students write a term paper, by which they demonstrate the ability to deal academically with questions pertaining to the given subject areas, based on their knowledge of Arabic primary sources and the specialist secondary literature.

Workload:

Attendance time: 28 h

Self-study time: 212 h

Course: Seminar

Course: Independent Studies

Examination: Oral presentation (approx. 20 minutes) and term paper (max. 20 pages)

Examination prerequisites: regular participation

Examination requirements:

Advanced knowledge of a subject relating to ethics and education in Islam, acquired independently by the study of Arabic primary sources and the secondary literature.

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.603 kann nicht gemeinsam mit dem Modul M.Ara.603a belegt werden.

Georg-August-Universität Göttingen Module M.Ara.603a: Ethics and Education in Islam 6 C 2 WLH

Learning outcome, core skills:

Students learn to analyze issues relating to ethics and education in Islam while utilizing an array of Arabic primary sources and modern research studies. They are made familiar with the theoretical framework of research on moral concepts, the perception of knowledge (in its interaction with faith) and learning in Islam, and connect respective thematic questions to philological-historical analysis. Textual sources from different areas of Islam's intellectual history (esp. 7th-15th century) are studied in detail and examined in due consideration of current scholarly debates.

Students will thus be able to critically reflect the intellectual trajectories and historical dimensions of political, religious, and social discourses in Islamicate societies and productively apply this knowledge to current Islam-related debates.

Workload:

Attendance time: 28 h

Self-study time: 152 h

Course: Seminar

Course: Independent Studies

Examination: Oral Presentation (approx. 20 minutes)

Examination prerequisites:
regular participation

Examination requirements:
Advanced knowledge of a subject relating to ethics and education in Islam, based on independent study of Arabic primary sources and the secondary literature.

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Sebastian Günther
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.603a kann nicht gemeinsam mit dem Modul M.Ara.603 belegt werden.

Georg-August-Universität Göttingen Module M.Ara.604: Secular Modernity and Islam

Learning outcome, core skills:

Students learn how to analyze a subject related to secular modernity in the Arab world independently while consulting and utilizing respective sources for this purpose. They are introduced to the theoretical foundations of research on secular modernity and Islam and combine questions relating to secular modernity with philological analysis. Text sources from different fields of the Arabic intellectual history (from the late 19th century to the present) are studied, discussed and placed in the context of current scholarly debates.

The students thus deepen their intercultural competences and acquire a profound understanding of contemporary religious, political and cultural discourses in Islamicate societies, which enables them to critically analyze media discourses on Islam and take an informed approach to respective public debates.

Students write a term paper, by which they demonstrate the ability to deal academically with questions pertaining to the given subject areas, based on their knowledge of Arabic primary sources and the specialist secondary literature.

Workload:

Attendance time: 28 h

Self-study time: 212 h

Course: Seminar	2 WLH
Course: Independent Studies	
Examination: Oral presentation (approx. 20 minutes) and term paper (max. 20	8 C
pages)	
Examination prerequisites:	
regular participation	
Examination requirements:	
Advanced knowledge of a subject related to secular modernity in the Arab world	
acquired independently by the study of Arabic primary sources and the secondary	
literature.	

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Kata Moser
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.604 kann nicht gemeinsam mit dem Modul M.Ara.604a belegt werden.

Georg-August-Universität Göttingen Module M.Ara.604a: Secular Modernity and Islam 6 C 2 WLH

Learning outcome, core skills:

Students learn how to analyze a subject related to secular modernity in the Arab world independently while consulting and utilizing respective sources for this purpose. They are introduced to the theoretical foundations of research on secular modernity and Islam and combine questions relating to secular modernity with philological analysis. Text sources from different fields of the Arabic intellectual history (from the late 19th century to the present) are studied, discussed and placed in the context of current scholarly debates.

The students thus deepen their intercultural competences and acquire a profound understanding of contemporary religious, political and cultural discourses in Islamicate societies, which enables them to critically analyze media discourses on Islam and take an informed approach to respective public debates.

Workload:

Attendance time: 28 h

Self-study time: 152 h

Course: Seminar 2 WLH

Course: Independent Studies

Examination: Oral Presentation (approx. 20 minutes) 6 C

Examination prerequisites:
regular participation

Examination requirements:
Advanced knowledge of a subject related to secular modernity in the Arab world acquired independently by the study of Arabic primary sources and the secondary literature.

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Kata Moser
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Additional notes and regulations:

Das Modul M.Ara.604a kann nicht gemeinsam mit dem Modul M.Ara.604 belegt werden.

Georg-August-Universität Göttingen 6 C 2 SWS Modul M.IntTheol.14-01: Theories of Religion English title: Theories of Religion

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erwerben einführende und grundlegende Kenntnisse über Präsenzzeit: • Geschichte und Problematik des Religionsbegriffes, 28 Stunden • gängige und gegenwärtige Konzeptualisierungen von Religion, Selbststudium: die wissenschaftliche Terminologie und Kategorisierungen (z.B. "Religion", "Glaube", 152 Stunden "Religiosität") der religionsbezogenen Fächer, • über die generelle Methodik und Methodologie des Zugangs zum Phänomen "Religion". Sie werden grundlegend befähigt zu einer komplexen Darstellung und differenzierenden Beurteilung des Themenfeldes, • zur Identifizierung impliziter und expliziter theoretischer Konzeptionen und Argumentationen im Themenfeld "Religion", • zu deren argumentativer Einordnung in ein theoretisches Gefüge, • zu einem analytischen, verantwortlichen und kritischen Zugang zu Erscheinungen und Formen religiöser Wirklichkeiten, • zur Interpretation religiöser Symbolformen und Metaphorik in unterschiedlicher methodischer Perspektive, zur Differenzierung und kritischen Beurteilung wissenschaftlicher Perspektiven auf Religion, • zu einem generellen Überblick über die Spezifika unterschiedlicher wissenschaftlicher Zugänge – Religionsphilosophie, -phänomenologie, -soziologie, -psychologie usf. sowie allgemein

Lehrveranstaltung: Theories of Religion (Seminar)	2 SWS
Prüfung: Mündl. Prüfung (ca. 20 Min.) oder Klausur (90 Min.)	6 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme am Seminar.	
Prüfungsanforderungen:	
Differenzierte Darlegung und Diskussion des Begriffes "Religion".	
Analyse und Interpretation konkreter Beispiele der Anwendung des Religionsbegriffes.	
Benennung, Analyse und kritische Würdigung relevanter Religionstheorien und	
methodischer Zugänge zu religiösen Phänomenen.	

• zu einer vertieften und systematischen Auskunfts- und Kommunikationsfähigkeit in

Hinsicht auf religiöse Phänomene.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Englisch	PD Dr. Fritz Heinrich
Angebotshäufigkeit:	Dauer:

keine Angabe	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen	11 C 7 SWS
Modul S.RW.0311HA: Strafrecht I	7 3003
English title: Criminal Law I	

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Hausarbeit im Strafrecht (Grundstudium)"

- haben die Studierenden grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts sowie im Besonderen Teil insbesondere hinsichtlich der Körperverletzungs- und Tötungsdelikte erlangt;
- haben die Studierenden gelernt, einen komplexen Fall gutachterlich zu bearbeiten;
- kennen die Studierenden die Methoden wissenschaftlichen Arbeitens;
- kennen die Studierenden die dogmatischen Konzeptionen des Allgemeinen Teils des Strafrechts und ausgewählter Tatbestände des Besonderen Teils in ihrer systematischen, ideellen und praktischen Bedeutung;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- können die Studierenden die spezifische strafrechtliche Technik der Falllösung anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

Präsenzzeit: 98 Stunden Selbststudium: 232 Stunden

Lehrveranstaltung: Strafrecht I (Vorlesung)	5 SWS
Lehrveranstaltung: Begleitkolleg für Strafrecht I	2 SWS
Prüfung: Hausarbeit (max. 25 Seiten)	11 C

Prüfungsanforderungen:

- grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts, sowie aus dem Besonderen Teil insbesondere der K\u00f6rperverletzungs- und T\u00f6tungsdelikte aufweisen,
- ausgewählte Tatbestände des Strafrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen,
- eine Hausarbeit nach den Grundsätzen wissenschaftlichen Arbeitens verfassen können und
- systematisch an einen strafrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
· ·	Modulverantwortliche[r]: Prof. Dr. Dr. h. c. Jörg-Martin Jehle
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester

Wiederholbarkeit: gemäß Prüfungs- und Studienordnung	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul S.RW.0311K: Strafrecht I English title: Criminal Law I

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Strafrecht I"

- haben die Studierenden grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts und im Hinblick auf Straftaten gegen Leib und Leben erlangt;
- haben die Studierenden gelernt, die verschiedenen Typen von Straftaten sowie die verschiedenen Stufen des Straftatbegriffs zu differenzieren;
- kennen die Studierenden die rechtsstaatlichen Grundlagen des Strafrechts;
- kennen die Studierenden die dogmatischen Konzeptionen des Strafrechts in ihrer systematischen, ideellen und praktischen Bedeutung;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- können die Studierenden die spezifische strafrechtliche Technik der Falllösung anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

Präsenzzeit: 98 Stunden Selbststudium:

142 Stunden

Lehrveranstaltung: Strafrecht I (Vorlesung)	5 SWS
Lehrveranstaltung: Begleitkolleg für Strafrecht I	2 SWS
Prüfung: Klausur (120 Minuten)	

Prüfungsanforderungen:

- grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts sowie bezüglich der rechtsstaatlichen Grundlagen des Strafrechts aufweisen,
- ausgewählte Tatbestände des Besonderen Teils (Straftaten gegen das Leben und Körperverletzungsdelikte) beherrschen,
- · die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen einfachen strafrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Dr. h. c. Jörg-Martin Jehle
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: gemäß Prüfungs- und Studienordnung	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Modul S.RW.0311K - Version 1	
nicht begrenzt	

Georg-August-Universität Göttingen Modul S.RW.1220: Internationaler Menschenrechtsschutz English title: International Human Rights Protection

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Internationaler Menschenrechtschutz"

- haben die Studierenden grundlegende Kenntnisse im völkerrechtlichen Menschenrechtsschutz erlangt;
- haben die Studierenden gelernt, zwischen den juristischen Aspekten des Menschenrechtsdiskurses und den politischen, moralischen und philosophischen Bezügen des Menschenrechtsschutzes zu differenzieren;
- kennen die Studierenden die völkervertraglichen Grundlagen des universellen und regionalen Menschenrechtschutzes;
- kennen die Studierenden die grundlegenden dogmatischen Konzeptionen des Menschenrechtsschutzes (Schutzbereichsbestimmung, Eingriffsbegriff, Schrankensystematik, Rechtfertigungsgründe) in ihrer systematischen, theoretischen und praktischen Bedeutung;
- kennen die Studierenden die besonderen Methoden der Auslegung von Menschenrechtsrechtsverträgen (dynamische Auslegung, Effektivitätsgrundsatz) und können diese anwenden;
- können die Studierenden die spezifische juristische Technik der Falllösung menschenrechtlicher Fragestellungen anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

Lehrveranstaltung: Internationaler Menschenrechtsschutz (Vorlesung) 2 SWS Prüfung: Mündlich (ca. 15 Min.) oder Klausur (90 Min.) oder Hausarbeit (mind. 10 6 C Seiten). Die Festlegung der Prüfungsform erfolgt zu Beginn des Semesters durch die Dozenten/Dozentinnen. 6 C

Prüfungsanforderungen:

- grundlegende Kenntnisse im internationalen Menschenrechtsschutz aufweisen,
- ausgewählte Gewährleistungen der Europäischen Menschenrechtskonvention (EMRK) beherrschen,
- · die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen menschenrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christine Langenfeld
Angebotshäufigkeit:	Dauer:

jedes Sommersemester	1 Semester
Wiederholbarkeit: gemäß Prüfungs- und Studienordnung	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	7 C 2 SWS
Modul S.RW.1416HA: Allgemeine Staatslehre	2 3 7 7 3
English title: Constitutional Theory	

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Allgemeine Staatslehre"

- haben die Studierenden grundlegende Kenntnisse in der Allgemeinen Staatslehre und Vergleichenden Regierungslehre erlangt;
- haben die Studierenden gelernt, vergleichende Analysen politischer Systeme vorzunehmen;
- kennen die Studierenden die Konzepte der Staatstheorie und die unterschiedlichen politischen Systeme (historisch und vergleichend);
 kennen die Studierenden die theoretischen Konzeptionen der Allgemeinen Staatslehre in ihrer systematischen, ideellen und praktischen Bedeutung.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 182 Stunden

Lehrveranstaltung: Allgemeine Staatslehre (Vorlesung)	2 SWS
Prüfung: Hausarbeit (max. 25 Seiten)	7 C

Prüfungsanforderungen:

- grundlegende Kenntnisse in der Allgemeinen Staatslehre aufweisen,
- ausgewählte Theoriediskurse auf dem Gebiet der Allgemeinen Staatslehre beherrschen,
- · die zugehörigen methodischen Grundlagen beherrschen und
- eine Hausarbeit nach den Grundsätzen wissenschaftlichen Arbeitens verfassen können

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. h. c. Werner Heun
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: gemäß Prüfungs- und Studienordnung	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul S.RW.1416K: Allgemeine Staatslehre English title: Constitutional Theory 4 C 2 SWS

Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls "Allgemeine Staatslehre" • haben die Studierenden grundlegende Kenntnisse in der Allgemeinen Staatslehre und Vergleichenden Regierungslehre erlangt; • haben die Studierenden gelernt, vergleichende Analysen politischer Systeme vorzunehmen; • kennen die Studierenden die Konzepte der Staatstheorie und die unterschiedlichen

Lehrveranstaltung: Allgemeine Staatslehre (Vorlesung)	2 SWS
Prüfung: Klausur (120 Minuten)	

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

politischen Systeme (historisch und vergleichend);

- grundlegende Kenntnisse in der Allgemeinen Staatslehre aufweisen,
- ausgewählte Theoriediskurse auf dem Gebiet der Allgemeinen Staatslehre beherrschen.

kennen die Studierenden die theoretischen Konzeptionen der Allgemeinen Staatslehre in ihrer systematischen, ideellen und praktischen Bedeutung.

• die zugehörigen methodischen Grundlagen beherrschen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. h. c. Werner Heun
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 WLH Module SK.Ara.526-1: Second Language of the Arab and Muslim World I Workload: Learning outcome, core skills: Upon successful completion of this module, students are able to read and write the Attendance time: script of the language taught. They will also be capable to understand the basic rules 56 h of the phonetics, syllable structure, morphology, word formation and syntax of the Self-study time: respective language, and apply them in simple exercises and translation situations. They 124 h furthermore have a basic knowledge of the vocabulary of the respective language. 4 WLH Course: Language course 6 C **Examination: Written examination (90 minutes) Examination prerequisites:** regular participation **Examination requirements:** Mastery of the script of the language taught. Knowledge of the main elements of the grammar and word formation as well as the basic vocabulary of the respective language. Active application of this knowledge in exercises and translations. Admission requirements: Recommended previous knowledge: none none Person responsible for module: Language: English Prof. Dr. Kata Moser Course frequency: **Duration:**

1 semester[s]

Recommended semester:

Infrequently

twice

20

Number of repeat examinations permitted:

Maximum number of students:

exercises and translations.

Georg-August-Universität Göttingen Module SK.Ara.526-2: Second Language of the Arab and Muslim World II

Workload: Learning outcome, core skills: Upon successful completion of this module (a continuation of SK.Ara.526-1), students Attendance time: are able to explain the rules of the morphology, word formation and syntax of the 56 h Self-study time: language taught at an advanced level. They are also capable – in the case of modern 124 h languages – of having short conversations and of communicating at a basic level with a solid vocabulary, or - in the case of ancient languages - of understanding and translating simple texts. 4 WLH Course: Language course **Examination: Written examination (90 minutes)** 6 C **Examination prerequisites:** regular participation **Examination requirements:** Advanced knowledge of the main elements of the grammar and word formation of the language taught. Substantial basic vocabulary of the respective language. Active use in

Admission requirements: SK.Ara.526-1	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Kata Moser
Course frequency: Infrequently	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen 6 C Module SK.Ara.701: Arabic Language Course in the Middle East

Learning outcome, core skills: Workload: Students actively participate in an Arabic language course (online or in presence) Attendance time: offered at one of our partner universities or another accredited academic institute in 0 h Self-study time: North Africa or the wider Middle East. They gain skills to using Arabic actively as an academic language, orally and in writing. 180 h Students thus acquire firsthand access to the understanding of the cultural diversity and the intellectual pluralism within modern Arab societies, which broadens their intercultural skills and enables them to participate actively and constructively in public debates concerning Islamicate societies. Course: Arabic language course 6 C Examination: Written examination (60 minutes) or oral examination (approx. 20 minutes) **Examination prerequisites:**

Proof of successful attendance of a language course (minimum 56 hours per semester)

Evidence of Arabic language proficiency, orally and in writing.

in text form

Examination requirements:

Admission requirements:	Recommended previous knowledge:
Language: Arabisch	Person responsible for module: Akram Bishr
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students:	

Georg-August-Universität Göttingen Module SK.Ara.702: Arabic-Islamic Studies Abroad

Learning outcome, core skills: Students actively participate in an Arabic and/or Islamic studies seminar taught in Arabic (online or in presence) at one of our partner universities or another accredited academic institution in North Africa or the wider Middle East. They improve their skills to use Arabic actively as an academic language and familiarize themselves with respective methods and theories. Students thus acquire an advanced understanding of the cultural diversity and the intellectual pluralism within modern Arab societies, which broadens their intercultural skills and enables them to participate actively and constructively in public debates concerning Islamicate societies.

	<u>. </u>
Course: Arabic language seminar	
Course: Independent Studies	
Examination: Oral Presentation (approx. 20 minutes)	6 C
Examination prerequisites:	
Proof of successful attendance (at least 56 hours per semester) in text form	
Examination requirements:	
Students will be able to contribute to scholarly discussions in Arabic and deliver an oral	
presentation.	

Admission requirements: none	Recommended previous knowledge: none
Language: Arabisch	Person responsible for module: Prof. Dr. Kata Moser
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen

Modul SK.IKG-IKK.12-1: Interkulturelles Kompetenztraining - Fokus: Arab*isch-West*liche Perspektiven (Joint Classroom Format)

English title: Intercultural Competence Training Focusing on "Arabic" and "Western" Perspectives (Joint Classroom Format)

6 C 2 SWS

Lernziele/Kompetenzen:

Interkulturelle Aspekte erweitern fachspezifische Themen und befördern den Wissensund Erfahrungsaustausch. Kulturallgemeine Sensibilisierung zusammen mit aktuellen
kulturellen und gesellschaftlichen Fragestellungen der modernen, arabisch-sprachigen
Welt schaffen Grundlage für Diskussion und Transfer zu fachspezifischen Themen. Die
Durchführung im Joint Classroom Format ermöglicht den Studierenden darüber hinaus
den direkten Kontakt und Austausch mit Studierenden aus arabischen Kulturkontexten
und gleichzeitig die Erweiterung ihrer digitalen und medialen Kompetenzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden

Nach erfolgreicher Absolvierung des Moduls können Studierende

- Aspekte interkultureller Kommunikation definieren und Dimensionen interkultureller Kompetenz erklären
- · Auswirkungen kultureller Einflüsse auf Verhalten und Kommunikation verstehen
- Facetten arabisch-sprachiger Gesellschaften des Nahen Ostens und Nordafrikas (MENA-Region) reflektieren
- Kulturelle Aspekte des arabisch-sprachigen Raums unter dem Gesichtspunkt von Globalisierung analysieren
- Mit arabisch-sprachigen Kommilitoninnen und Kommilitonen in einer Fremdsprache im virtuellen Kontext interagieren und in Kollaboration Projekte planen

Lehrveranstaltung: Blockveranstaltung (mit Online- und Selbststudien-Einheiten)

Prüfung: Portfolio/E-Portfolio (zusammen max. 10 Seiten), unbenotet
6 C

Prüfungsvorleistungen:
regelmäßige Teilnahme
Prüfungsanforderungen:
Reflexion eigener kultureller Verständnisse und Einstellungen, Kenntnisse der theoretischen Grundlagen interkultureller Kommunikation, Aspekte des modernen arabisch-sprachigen Raums zu Kultur, Gesellschaft, globalen Verbindungen mit

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Kulturelle und gesellschaftliche Hintergründe des
	modernen arabisch-sprachigen Raums; virtuelle
	Kommunikationsplattformen, z.B. Zoom
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Alexandra Schreiber, MA

Perspektive von Globalisierung analysieren

Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 2
Maximale Studierendenzahl: 15	

Bemerkungen:

Angebot in Zusammenarbeit mit Lehrenden des Seminars für Arabistik/Islamwissenschaft I

Philosophische Fakultät:

Nach Beschluss des Fakultätsrats der Philosophischen Fakultät vom 20.04.2022 sowie nach Stellungnahme des Senats vom 18.05.2022 hat das Präsidium der Georg-August-Universität Göttingen am 25.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Klassische Archäologie" genehmigt (§ 44 Abs. 1 Satz 2; § 41 Abs. 2 Satz 2 NHG; §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II zum 01.10.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Klassische Archäologie" (Amtliche Mitteilungen I Nr. 34/2012, zuletzt geaendert durch Amtliche Mitteilungen I Nr. 26/2022 S. 507)

Module

M.CAB.20d: Gattungen: Interpretation und Präsentation	. 5603
M.KAR-Pa.06284: Rilievo e analisi tecnica dei monumenti antichi/Deutung und Analyse antiker Monumente	5604
M.KAR-Pa.06789: Storia dell archeologia/Geschichte der Archäologie	. 5605
M.KAR-Pa.11776: Laboratori/Attività sul campo/Praxismodul	5607
M.KAR-Pa.17433: Archeologia e civiltà egee/Ägäische Archäologie	5608
M.KAR-Pa.17435: Archeologia Greca/Griechische Archäologie	5610
M.KAR-Pa.17437: Archeologia romana e provinciale/ Römische und Provinzialrömische Archäologie	5612
M.KAR.01: Archäologie als Kulturwissenschaft	5614
M.KAR.02: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs	5615
M.KAR.02a: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs	5617
M.KAR.02b: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs	5618
M.KAR.03: Archäologische Analyse und historische Synthese	5620
M.KAR.04: Archäologische Wissenschaftskompetenz	5622
M.KAR.04a: Archäologische Wissenschaftskompetenz	5624
M.KAR.05: Wissenschaftliche Profilbildung	5626
M.KAR.101: Sammeln, Bewahren, Erforschen, Ausstellen, Vermitteln	5627
M.KAR.102: Archäologie und Museum	5628
M.KAR.103: Fokus Erforschen und Vermitteln	5629
M.KAR.104: Praxismodul Museum	5631

Übersicht nach Modulgruppen

I. Master-Studiengang "Klassische Archäologie"

Es müssen mindestens 120 C erworben werden.

1. Fachstudium "Klassische Archäologie" im Umfang von 42 C

Es müssen folgende fünf Module im Umfang von insgesamt 42 C erfolgreich absolviert werden:

M.KAR.01: Archäologie als Kulturwissenschaft (9 C, 6 SWS)	614
M.KAR.02: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs (12 C, 4 SWS)56	615
M.KAR.03: Archäologische Analyse und historische Synthese (9 C, 4 SWS)	620
M.KAR.04: Archäologische Wissenschaftskompetenz (6 C, 4 SWS)	622
M.KAR.05: Wissenschaftliche Profilbildung (6 C, 2 SWS)	626

2. Fachstudium "Klassische Archäologie" im Umfang von 42 C mit Studienschwerpunkt "Museum"

Innerhalb des Fachstudiums im Umfang von 42 C kann nach Maßgabe der folgenden Bestimmungen auch der Studienschwerpunkt "Museum" absolviert werden. Hierfür müssen abweichend von Buchstabe a. folgende fünf Module im Umfang von insgesamt 42 C erfolgreich absolviert werden:

M.KAR.101: Sammeln, Bewahren, Erforschen, Ausstellen, Vermitteln (9 C, 4 SWS)	5627
M.KAR.102: Archäologie und Museum (12 C, 4 SWS)	. 5628
M.KAR.103: Fokus Erforschen und Vermitteln (9 C, 4 SWS)	.5629
M.KAR.104: Praxismodul Museum (6 C)	.5631
M.KAR.05: Wissenschaftliche Profilbildung (6 C, 2 SWS)	.5626

3. Fachexterne Modulpakete

Studierende haben ein zulässiges fachexternes Modulpaket im Umfang von 36 C oder zwei zulässige fachexterne Modulpakete im Umfang von jeweils 18 C erfolgreich zu absolvieren.

4. Professionalisierungsbereich

Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden.

5. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

II. Double-Degree-Programm mit der Università degli Studi di Palermo (UP) im Fachstudium "Klassische Archäologie" um Umfang von 78 C

1. Studierende der Universität Göttingen

Studierende der Universität Göttingen verbringen das 2. Semester an der UP und das 1., 3. und 4. Semester an der Universität Göttingen. Dabei müssen Leistungen im Umfang von insgesamt wenigstens 120 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

a. Erstes Fachsemester (Fachstudium und Professionalisierung; Göttingen)

Es müssen Module im Umfang von insgesamt 33 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden:

aa. Pflichtmodule

Es müssen folgende drei Module im Umfang von 27 Credits erfolgreich absolviert werden:

M.CAB.20d: Gattungen: Interpretation und Präsentation (6 C, 4 SWS)......5603

M.KAR.01: Archäologie als Kulturwissenschaft (9 C, 6 SWS).......5614

M.KAR.02b: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs (12 C, 4 SWS).... 5618

bb. Wahlmodule

Es müssen Module von insgesamt wenigstens 6 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden.

b. Zweites Fachsemester (Fachstudium; Palermo)

Es müssen Module im Umfang von insgesamt 30 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden:

aa. Pflichtmodule

bb. Wahlpflichtmodule

Es müssen zwei der folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

M.KAR-Pa.17437: Archeologia romana e provinciale/ Römische und Provinzialrömische Archäologie (12 C, 8 SWS)......5612

c. Drittes Fachsemester (Fachstudium und Professionalisierung; Göttingen)

Es müssen Module im Umfang von insgesamt 27 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden:

aa. Pflichtmodule

M.KAR.05: Wissenschaftliche Profilbildung (6 C, 2 SWS)......5626

bb. Wahlmodule

Es müssen Module im Umfang von insgesamt wenigstens 6 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden.

d. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben. Betreuende der Masterarbeit sind in der Regel je eine Prüfungsberechtigte oder ein Prüfungsberechtigter der Universität Göttingen und eine Prüfungsberechtigte oder ein Prüfungsberechtigter der UP.

2. Studierende der UP (Drittes Fachsemester; Göttingen)

Es müssen folgende Module im Umfang von insgesamt 30 C erfolgreich absolviert werden:

III. Modulpakete des Studiengebiets "Klassische Archäologie"

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Modulpaket "Klassische Archäologie" im Umfang von 36 C

a. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Archäologie im Umfang von wenigstens 24 C.

b. Wahlpflichtmodule

Es müssen die folgenden Module im Umfang von insgesamt 36 C erfolgreich absolviert werden:

M.KAR.01: Archäologie als Kulturwissenschaft (9 C, 6 SWS).......5614

M.KAR.02: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs (12 C, 4 SWS)	5615
M.KAR.03: Archäologische Analyse und historische Synthese (9 C, 4 SWS)	5620
M.KAR.04a: Archäologische Wissenschaftskompetenz (6 C. 4 SWS)	5624

2. Modulpaket "Klassische Archäologie" im Umfang von 18 C

a. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Archäologie im Umfang von wenigstens 18 C.

b. Wahlpflichtmodule

Es müssen die folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden: M.KAR.02a: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs (9 C, 4 SWS).............. 5617

M.KAR.03: Archäologische Analyse und historische Synthese (9 C, 4 SWS)......5620

Georg-August-Universität Göttingen		6 C 4 SWS
Modul M.CAB.20d: Gattungen: Interpretate English title: Archaeological Categories: Interpretation	4 3003	
Lernziele/Kompetenzen: Erwerb von anspruchsvollen Kenntnissen der Denkmälergattungen, ihrer Verbreitung, ihrer materiellen, künstlerischen, ikonographischen und sozialen Spezifika, ihrer Forschungsgeschichte und der konservatorischen Problematik; Aneignung differenzierter Befragungs- und Interpretationsmethoden bei diesbezüglich kritischem Umgang mit der Forschungsliteratur; Verstehen der komplexen Zeugnisqualität von Monumenten für die Vergangenheit und		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
die Gegenwart.		0.000
Lehrveranstaltung: Vorlesung (gattungsorientiert) (Vorlesung) Lehrveranstaltung: Hauptseminar zu einem Gattungs- oder ikonographischen Thema		2 SWS 2 SWS
Prüfung: Referat (ca. 30 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme am Hauptseminar		6 C
Prüfungsanforderungen: Abrufbarkeit der erworbenen Gattungskenntnisse und Interpretationskompetenzen.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Achim Arbeiter	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

20

Georg-August-Universität Göttingen Modul M.KAR-Pa.06284: Rilievo e analisi tecnica dei monumenti antichi/Deutung und Analyse antiker Monumente English title: Graphic surveying systems and technical analysis for study of ancient buildings

Lernziele/Kompetenzen:

Die Studierenden erwerben in diesem Modul die Fähigkeit, antike Monumente zu deuten und zu analysieren. Dabei erwerben sie Kenntnisse über die Konstruktion antiker Monumente und die verwendeten Baumaterialien. Die Studierenden werden dazu befähigt, technisch-theoretischen Zugang zu den Monumenten der Antike zu finden, adäquate Untersuchungsmethoden zur graphischen Dokumentation anzuwenden sowie mit optisch-mechanischen und elektronischen Instrumenten zur Analyse von Kunstwerken umzugehen.

Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Vorlesung (Vorlesung)	2 SWS
Lehrveranstaltung: Übung und Praxis	2 SWS
Prüfung: mündliche Prüfung und Referat	6 C

Prüfungsanforderungen:

Nach der Absolvierung des Moduls sind die Studierenden mit der Typologie, den Vermessungsinstrumenten und -methoden, der darstellenden Kunst sowie der antiken Bautechnik vertraut. Sie sind in der Lage, Strukturen antiker Monumente zu erkennen, sie graphisch zu dokumentieren und in den jeweiligen kulturhistorischen Kontext einzuordnen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Italienisch	Modulverantwortliche[r]: Lehrbeauftragte (z.Zt. Dott. Francesca Buscemi)
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Università degli Studi di Palermo (UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

Georg-August-Universität Göttingen		6 C
Modul M.KAR-Pa.06789: Storia dell archeologia/Geschichte der		4 SWS
Archäologie English title: History of Archaeology		
English tide. History of Archaeology		
Lernziele/Kompetenzen: Die Studierende erwerben ausführliche Kenntnisse auf dem Gebiet der Archäologie als wissenschaftliche Disziplin. Dabei setzen sie sich mit der Entwicklung der wissenschaftlichen Methoden der modernen Archäologie auseinander.		Arbeitsaufwand: Präsenzzeit: 30 Stunden Selbststudium:
Folgende Themen werden behandelt:		150 Stunden
 Die großen archäologischen Stätte, die der europäischen Kultur ein Bild von der materiellen Hinterlassenschaft der antiken Welt vermittelt haben: Troja, Mykene, Knossos und Pompeji; Die Wiederentdeckung und der Schutz der antiken Zeugnisse in Rom; Antiquarismus und Archäologie; Zeugnisse des antiken Siziliens in der lokalen Kultur: Tommaso Fazello und andere sizilianische Gelehrte; Die Grand Tour: die europäischen Reisenden in Italien und besonders in Sizilien zwischen dem 18. und 20. Jh.; Die klassische Tradition in der modernen Kultur. 		
Lehrveranstaltung: Vorlesung zur Geschichte der Archäologie (Vorlesung)		2 SWS
Lehrveranstaltung: Übung zur Geschichte der Arc	häologie (Übung)	2 SWS
Prüfung: Mündlich mündliche Prüfung Prüfungsvorleistungen: regelmäßige Teilnahme an den Veranstaltungen		6 C
Prüfungsanforderungen: Die Studierenden können die Geschichte des Faches darstellen und kritisch beurteilen. Sie kennen die wichtigsten archäologischen Methoden und sind in der Lage, wissenschaftliche Diskussionen zur Geschichte des Faches zu verstehen.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Italienisch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann Lehrbeauftragter (z.Z. Simone, Rambaldi)	
	Dauer:	
Angebotshäufigkeit: jedes Sommersemester	1 Semester	

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Università degli Studi di Palermo (UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

Georg-August-Universität Göttingen		4 C
Modul M.KAR-Pa.11776: Laboratori/Attività sul campo/Praxismodul English title: Practical Activities/ Laboratory		
Lernziele/Kompetenzen: Die Studierenden erwerben umfangreiche und vertiefte Kenntnisse über Grabungs- und Dokumentationstechniken: Klassifizierung archäologischer Befunde, Grafikbearbeitung, geophysikalische Prospektion, Vermessung, Restaurierung, Kommunikation etc.		Arbeitsaufwand: Präsenzzeit: 60 Stunden Selbststudium: 60 Stunden
Lehrveranstaltung: Praktikum im Labor/im archäologischen Fundarchiv/an einer Grabungsstätte/Geländepraktikum Inhalte: Das Praktikum umfasst min. 60 Stunden (2 Arbeitswochen) und max. 120 Stunden (4 Arbeitswochen). Die Studierenden können zwischen dem 2- und 4-wöchigem Praktikum wählen. Für das 2-wöchige Praktikum werden 2 Credits, für das 4-wöchige Praktikum 4 Credits vergeben.		sws
Prüfung: Mündlich Mündliche Prüfung und Zeichnungen oder Test/ausgearbeitete Dokumentation/ Prüfungsvorleistungen: regelmäßige Teilnahme am Praktikum		4 C
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis, dass sie alle wichtigen Grabungs- und Dokumentationstechniken beherrschen und in der Lage sind, eigenständig einen archäologischen Befund fachgerecht zu dokumentieren.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	

keine	keine
Sprache: Italienisch	Modulverantwortliche[r]: der jeweilige Betreuer/die jeweilige Betreuerin
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Università degli Studi di Palermo (UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

Georg-August-Universität Göttingen Modul M.KAR-Pa.17433: Archeologia e civiltà egee/Ägäische Archäologie English title: Aegean archaeology and civilization

Lernziele/Kompetenzen:

In diesem Modul erwerben die Studierenden Kenntnisse auf dem Gebiet der archäologischen Forschung sowie der wandelbaren archäometrischen Disziplinen, die auf die Interpretation der ägäischen Welt vor Homer angewandt werden. Ziel des Moduls ist es, die wichtigsten Themenbereiche in Bezug auf die ägäische Bronzezeit kennenzulernen und die Verbindung zur darauffolgenden Periode der Eisenzeit herzustellen. Dabei werden Datierungssysteme sowohl auf Crossdating-Basis als auch auf Grundlage neuer Datierungssysteme im Labor (C14, Thermolumineszenz, Dendrochronologie) untersucht. Im Mittelpunkt stehen die mykenische Wirtschaft und ihre Verbindung zum westlichen Mittelmeer, insbesondere zu Südostsizilien.

Arbeitsaufwand:

Präsenzzeit: 40 Stunden Selbststudium: 200 Stunden

Lehrveranstaltung: Vorlesung (Vorlesung)	2 SWS
Lehrveranstaltung: Übung	2 SWS
Lehrveranstaltung: Exkursion	
Prüfung: Mündlich mündliche Prüfung	8 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an der Übung und Exkursion	

Prüfungsanforderungen:

Die Studierenden weisen nach, dass sie in der Lage sind, selbständig verschiedene Datierungssysteme für die Rekonstruktion kultur-geschichtlicher Verhältnisse in der frühgeschichtlichen Zeit im Mittelmeerraum anzuwenden. Sie können archäologische Daten verstehen und sie in die jeweilige historische Epoche einordnen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Italienisch	Modulverantwortliche[r]: Dr. Chiara Blasetti Fantauzzi Lehrbeauftragter (z.Z. Massimo Cultraro)
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 25	

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Università degli Studi di Palermo(UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls

nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

Georg-August-Universität Göttingen	12 C 4 SWS
Modul M.KAR-Pa.17435: Archeologia Greca/Griechische Archäologie	7 0110
English title: Greek Archaeology	

Lernziele/Kompetenzen:	Arbeitsaufwand:
Die Studierenden erwerben ausführliche Kenntnisse über diverse Themen der	Präsenzzeit:
griechischen Archäologie und Kunstgeschichte. Sie setzen sich dabei mit der	60 Stunden
Forschungsliteratur und den Untersuchungsmethoden kritisch auseinander. Darüber	Selbststudium:
hinaus erwerben sie ausführliche Kenntnisse der Ikonographie und untersuchen an	300 Stunden
diversen Fallbeispielen geschichtlich-kulturelle Kontexte des antiken Griechenlands.	
Lehrveranstaltung: Vorlesung oder Übung zur griechischen Archäologie (Kunst	2 SWS
Lehrveranstaltung: Vorlesung oder Ubung zur griechischen Archäologie (Kunst und Architektur)	2 SWS
	2 SWS
und Architektur)	
und Architektur) Lehrveranstaltung: Vorlesung oder Übung zur griechischen Archäologie	
und Architektur) Lehrveranstaltung: Vorlesung oder Übung zur griechischen Archäologie (Ikonographie)	2 SWS

Prüfungsanforderungen:

regelmäßige Teilnahme an den Veranstaltungen

Die Studierenden sind in der Lage, einen methodischen Zugang zu den historischen, kunstgeschichtlichen und archäologischen Problemen der griechischen Welt zu finden. Sie können ihre Fragestellungen zu Aspekten der materiellen Kultur, der Bildhauerei, der Siedlungsweise und Architektur der griechischen Welt strukturiert darlegen und ihre Thesen überzeugend vertreten Darüber hinaus werden sie dazu befähigt, Ikonographie als einen bildnerischen Ausdruck der griechischen Kunst zu analysieren. Sie können Formen und Bedeutungen verschiedener bildnerischer Elemente und Entstehungskontexte der Bilder verstehen sowie Charakteristika und Bedeutung verschiedener Ikonographien darstellen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Italienisch	Modulverantwortliche[r]: z.Z. Prof. Elisa Chiara Portale und Prof. Monica de Cesare
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Univeritá degli Studi di Palermo (UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls

nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

Georg-August-Universität Göttingen 12 C 8 SWS Modul M.KAR-Pa.17437: Archeologia romana e provinciale/ Römische und Provinzialrömische Archäologie English title: Roman and Provincial Archaeology Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erwerben Kenntnisse zu Entwicklungen in den Bereichen Kunst, Präsenzzeit: Architektur und materielle Kultur Roms. Dabei wird auch die Art und Weise ihrer 60 Stunden Ausbreitung auf der Apenninenhalbinsel und in den römischen Provinzen aufgezeigt. Selbststudium: So werden insbesondere die historisch-topographischen Beziehungsgeflechte dieser 300 Stunden Regionen sowie die Rolle bestimmter Provinzen bei der Entwicklung der Kunst des römischen Reichs sichtbar gemacht. Darüber hinaus werden Forschungsdebatten zur römischen Kunst in der Metropole und den Provinzen dargelegt, und die Auswirkung der Romanisierung auf das heutige Bild von gleichberechtigtem, kulturellem Austausch von Peripherie und Zentrum erörtert. Lehrveranstaltung: Vorlesung zum Themengebiet "Rom und Italien" (Vorlesung) 2 SWS Lehrveranstaltung: Übung zum Themengebiet "Rom und Italien" (Übung) 2 SWS Inhalte: In der Vorlesung und der Übung wird ein Thema vertieft, das mit der materiellen Kultur, der bildnerischen Kunst oder der Urbanistik und Architektur Roms in Verbindung steht. 2 SWS Lehrveranstaltung: Vorlesung zum Themengebiet "Provinzen" (Vorlesung) Lehrveranstaltung: Übung zum Themengebiet "Provinzen" (Übung) 2 SWS Inhalte: In der Vorlesung und der Übung zum Thema "Provinzen" handelt es sich um die Einführung in die Geschichte der römischen Provinzen und in den Fachbereich Provinzialrömische Archäologie. Dabei wird die Entstehung der Provinzen und ihre Neuordnung unter Augustus und den Tetrachen dargestellt. Im Mittelpunkt stehen die Organisation der Provinzen, die Besonderheiten der Kunst und Architektur sowie Unterschiede zwischen den westlichen und östlichen Provinzen. Dabei wird beleuchtet, inwiefern lokale Traditionen bewahrt und neue Impulse aufgenommen wurden. 12 C Prüfung: Mündlich Prüfungsvorleistungen: regelmäßige Teilnahme an den Übungen Prüfungsanforderungen: Die Studierenden sind in der Lage, eine Studie zu Kontexten und/oder zu kulturellen Erzeugnissen Roms oder zu einer der provinzialen Gebiete anzufertigen. Dabei weisen sie nach, dass sie Gemeinsamkeiten und Unterschiede zwischen der Kultur Rom und der Provinzen erkennen können. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:**

keine

Modulverantwortliche[r]:

keine

Sprache:

Italienisch	Lehrbeauftragter (z.Z. Sergio Aiosa)
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Bemerkungen:

Die Modulbeschreibung entspricht dem Angebot der Università degli Studi di Palermo (UP) im Sommersemester 2014 und dient der Orientierung. Kurzfristige Änderungen sind gegebenenfalls nicht berücksichtigt; maßgeblich sind jeweils die aktuellen Angebotsbeschreibungen der UP; es gilt ausschließlich das Prüfungsrecht der UP.

9 C Georg-August-Universität Göttingen 6 SWS Modul M.KAR.01: Archäologie als Kulturwissenschaft English title: Archaeology as a Discipline of Cultural Studies Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden • verstehen komplexere kulturwissenschaftliche Theorien oder Ansätze, Selbststudium: · können diese kritisch reflektieren, 214 Stunden · sind mit der betreffenden archäologisch relevanten Forschungsdiskussion vertraut, · können sich selbständig mit dieser auseinandersetzen, • sind imstande, kultur- und sozialwissenschaftliche Methoden auf archäologische Befunde anzuwenden. 2 SWS Lehrveranstaltung: Vorlesung "Methoden und Theorien in der Archäologie"

Lehrveranstaltung: Übung "Methoden und Theorien in der Archäologie"	2 SWS
Angebotshäufigkeit: jedes Wintersemester	
Lehrveranstaltung: Seminar "Archäologie als Kulturwissenschaft"	2 SWS
Angebotshäufigkeit: jedes Wintersemester	
Prüfung: Referat (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 24.000 Zeichen	9 C
inklusive Leerzeichen)	
Prüfungsvorleistungen:	
regelmäßige Teilnahme im Seminar, Protokoll (max. 9.600 Zeichen inklusive	
Leerzeichen) im Rahmen der Übung	
Prüfungsanforderungen:	
Die Studierenden weisen in der Modulprüfung nach, dass sie	
zentrale Konzepte und Schlüsselbegriffe aktueller kulturwissenschaftlicher	
Theorien verstehen,	
diese in kritisch reflektierter Weise auf archäologische Befunde anwenden können.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Italienisch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Bemerkungen:

Die Modulprüfung wird auf Antrag in italienischer Sprache durchgeführt, wenn das Modul im Rahmen des Double-Degree-Programms mit der Università degli Studi di Palermo absolviert wird.

Georg-August-Universität Göttingen	12 C
Modul M.KAR.02: Gattungen, Epochen, Regionen - wissenschaftlicher Diskurs	4 SWS
English title: Classes, Epochs, Regions - scientific discourse	
 Lernziele/Kompetenzen: Die Studierenden verfügen über vertiefte Kenntnisse von ausgewählten Gattungen, Epochen oder Regionen, können sich selbständig mit ausgewählten Themenbereichen auseinandersetzen, reflektieren komplexe Fragestellungen aus der aktuellen archäologischen Forschung, beurteilen kritisch aktuelle Forschungskontroversen und deren fachhistorische Genese, sind in der Lage, Forschungsprobleme zu analysieren, können wissenschaftliche Argumentationszusammenhänge kritisch bewerten, sind fähig, archäologische Objekte und Befunde in ihrem konkreten topographischen, gattungsspezifischen und kulturellen Kontext wissenschaftlich zu erfassen. 	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 304 Stunden
Lehrveranstaltung: Gattungen, Epochen, Regionen (Vorlesung)	2 SWS
Lehrveranstaltung: Gattungen, Epochen, Regionen (Seminar)	2 SWS
Prüfung: Referat (ca. 45 Minuten) mit schriftlicher Ausarbeitung (max. 51.200 Zeichen inklusive Leerzeichen) Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie	6 C
 den wissenschaftlichen Diskurs um konkrete archäologische Befunde erfassen und diskutieren können, chronologische, geographische und soziale Differenzierungen in ihrer historischen Bedingtheit verstehen. 	
Lehrveranstaltung: Exkursion (von wenigstens 12 Tagen)	
 Prüfung: Referat (ca. 30 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie den wissenschaftlichen Diskurs um konkrete archäologische Befunde erfassen und diskutieren können, chronologische, geographische und soziale Differenzierungen in ihrer historischen Bedingtheit verstehen. 	6 C

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Georg-August-Universität Göttingen Modul M.KAR.02a: Gattungen, Epochen, Regionen wissenschaftlicher Diskurs English title: Classes, Epochs, Regions - scientific discourse

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden · verfügen über vertiefte Kenntnisse von ausgewählten Gattungen, Epochen oder Selbststudium: Regionen, 214 Stunden • können sich selbständig mit ausgewählten Themenbereichen auseinandersetzen, • reflektieren komplexe Fragestellungen aus der aktuellen archäologischen Forschung, • beurteilen kritisch aktuelle Forschungskontroversen und deren fachhistorische Genese, • sind in der Lage, Forschungsprobleme zu analysieren, • können wissenschaftliche Argumentationszusammenhänge kritisch bewerten.

Lehrveranstaltung: Gattungen, Epochen, Regionen (Vorlesung)	2 SWS
Lehrveranstaltung: Gattungen, Epochen, Regionen (Seminar)	2 SWS
Prüfung: Referat (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 51.200 Zeichen inklusive Leerzeichen)	9 C
Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie	
 den wissenschaftlichen Diskurs um konkrete archäologische Befunde erfassen und diskutieren können, chronologische, geographische und soziale Differenzierungen in ihrer historischen Bedingtheit verstehen. 	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Coord August Universität Cättingen		12 C
Georg-August-Universität Göttingen		4 SWS
Modul M.KAR.02b: Gattungen, Epochen, Wissenschaftlicher Diskurs	Regionen -	
English title: Classes, Epochs, Regions - scientific dis	COURSE	
English due. Classes, Epochs, Neglons - sciendic dis	Course	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden		Präsenzzeit:
 verrugen uber vertierte Kenntnisse von ausgewaniten Gattungen, Epochen oder 		56 Stunden
Regionen,		Selbststudium:
 können sich selbständig mit ausgewählten Ther 		304 Stunden
reflektieren komplexe Fragestellungen aus der a	aktuellen archäologischen	
Forschung,		
 beurteilen kritisch aktuelle Forschungskontrover Genese, 	sen und deren fachnistorische	
 sind in der Lage, Forschungsprobleme zu analy 	sieren	
können wissenschaftliche Argumentationszusar	·	
		1
Lehrveranstaltung: Gattungen, Epochen, Regione	n (Vorlesung)	2 SWS
Lehrveranstaltung: Gattungen, Epochen, Regione	n (Seminar)	2 SWS
Prüfung: Referat (ca. 45 Min.) mit schriftlicher Aus	sarbeitung (max. 64.000 Zeichen	6 C
inklusive Leerzeichen)		
Prüfungsvorleistungen:		
regelmäßige Teilnahme am Seminar		
Lehrveranstaltung: Exkursion		
Lehrveranstaltung: Exkursion Prüfung: Referat (ca. 45 Minuten), unbenotet		6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen:		6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet		6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen:		6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion	dass sie den wissenschaftlichen	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen:		6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, o	en und diskutieren können,	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, on Diskurs um konkrete archäologische Befunde erfasse	en und diskutieren können,	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, of Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz	en und diskutieren können,	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, on Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen.	en und diskutieren können, ierungen in ihrer historischen	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, or Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen:	en und diskutieren können, ierungen in ihrer historischen Empfohlene Vorkenntnisse:	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, or Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen: keine	en und diskutieren können, ierungen in ihrer historischen Empfohlene Vorkenntnisse: keine	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, of Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]:	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, on Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen: keine Sprache: Deutsch	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, or Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann Dauer:	6 C
Prüfung: Referat (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme an Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, or Diskurs um konkrete archäologische Befunde erfasse chronologische, geographische und soziale Differenz Bedingtheit verstehen. Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann Dauer: 1 Semester	6 C

15	

Georg-August-Universität Göttingen

Modul M.KAR.03: Archäologische Analyse und historische Synthese

English title: Archaeological Analysis and Historical Synthesis

9 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden

- sind sensibilisiert für die prinzipielle Offenheit des wissenschaftlichen Erkenntnisprozesses,
- sind vertraut mit unterschiedlichen Methodiken des archäologischen Erkenntnisprozesses,
- können archäologische Daten mit Informationen aus anderen Quellen zu einer übergeordneten historischen Synthese vereinigen,
- setzen sich in produktiver Weise mit etablierten Forschungspositionen auseinander,
- kennen Strategien der Erstellung eigener Lösungsansätze für archäologische Problemstellungen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

214 Stunden

9 C

Lehrveranstaltung: Archäologische Analyse und historische Synthese (Vorlesung) 2 SWS

Lehrveranstaltung: Archäologische Analyse und historische Synthese (Seminar) 2 SWS

Prüfung: Referat (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 64.000 Zeichen inklusive Leerzeichen)

Prüfungsvorleistungen:

regelmäßige Teilnahme am Seminar

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

- in methodisch sauberer Weise archäologische und weitergehende Daten zu einer historischen Synthese zusammenführen können,
- in selbständiger Weise etablierte Forschungspositionen nachvollziehen und diskutieren können,
- a Stratagian zur Lösung archäologischer Analysenrohleme entwickeln

eigene Strategien zur Losung archaologischer Analyseprobleme entwickeln können.	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Italienisch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Bemerkungen:

Die Modulprüfung wird auf Antrag in italienischer Sprache durchgeführt, wenn das Modul im Rahmen des Double-Degree-Programms mit der Università degli Studi di Palermo absolviert wird.

Georg-August-Universität Göttingen 6 C 4 SWS Modul M.KAR.04: Archäologische Wissenschaftskompetenz English title: Archaeological Academic Competence Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden kennen archäologisch relevante Konzepte und Schlüsselbegriffe aus den Selbststudium: Nachbardisziplinen (z. B. Kulturanthropologie/Europäische Ethnologie, ggf. 124 Stunden Geschlechterforschung, Ur- und Frühgeschichte, Geographie, Physik, Medizin sind vertraut mit aktuellen kulturwissenschaftlichen Theorien oder neuen naturwissenschaftlichen Methoden: können eigenständig forschungsorientierte Projekte durchführen (z. B. museumsdidaktische Aufbereitung archäologischer Materialien und Fragestellungen, Mitarbeit an Konzeption und Durchführung von Sonderausstellungen); • können eigenständig anwendungsorientierte Projekte durchführen (z. B. Bearbeitung fachspezifischer Problemstellungen mit Hilfe statistischer Verfahren und archäologischer Informationssysteme). Lehrveranstaltung: Importvorlesung (aus Nachbarwissenschaften) 2 SWS Lehrveranstaltung: Archäologische Praxis (Praktikum, Übung, Seminar) 2 SWS Inhalte: Das Praktikum kann entweder als Grabungspraktikum oder als Museumspraktikum sowohl am Archäologischen Institut der Universität Göttingen als auch an einem anderen archäologischen Institut oder in einem Museum der eigenen Wahl absolviert werden. Die Zahl der Praktikumsplätze am Archäologischen Institut der Universität Göttingen variiert je nach Projekt. In der Regel stehen genug Praktikumsplätze zur Verfügung. Das Fach bietet überdies Unterstützung bei der Vermittlung von externen Praktika an. Prüfung: Bericht (max. 16000 Zeichen) 6 C Prüfungsvorleistungen: regelmäßige Teilnahme an Übung/Seminar/Praktikum Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie · Grund- und Schlüsselbegriffe aktueller kulturwissenschaftlicher Forschung verstehen und nutzen können, • mit der Relevanz naturwissenschaftlicher Methoden im archäologischen

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:

Fähigkeiten im Hinblick auf die archäologische Berufspraxis entwickelt haben.

Erkenntnisprozess vertraut sind,

Deutsch	Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jährlich	Dauer: 2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Georg-August-Universität Göttingen Modul M.KAR.04a: Archäologische Wissenschaftskompetenz English title: Archaeological Academic Competence 6 C 4 SWS

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden • kennen archäologisch relevante Konzepte und Schlüsselbegriffe aus den Selbststudium: Nachbardisziplinen (z. B. Kulturanthropologie/Europäische Ethnologie, ggf. 124 Stunden Geschlechterforschung, Ur- und Frühgeschichte, Geographie, Physik, Medizin sind vertraut mit aktuellen kulturwissenschaftliche Theorien oder neuen naturwissenschaftlichen Methoden. • sind in der Lage, Forschungsergebnisse als Teil eines Fachpublikums angemessen zu bewerten, · können kritisch auf die Forschung der Mitstudierenden und anderer Fachvertreterinnen und Fachvertreter Bezug nehmen. Lehrveranstaltung: Importvorlesung (aus Nachbarwissenschaften) 2 SWS Lehrveranstaltung: Entweder Forschungskolloquium "Archäologisches 2 SWS Kolloquium" (SoSe) oder archäologische Ringvorlesung (WiSe) Prüfung: Protokoll (max. 6400 Zeichen) 6 C Prüfungsvorleistungen: regelmäßige Teilnahme am Kolloquium Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie · Grund- und Schlüsselbegriffe aktueller kulturwissenschaftlicher Forschung verstehen und nutzen können, • mit der Relevanz naturwissenschaftlicher Methoden im archäologischen Erkenntnisprozess vertraut sind, zur angemessenen Rezeption von neuesten Forschungsergebnissen f\u00e4hig sind.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Bemerkungen:

Die Modulprüfung wird auf Antrag in italienischer Sprache durchgeführt, wenn das Modul im Rahmen des Double-Degree-Programms mit der Università degli Studi di Palermo absolviert wird

Georg-August-Universität Göttingen Modul M.KAR.05: Wissenschaftliche Profilbildung English title: Academic Specialization 6 C 2 SWS

Lernziele/Kompetenzen: Die Studierenden • vermögen einen Themenbereich der eigenen Wahl in Absprache mit den Lehrenden selbständig erarbeiten, • sind in der Lage, individuelle Forschungsschwerpunkte zu setzen und diese methodisch sauber zu bearbeiten, • können die eigene Forschung vor einem Fachpublikum angemessen präsentieren, • sind fähig, Kritik aufzugreifen und produktiv zu verwerten, • können ihrerseits kritisch auf die Forschung der Mitstudierenden Bezug nehmen.

Lehrveranstaltung: Independent Studies Angebotshäufigkeit: jährlich Lehrveranstaltung: Forschungskolloquium "Archäologisches Kolloquium" Angebotshäufigkeit: jährlich Prüfung: Vortrag (ca. 60 Min.) Prüfungsvorleistungen: regelmäßige Teilnahme am Kolloquium, mündliches Vorgespräch mit der Betreuerin

regelmäßige Teilnahme am Kolloquium, mündliches Vorgespräch mit der Betreuerin bzw. dem Betreuer vor Vortrag

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

• in ihren eigenen Forschungen zum individuellen Master-Thema vorangeschritten sind und die Zwischenergebnisse angemessen präsentieren können,

· im kritischen Umgang mit eigener und fremder Forschung erfahren sind.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Italienisch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Bemerkungen:

Die Modulprüfung wird auf Antrag in italienischer Sprache durchgeführt, wenn das Modul im Rahmen des Double-Degree-Programms mit der Università degli Studi di Palermo absolviert wird.

9 C Georg-August-Universität Göttingen 4 SWS Modul M.KAR.101: Sammeln, Bewahren, Erforschen, Ausstellen, Vermitteln English title: Collecting, preserving, researching, exhibiting, communicating Lernziele/Kompetenzen: Arbeitsaufwand: Das Modul führt die Studierenden in die Erforschung des archäologischen Materials und Präsenzzeit: das Berufsfeld "Museum" ein. Lernziele sind: 56 Stunden Selbststudium: • Erwerb von anspruchsvollen Kenntnissen der archäologischen 214 Stunden Denkmälergattungen, ihrer Verbreitung, ihrer materiellen, künstlerischen, ikonographischen und sozialen Spezifika, ihrer Forschungsgeschichte und der konservatorischen Problematik; · Aneignung differenzierter Befragungs- und Interpretationsmethoden bei diesbezüglich kritischem Umgang mit der Forschungsliteratur; • Verstehen der komplexen Zeugnisqualität von Monumenten für die Vergangenheit und die Gegenwart. Erwerb eines Überblicks über das Berufsfeld Museum. Die Studierenden lernen die Arbeitsbereiche im Museum kennen und reflektieren, welche Kompetenzen dafür notwendig sind. 2 SWS Lehrveranstaltung: Vorlesung Lehrveranstaltung: Vierwöchiges Orientierungspraktikum im Museum 2 SWS Lehrveranstaltung: Seminar Prüfung: Referat (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 35.000 Zeichen 9 C inklusive Leerzeichen) Prüfungsvorleistungen: Praktikumsnachweis mindestens in Textform; regelmäßige Teilnahme am Seminar Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie zentrale Konzepte und Schlüsselbegriffe aktueller kulturwissenschaftlicher Theorien verstehen und diese in kritisch reflektierter Weise auf archäologische Befunde anwenden können. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Johannes Bergemann Dauer: Angebotshäufigkeit: iedes Semester 1 Semester

Wiederholbarkeit:

Maximale Studierendenzahl:

zweimalig

15

Empfohlenes Fachsemester:

Georg-August-Universität Göttingen	12 C 4 SWS
Modul M.KAR.102: Archäologie und Museum	4 3003
English title: Archaeology and Museum	

Modul M.KAR.102: Archäologie und Museum English title: Archaeology and Museum	4 5005
 Lernziele/Kompetenzen: Die Studierenden verfügen über theoretische und praktische museologische Kenntnisse bzw. Fähigkeiten, sind mit aktuellen museologischen Diskursen vertraut, sind fähig, archäologische Objekte und Befunde in ihrem konkreten topographischen, gattungsspezifischen, kulturellen und museologischen Kontext wissenschaftlich zu erfassen und können reflektieren, welche Bedingungen das archäologische Material an die museologische Praxis stellt. 	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 304 Stunden
Lehrveranstaltung: Vorlesung	2 SWS
Lehrveranstaltung: Exkursion	
Lehrveranstaltung: Archäologie und Museum (Seminar)	2 SWS
Prüfung: Referat (ca. 45 Minuten) mit schriftlicher Ausarbeitung (max. 51.200 Zeichen inklusive Leerzeichen) Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar und Teilnahme an der Exkursion Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie • einen Überblick über die historische Entwicklung der Institution »Museum« haben, • sich an aktuellen museologischen Diskursen (z. B. zum Kulturgüterschutz) beteiligen können, • ihre museologischen Fähigkeiten (insbesondere im Bereich "ausstellen" und "vermitteln" konkret auf archäologische Objekte anwenden können.	12 C

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul M.KAR.103: Fokus Erforschen und Vermitteln English title: Researching and exploring

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden • sind sensibilisiert für die prinzipielle Offenheit des wissenschaftlichen Selbststudium: Erkenntnisprozesses, 214 Stunden • sind vertraut mit unterschiedlichen Methodiken des archäologischen Erkenntnisprozesses, • können archäologische Daten mit Informationen aus anderen Quellen zu einer übergeordneten historischen Synthese vereinigen, • setzen sich in produktiver Weise mit etablierten Forschungspositionen auseinander. kennen Strategien der Erstellung eigener Lösungsansätze für archäologische Problemstellungen, • sind in der Lage, wissenschaftliche Erkenntnisse an ein fachfremdes Publikum vermitteln zu können.

Lehrveranstaltung: Vorlesung 2 SWS

Lehrveranstaltung: Seminar Prüfung: Referat (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 64.000 Zeichen inklusive Leerzeichen) und Halten einer Führung (ca. 45 Min.) passend zum Referatsthema

9 C

2 SWS

Prüfungsvorleistungen:

regelmäßige Teilnahme am Seminar

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

- in methodisch sauberer Weise archäologische und weitergehende Daten zu einer historischen Synthese zusammenführen können,
- in selbständiger Weise etablierte Forschungspositionen nachvollziehen und diskutieren können,
- eigene Strategien zur Lösung archäologischer Analyseprobleme entwickeln können.
- die so gewonnenen Erkenntnisse in adäquater Weise einem fachfremden Publikum in Form einer Führung nahebringen können und sich dazu auch mit den entsprechenden museologischen Ansätzen selbstständig auseinandergesetzt haben.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit:	Dauer:

jedes Wintersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen	6 C
Modul M.KAR.104: Praxismodul Museum English title: Practice module museum	
Lernziele/Kompetenzen: Die Studierenden erlangen im zweiten Museumspraktikum einen vertieften Einblick in einen der musealen Arbeitsbereiche (z. B. das Kuratieren von Sonderausstellungen oder die Öffentlichkeitsarbeit). Dabei erwerben sie für den spezifischen Bereich qualifizierende Kompetenzen.	Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 180 Stunden
Lehrveranstaltung: Vierwöchiges Vertiefungspraktikum im Museum	
Prüfung: Praktikumsbericht (max. 16.000 Zeichen) Prüfungsvorleistungen: Praktikumsnachweis mindestens in Textform	6 C

Im Praktikumsbericht reflektieren die Studierenden, was sie im Praktikum erlebt und gelernt haben. Sie umreißen das spezifische Arbeitsfeld und benennen die notwendigen qualifizierenden Kompetenzen und stellen dar, wie und in welchem Umfang sie diese

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann
Angebotshäufigkeit: nach Bedarf	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Bemerkungen:

Prüfungsanforderungen:

erworben haben.

In begründeten Einzelfällen kann bei Nicht-Vorliegen einer Praktikumsmöglichkeit auf Antrag alternativ das Modul M.KAR.04 absolviert werden.

Philosophische Fakultät:

Nach Beschluss des Fakultätsrats der Philosophischen Fakultät vom 20.04.2022 sowie nach Stellungnahme des Senats vom 18.05.2022 hat das Präsidium der Georg-August-Universität Göttingen am 25.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Kunstgeschichte" genehmigt (§ 44 Abs. 1 Satz 2; § 41 Abs. 2 Satz 2 NHG; §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II zum 01.10.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Kunstgeschichte" (Amtliche Mitteilungen 40/2010 S. 4077, zuletzt geändert durch Amtliche Mitteilungen I Nr. 26/2022 S. 525)

Module

M.Kug.05: Kunstvermittlung	5642
M.Kug.06: Kunsttheorie und Wissenschaftsgeschichte der Kunstgeschichte	5643
M.Kug.07: Forschung und Methodik	5644
M.Kug.08: Kuratorische und konservatorische Praxis	5645
M.Kug.09: Kunst- und Bildtheorie	5646
M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung	5647
M.Kug.11: Kulturgeographische Objektkompetenz	5648
M.Kug.12: Mastermodul	5649
M.Kug.13: Geschichte und Praxis des Kunstmarkts	5651
M.Kug.14: Theorie und Praxis der Graphischen Künste	5652
M.Kug.15: Objektorientierte Kennerschaft	5653
M.Kug.201: Einführung in die Materielle Kultur der Wissenschaften	5654
M.Kug.202: Sammlungsmanagement und Ausstellungspraxis	5656
M.Kug.203a: Interdisziplinäre Wissenschaftskompetenz - Instrumente	5658
M.Kug.203b: Interdisziplinäre Wissenschaftskompetenz - Schriftquellen	5660
M.Kug.203c: Interdisziplinäre Wissenschaftskompetenz - Präparate	5661
M.Kug.203d: Interdisziplinäre Wissenschaftskompetenz - Materielle Hinterlassenschaften	5662
M.Kug.204: Interdisziplinäre Objektkompetenz	5663
M.Kug.212: Mastermodul: Materialität des Wissens	5664

Übersicht nach Modulgruppen

I. Master-Studiengang "Kunstgeschichte"

Es müssen mindestens 120 C erworben werden.

1. Fachstudium "Kunstgeschichte" im Umfang von 78 C mit dem Studienschwerpunkt "Kuratorische Studien"

a. Wahlpflichtmodule A Es müssen folgende 8 Module im Umfang von insgesamt 72 C erfolgreich absolviert werden: M.Kug.08: Kuratorische und konservatorische Praxis (9 C, 2 SWS)......5645 M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung (9 C, 4 SWS)......5647 M.Kug.13: Geschichte und Praxis des Kunstmarkts (9 C, 4 SWS)......5651 M.Kug.14: Theorie und Praxis der Graphischen Künste (9 C, 4 SWS)......5652 b. Wahlpflichtmodule B Es muss eines der folgenden Module im Umfang von 6 C erfolgreich absolviert werden: M.Kug.06: Kunsttheorie und Wissenschaftsgeschichte der Kunstgeschichte (6 C)......5643 c. Professionalisierungsbereich Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden. d. Mastermodul Es muss das Mastermodul im Umfang von 30 C erfolgreich absolviert werden: M.Kug.12: Mastermodul (30 C, 2 SWS)...... 5649

a. Wahlpflichtmodule A

Studienschwerpunkt "Material Humanities"

2. Fachstudium "Kunstgeschichte" im Umfang von 78 C mit dem

b. Wahlpflichtmodule B

Es müssen Wahlpflichtmodule nach Maßgabe der nachfolgenden Bestimmungen im Umfang von insgesamt wenigstens 36 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule I "Geschichte und Theorie"

Es müssen wenigstens 2 der folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

bb. Wahlpflichtmodule II "Interdisziplinarität"

Es müssen 3 der folgenden Module im Umfang von insgesamt mindestens 18 C aus dem folgenden objektorientierten Lehrangebot der Universität Göttingen erfolgreich absolviert werden. Module, welche bereits im Rahmen eines Bachelorstudiums absolviert wurden, können nicht erneut belegt werden. Zugangsvoraussetzungen können der jeweiligen Modulbeschreibung entnommen werden.

c. Professionalisierungsbereich

Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden. Es wird insbesondere auf das Studienangebot mit der Kennung SK.Kug hingewiesen. Module, welche bereits im Rahmen eines Bachelorstudiums absolviert wurden, können nicht erneut belegt werden.

d. Mastermodul

Es muss das folgende Mastermodul im Umfang von 30 C erfolgreich absolviert werden.

3. Fachstudium "Kunstgeschichte" im Umfang von 42 C Es müssen Module im Umfang von insgesamt 42 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. a. Fachstudium im Umfang von 42 C Es müssen Module im Umfang von insgesamt 42 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. aa. Wahlpflichtmodul Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden: M.Kug.06: Kunsttheorie und Wissenschaftsgeschichte der Kunstgeschichte (6 C)......5643 bb. Wahlpflichtmodule Es müssen vier der folgenden Module im Umfang von insgesamt 36 C erfolgreich absolviert werden, darunter wenigstens eines der Module M.Kug.05 und M.Kug.08: M.Kug.07: Forschung und Methodik (9 C, 4 SWS).......5644 M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung (9 C, 4 SWS).......5647 b. Studienschwerpunkt "Kuratorische Studien" Soll das Fachstudium im Umfang von 42 C mit dem Studienschwerpunkt "Kuratorische Studien" absolviert werden, sind abweichend von Buchstabe a. Module im Umfang von insgesamt 42 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich zu absolvieren. aa. Wahlpflichtmodule I Es muss folgendes Modul im Umfang von 6 C erfolgreich absolviert werden: bb. Wahlpflichtmodule II Es müssen folgende Module im Umfang von insgesamt 27 C erfolgreich absolviert werden: M.Kug.08: Kuratorische und konservatorische Praxis (9 C, 2 SWS).......5645

M.Kug.13: Geschichte und Praxis des Kunstmarkts (9 C, 4 SWS).......5651

M.Kuq.14: Theorie und Praxis der Graphischen Künste (9 C, 4 SWS).......5652

cc. Wahlpflichtmodule III

Es muss eines der folgenden Module im Umfang von 9 C erfolgreich absolviert werden:

M.Kug.05: Kunstvermittlung (9 C, 2 SWS)	5642
M.Kug.07: Forschung und Methodik (9 C, 4 SWS)	5644
M.Kug.09: Kunst- und Bildtheorie (9 C, 4 SWS)	5646
M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung (9 C, 4 SWS)	5647
M.Kug.11: Kulturgeographische Objektkompetenz (9 C, 2 SWS)	5648

c. Studienschwerpunkt "Material Humanities"

Soll das Fachstudium im Umfang von 42 C mit dem Studienschwerpunkt "Material Humanities" absolviert werden, sind abweichend von Buchstabe a. Module im Umfang von insgesamt 42 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich zu absolvieren.

aa. Wahlpflichtmodule

Es müssen folgende 3 Module im Umfang von insgesamt 27 C erfolgreich absolviert werden:

M.Kug.13: Geschichte und Praxis des Kunstmarkts (9 C, 4 SWS)	5651
M.Kug.201: Einführung in die Materielle Kultur der Wissenschaften (6 C, 2 SWS)	5654
M.Kug.202: Sammlungsmanagement und Ausstellungspraxis (12 C, 6 SWS)	5656

bb. Wahlpflichtmodule "Interdisziplinarität"

Es müssen Module im Umfang von insgesamt mindestens 15 C aus dem folgenden objektorientierten Lehrangebot der Universität Göttingen erfolgreich absolviert werden. Module, welche bereits im Rahmen eines Bachelorstudiums absolviert wurden, können nicht erneut belegt werden. Zugangsvoraussetzungen können der jeweiligen Modulbeschreibung entnommen werden.

M.Kug.203a: Interdisziplinäre Wissenschaftskompetenz - Instrumente (6 C, 2 SWS)5658
M.Kug.203b: Interdisziplinäre Wissenschaftskompetenz - Schriftquellen (6 C, 2 SWS)5660
M.Kug.203c: Interdisziplinäre Wissenschaftskompetenz - Präparate (6 C, 2 SWS)5661
M.Kug.203d: Interdisziplinäre Wissenschaftskompetenz - Materielle Hinterlassenschaften (6 C, 2 SWS)
M.Kug.204: Interdisziplinäre Objektkompetenz (3 C)

d. Fachexterne Modulpakete

Studierende haben ein zulässiges fachexternes Modulpaket im Umfang von 36 C oder zwei zulässige fachexterne Modulpakete im Umfang von jeweils 18 C erfolgreich zu absolvieren.

e. Professionalisierungsbereich

Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem zulässigen Angebot an Schlüsselkompetenzen erfolgreich absolviert werden.

f. Mastermodul

Es muss eines der folgenden Mastermodule im Umfang von 30 C erfolgreich absolviert werden:

II. Modulpaket "Kunstgeschichte" im Umfang von 36 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Kunstgeschichte im Umfang von wenigstens 18 C; es können auch Schlüsselkompetenzmodule aus dem Bereich "Bildkompetenz" angerechnet werden.

2. Wahlpflichtmodule

Es müssen vier der folgenden Module im Umfang von insgesamt 36 C erfolgreich absolviert werden, darunter wenigstens eines der Module M.Kug.05 und M.Kug.08:

M.Kug.05: Kunstvermittlung (9 C, 2 SWS)	. 5642
M.Kug.07: Forschung und Methodik (9 C, 4 SWS)	. 5644
M.Kug.08: Kuratorische und konservatorische Praxis (9 C, 2 SWS)	.5645
M.Kug.09: Kunst- und Bildtheorie (9 C, 4 SWS)	. 5646
M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung (9 C, 4 SWS)	. 5647
M.Kug.11: Kulturgeographische Objektkompetenz (9 C, 2 SWS)	. 5648

III. Modulpaket "Material Humanities" im Umfang von 36 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Kunstgeschichte im Umfang von wenigstens 18 C; es können auch Schlüsselkompetenzmodule aus dem Bereich "Bildkompetenz" angerechnet werden.

2. Wahlpflichtmodule

Es müssen folgende 4 Module im Umfang von insgesamt 36 C erfolgreich absolviert werden:

M.Kug.11: Kulturgeographische Objektkompetenz (9 C, 2 SWS)	5648
M Kug 13: Geschichte und Praxis des Kunstmarkts (9 C. 4 SWS)	5651

M.Kug.201: Einführung in die Materielle Kultur der Wissenschaften (6 C, 2 SWS)	5654
M.Kug.202: Sammlungsmanagement und Ausstellungspraxis (12 C, 6 SWS)	5656

IV. Modulpaket "Kunstgeschichte" im Umfang von 18 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Kunstgeschichte im Umfang von wenigstens 8 C; es können auch Schlüsselkompetenzmodule aus dem Bereich "Bildkompetenz" angerechnet werden.

2. Wahlpflichtmodule

Es müssen zwei der folgenden Module im Umfang von insgesamt 18 C erfolgreich absolviert werden, darunter nicht mehr als eines der Module M.Kug.05 und M.Kug.08:

M.Kug.05: Kunstvermittlung (9 C, 2 SWS)	5642
M.Kug.07: Forschung und Methodik (9 C, 4 SWS)	5644
M.Kug.08: Kuratorische und konservatorische Praxis (9 C, 2 SWS)	5645
M.Kug.09: Kunst- und Bildtheorie (9 C, 4 SWS)	5646
M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung (9 C, 4 SWS)	5647
M.Kug.11: Kulturgeographische Objektkompetenz (9 C, 2 SWS)	5648

V. Modulpaket "Material Humanities" im Umfang von 18 C

(belegbar ausschließlich innerhalb eines anderen Master-Studiengangs)

1. Zugangsvoraussetzungen

Voraussetzung ist der Nachweis von Leistungen aus der Kunstgeschichte im Umfang von wenigstens 8 C; es können auch Schlüsselkompetenzmodule aus dem Bereich "Bildkompetenz" angerechnet werden.

2. Wahlpflichtmodule

Es müssen folgende 2 Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

M.Kug.201: Einführung in die Materielle Kultur der Wissenschaften (6 C, 2 SWS)	5654
M Kug 202: Sammlungsmanagement und Ausstellungspraxis (12 C. 6 SWS)	5656

Georg-August-Universität Göttingen Modul M.Kug.05: Kunstvermittlung		9 C 2 SWS
Lernziele/Kompetenzen: Nach erfolgreichem Abschluss dieses Moduls beherrschen die Studierenden die Vermittlung von Kunstwerken unterschiedlichster Gattungen. Sie haben gelernt, Präsentationen von Kunst - in Form einer Ausstellung, Führung oder Ähnlichem - zu erstellen und in der Öffentlichkeit vorzustellen. Hierzu gehört auch eine praktische Übung oder ein Praktikum (z. B. Museum, Verlag oder Zeitung, Rundfunk- oder Fernsehanstalt oder bei anderen Medienproduzenten). Die Übung oder das Praktikum muss bis zum Beginn der Masterarbeit nachgewiesen werden.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 242 Stunden
Lehrveranstaltung: Masterseminar zur Kunstvermittlung		2 SWS
Prüfung: Referat (ca. 35 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar; Absolvieren einer praktischen Übung oder eines Praktikums		9 C
Lehrveranstaltung: Übung zur Kunstvermittlung oder mindestens 3-wöchiges Praktikum (120 Stunden) in einer Institution zur Kunstvermittlung (Übung)		
Prüfungsanforderungen: Fähigkeiten der Vermittlung von Kunstwerken unterschiedlichster Gattungen		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Anne-Katrin Sors	
Angebotshäufigkeit: jährlich	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 16		

6 C Georg-August-Universität Göttingen Modul M.Kug.06: Kunsttheorie und Wissenschaftsgeschichte der Kunstgeschichte English title: Art Theory and History of Art Science Lernziele/Kompetenzen: Arbeitsaufwand: Durch Lektürestudien soll die Fähigkeit geschärft werden, mit anspruchsvollen Texten Präsenzzeit: zur Kunsttheorie und der Wissenschaftsgeschichte der Kunstgeschichte selbständig 0 Stunden und kritisch umzugehen und die Ergebnisse der Analyse in prägnanter schriftlicher Form Selbststudium: niederzulegen. Der Text oder die Texte können z. B. aus den Bereichen Theorie der 180 Stunden Bildenden Kunst, Medientheorie, Architekturtheorie, Methodik der Kunstgeschichte, Theorie der Denkmalpflege, Museologie oder Kommunikationstheorie gewählt werden. Die Independent Studies werden nach Absprache von einer Dozentin oder einem Dozenten betreut. Lehrveranstaltung: Independent Studies zu einem Text oder mehreren Texten der Kunsttheorie oder der Wissenschaftsgeschichte der Kunstgeschichte Prüfung: Hausarbeit (max. 20 Seiten) Prüfungsanforderungen: Lektürestudien, dadurch Schärfen der Fähigkeit, mit anspruchsvollen Texten selbständig und kritisch umzugehen, Darlegung der Ergebnisse in prägnanter schriftlicher Form. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Carsten-Peter Warncke Dauer: Angebotshäufigkeit: iedes Semester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

16

Georg-August-Universität Göttinge	en	9 C
Modul M.Kug.07: Forschung und Methodik		4 SWS
English title: Research and Methodology		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Das Modul vermittelt die Fähigkeit, auf der B	Basis einer wesentlich vertieften	Präsenzzeit:
Objektkenntnis eigenständige wissenschaftli	iche Kompetenz zu erlangen, um die	56 Stunden
Anwendbarkeit von kunsthistorischen Entwic	cklungs- und Ordnungsmodellen überprüfen	Selbststudium:
und kritisieren zu können.		214 Stunden
Lehrveranstaltung: Vorlesung zu einem forschungsbetonten Thema (Vorlesung)		2 SWS
Lehrveranstaltung: Masterseminar zu ein	em forschungsbetonten Masterseminar	2 SWS
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige aktive Teilnahme am Masterseminar		9 C
Prüfungsanforderungen: Potenzierung der Objektkenntnis, Erwerb einer eigenständigen wissenschaftlichen Kompetenz.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Manfred Luchterhandt	
Angebotshäufigkeit:	Dauer:	
wenigstens einmal im Studienjahr	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		
16		

Georg-August-Universität Göttingen Modul M.Kug.08: Kuratorische und konservatorische Praxis English title: Curatorial and Conservational Studies		9 C 2 SWS
Lernziele/Kompetenzen: Der Schwerpunkt dieses Moduls liegt auf der analytischen Untersuchung des Originals. Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden fähig, originale Kunstobjekte jeder Gattung selbständig in den angemessenen kunsthistorischen Kontext einzustufen. Das Modul dient der praktischen Anwendbarkeit in bestimmten Berufsfeldern der Kunstgeschichte. Dieses Modul setzt eigenständige Organisation und erfolgreiches Absolvieren eines Praktikum in einer Kultureinrichtung (z. B. Museum, Denkmalpflege, Galerie, Zeitung, Verlag oder Kulturinstitution) voraus, welches bis zum Beginn der Masterarbeit nachgewiesen werden muss.		
Lehrveranstaltung: Vertiefungsseminar / Masterseminar zu einem kuratorischen oder konservatorischen Thema		2 SWS
Prüfung: Referat (ca. 35 Minuten) Prüfungsvorleistungen: regelmäßige aktive Teilnahme am Seminar; Absolvieren eines Praktikums Lehrveranstaltung: Praktikum		9 C
mindestens 3-wöchig		
Prüfungsanforderungen: Untersuchung des Originals, dient der praktischen Anwendbarkeit in bestimmten Berufsfeldern.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Anne-Katrin Sors	
Angebotshäufigkeit: wenigstens einmal im Studienjahr	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

16

Georg-August-Universität Göttingen		9 C	
Modul M.Kug.09: Kunst- und Bildtheorie		4 SWS	
English title: Art Theory and Pictorial Studies			
Lernziele/Kompetenzen:		Arbeitsaufwand:	
In diesem Modul erwerben die Studierenden die	_	Präsenzzeit:	
Künste von Künstlern, Kunstschriftstellern, The		56 Stunden	
im gesellschaftlichen Diskurs entwickelten Reg	•	Selbststudium:	
Kunst im Allgemeinen und Besonderen durch Analyse und Interpretation zu historisieren und zu aktualisieren.		214 Stunden	
Lehrveranstaltung: Vorlesung zur Kunst- und Bildtheorie (Vorlesung)		2 SWS	
Lehrveranstaltung: Masterseminar zur Kuns	t- und Bildtheorie	2 SWS	
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige aktive Teilnahme am Seminar		9 C	
Prüfungsanforderungen: Historisierung und Aktualisierung der Vorstellungen von Künstlern, Kunstschriftstellern und Philosophen über Sinn und Funktion von Kunst			
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:		
keine	keine		
Sprache:	Modulverantwortliche[r]:		
Deutsch	Prof. Dr. Carsten-Peter Warncke	Prof. Dr. Carsten-Peter Warncke	
Angebotshäufigkeit:	Dauer:		
wenigstens einmal im Studienjahr	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:		
zweimalig			
Maximale Studierendenzahl:			

Georg-August-Universität Göttingen Modul M.Kug.10: Wissenschaftsorientierte Schwerpunktbildung English title: Research Specialization

Lernziele/Kompetenzen: Arbeitsaufwand: Ziel des Moduls ist die epochale, gattungsbezogene oder thematische Präsenzzeit: 56 Stunden Schwerpunktbildung des Studierenden im Hinblick auf eine spätere wissenschaftliche Laufbahn oder Berufe mit verstärkter wissenschaftlicher Ausrichtung. Nach Selbststudium: erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage, in einem 214 Stunden von ihnen selbst bestimmten und durch eigene Lektüre systematisch erweiterten Schwerpunktbereich wissenschaftliche Probleme zu erkennen, zu definieren, und lösungsorientiert auf dem Stand aktueller Forschungsdebatten zu bearbeiten. Die Textsorten und Publikationsformen der wissenschaftlichen und wissenschaftsaffinen Berufsfelder des Kunsthistorikers (Universität, Museum, Denkmalpflege) sind ihnen gut vertraut. Sie sind in der Lage, auch größere wissenschaftliche Projekte inhaltlich zu konzipieren und in der Durchführung zeitlich zu disponieren.

Lehrveranstaltung: Vorlesung zu einem wissenschaftsbetonten Thema (Vorlesung)	2 SWS
Lehrveranstaltung: Masterseminar zu einem wissenschaftsbetonten Masterseminar	2 SWS
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten)	9 C
Prüfungsvorleistungen:	
regelmäßige aktive Teilnahme am Masterseminar	

Prüfungsanforderungen: Definiton, Darstellung und Bearbetung eines wissenschaftlichen Problems im Schwerpunktbereich auf dem Stand der aktuellen Forschungsdiskussion.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Manfred Luchterhandt
Angebotshäufigkeit: wenigstens einmal im Studienjahr	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul M.Kug.11: Kulturgeographische Objektkompetenz English title: Cultural Geography and Object Studies Lernziele/Kompetenzen: Arbeitsaufwand:

Das Modul soll die Studierenden verstärkt vor die Originale führen, um das theoretische Wissen mit praktischen Erfahrungen abzugleichen, den Blick für die materielle Beschaffenheit von Kunstwerken sowie für stilistische, kunsttechnische und restauratorische Fragen zu schärfen. Zugleich soll durch Exkursionen im besonderem Maße die Sensibilität für die kulturellen, politischen und lokalen Kontexte der künstlerische Artefakte geschärft werden, für ihre Einbindung in spezifische Traditionen und Milieus, in historische Kulturräume und funktionale Zusammenhänge. In Ergänzung zu den universitären Lehrformen wird darüber hinaus der Blick für berufspraktische Fragen geweckt und die Vermittlungskompetenz sowie die Fähigkeit zu freiem Vortrag und Gespräch vor den Objekten geschult.

Präsenzzeit:
28 Stunden
Selbststudium:
242 Stunden

Lehrveranstaltung: Masterseminar zu einem objektbetonten Thema	2 SWS
Lehrveranstaltung: Exkursion	
Eine mindestens 3-tägige Exkursion oder mehrere Einzelexkursionen im Gesamtumfang von mindestens drei Tagen	
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten)	9 C
Prüfungsvorleistungen:	
regelmäßige aktive Teilnahme am Masterseminar und aktive Teilnahme an der	
Exkursion oder den Exkursionen	

Prüfungsanforderungen: Einordnng eines Originals unter Berücksichtigung sowohl materieller Beschaffenheit als auch des kuklturellen, politischen und lokalen Kontexts der Entstehung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Manfred Luchterhandt
Angebotshäufigkeit: wenigstens einmal im Studienjahr	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen 30 C 2 SWS Modul M.Kug.12: Mastermodul English title: Master thesis Lernziele/Kompetenzen: Arbeitsaufwand: Das Modul dient dem selbständigen Erwerb, der Erweiterung und Anwendung Präsenzzeit: von wissenschaftlichen Fähigkeiten durch Anfertigung einer umfangreicheren 28 Stunden wissenschaftlichen Arbeit. Selbststudium: 872 Stunden Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage: • die Konzeptualisierung der Masterarbeit und die gewählten Methoden zu begründen und ihre formalen Standards zu beherrschen; • Fachliteratur in Hinblick auf Zielsetzung und Fragestellung der Masterarbeit zu

Lehrveranstaltung: Forschungskolloquium zur mittleren und neueren Kunstgeschichte	2 SWS
Prüfung: Masterarbeit (max. 100 Seiten)	30 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme am Kolloquium; Präsentation (ca. 35 Minuten)	
Prüfungsanforderungen:	
Entwicklung einer eigenständigen Fragestellung auf der Basis der erworbenen	
Kenntnisse und Kompetenzen	
Fähigkeit zur Recherche, Rezeption und Auswertung von Fachliteratur im Hinblick	
auf Zielsetzungen und Fragestellungen	
kritische Auseinandersetzung mit dem Forschungsstand und seine Aufarbeitung in	
komprimierter Form	
Sicherheit in der Konzeptualisierung und Begründung von methodischem	
Vorgehen und in der Anwendung gewählter Methoden	
Fähigkeit, Ergebnisse der Arbeit zusammenzufassen und im Forschungskontext	
zu diskutieren sowie Ausführungen in konsistenter Gedankenführung sowohl auf	
dem Niveau akademischer Debatten als auch in allgemeinverständlicher Form zu	
präsentieren	
Fähigkeit zur angemessenen kontextabhängigen Aufbereitung und Präsentation	

keine

recherchieren, auszuwerten und kritisch zu reflektieren;

• die gewählten Methoden adäquat einzusetzen;

mündlich zu präsentieren sowie

Praxis zu erkennen;

Zugangsvoraussetzungen:

Module des Studiengangs im Umfang von wenigstens 70 C, darunter Module des

• die Bedeutung der bearbeiteten Thematik für die Forschung wie für die berufliche

• eigene Ausführungen in stringenter Gedankenführung und angemessener Sprache

wissenschaftlichen Forum zu präsentieren, zu diskutieren und zu hinterfragen.

• die Ergebnisse der eigenen Arbeit zusammenzufassen und in einem

Empfohlene Vorkenntnisse:

Fachstudiums in Kunstgeschichte im Umfang von wenigstens 33 C; Lateinkenntnisse mindestens im Umfang des Kleinen Latinums oder einer äquivalenten Prüfung	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Manfred Luchterhandt
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: einmalig	Empfohlenes Fachsemester: ab 4
Maximale Studierendenzahl: 16	

Georg-August-Universität Göttingen	9 C 4 SWS
Modul M.Kug.13: Geschichte und Praxis des Kunstmarkts	4 3003
English title: History and Practice of the Art Market	

English title: History and Practice of the Art Market	
Lernziele/Kompetenzen: Die Studierenden erwerben in diesem Modul Kenntnisse über historische und aktuelle Distributionsformen von Kunst und insbesondere über den Kunstmarkt. Sie entwickeln ein vertieftes Verständnis vom Kunstmarkt in seiner Entwicklung, in seinen Umbrüchen und Abhängigkeiten sowie in seinen Funktionsweisen und in seiner Bedeutung für die Kunstgeschichte.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 214 Stunden
Lehrveranstaltung: Geschichte und Praxis des Kunstmarkts (Vorlesung) Angebotshäufigkeit: wenigstens einmal im Studienjahr	2 SWS
Lehrveranstaltung: Geschichte und Praxis des Kunstmarkts (Seminar) Angebotshäufigkeit: wenigstens einmal im Studienjahr	2 SWS
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige aktive Teilnahme am Masterseminar Prüfungsanforderungen: Exemplarische Erarbeitung der Wirkungsweisen des Kunstmarkts an Beispielen der Vergangenheit oder Gegenwart; Fähigkeit, diese Wirkungsweise historisch bzw. zeitgeschichtlich zu kontextualisieren.	9 C

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Michael Thimann
Angebotshäufigkeit:	Dauer:
wenigstens einmal im Studienjahr	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
20	

Georg-August-Universität Göttingen	9 C 4 SWS
Modul M.Kug.14: Theorie und Praxis der Graphischen Künste	4 3003
English title: Theory and Practice of Graphic Arts	

Lernziele/Kompetenzen: Nach Abschluss dieses Moduls besitzen die Studierenden umfassende und vertiefte Kenntnisse über die Geschichte und die medienspezifischen Eigenschaften der graphischen Künste sowohl in technischer als auch in kunst- und medientheoretischer Hinsicht. Darüber hinaus erwerben sie die Fähigkeit, mit graphischen Kunstwerken als materiellen Objekten umzugehen und ihre Forschungsergebnisse nach wissenschaftlichen Standards in mündlicher und schriftlicher Form zu präsentieren.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 214 Stunden
Lehrveranstaltung: Theorie und Praxis der Graphischen Künste (Vorlesung) Angebotshäufigkeit: wenigstens einmal im Studienjahr	2 SWS
Lehrveranstaltung: Theorie und Praxis der Graphischen Künste (Seminar) Angebotshäufigkeit: wenigstens einmal im Studienjahr	2 SWS
Prüfung: Referat (ca. 35 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige aktive Teilnahme am Seminar Prüfungsanforderungen: Einordnung und Analyse graphischer Kunstwerke unter kunsthistorischen, medientheoretischen und/oder materiell-praktischen Gesichtspunkten.	9 C

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Dr. Anne-Katrin Sors
Angebotshäufigkeit:	Dauer:
wenigstens einmal im Studienjahr	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
20	

Georg-August-Universität Göttingen Modul M.Kug.15: Objektorientierte Kennerschaft English title: Object-oriented Connoisseurship

Lernziele/Kompetenzen:

In Form von Independent Studies erwerben die Studierenden unter der Betreuung einer Dozentin / eines Dozenten die Kompetenz, ein konkretes Objekt der Universitätskunstsammlung in eigenständiger Recherche zu beschreiben, zu bestimmen, zu inventarisieren und zu kontextualisieren. Das Modul vermittelt somit grundlegende Kompetenzen für eine spätere kuratorische Tätigkeit, u.a. an Museen und Sammlungen, im Kunsthandel, an Galerien und Auktionshäuser. Die Studierenden erwerben die Fähigkeit, Objekte neu für die Forschung zu erschließen sowie die Ergebnisse sowohl allgemeinverständlich als auch auf wissenschaftlichem Niveau sprachlich zu vermitteln und zugänglich zu machen.

Arbeitsaufwand:

Präsenzzeit: 0 Stunden Selbststudium: 180 Stunden

Lehrveranstaltung: Independent Studies zu einem Objekt der Universitätskunstsammlung

Inhalte:

Die Studierenden erschließen im angeleiteten Selbststudium ein ausgewähltes Objekt oder eine Objektgruppe der Universitätskunstsammlung. Sie beschreiben, bestimmen, inventarisieren und kontextualisieren das Objekt, wodurch sie die grundlegenden Kompetenzen für eine spätere kuratorische Tätigkeit vertiefen. Die im Rahmen des Selbststudiums entstandenen Fragen können im regelmäßigen Austausch mit der Betreuerin / dem Betreuer diskutiert werden.

6 C

Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie in der Lage sind, ein Objekt der Kunstsammlung eigenständig wissenschaftlich zu bearbeiten und zu erschließen, die einschlägige Fachliteratur zu recherchieren, die Ergebnisse sowohl allgemeinverständlich als auch auf wissenschaftlichem Niveau herauszuarbeiten und adäquat vorzustellen sowie die Ergebnisse auf wissenschaftlichen Niveau zu diskutieren.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Michael Thimann
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen Modul M.Kug.201: Einführung in die Materielle Kultur der Wissenschaften English title: Introduction to the Material Culture of the Sciences

Lernziele/Kompetenzen:

Ziel dieses praktisch orientierten Seminars ist die Forschung mit wissenschaftlichen Objekten. Die Studierenden kennen ausgehend von den Göttinger Universitätssammlungen die Objektkulturen der Wissenschaften. Auf der Grundlage von Objektbeschreibungen erarbeiten und beherrschen sie die Methoden der materialbasierten Analyse und sind in der Lage, das hermeneutische Potential der Objekte zu reflektieren. Durch begleitende Lektüren erwerben sie einen Einblick in die zentralen Begriffe und Theorien der material culture studies. Sie können diese kritisch zu ihren Objektstudien in Beziehung setzen.

Die Studierenden sind nach Abschluss des Seminars in der Lage,

- Sammlungs- und Archivbestände zu erforschen, die kaum durch Sekundärliteratur behandelt wurden (d.h. mit objektbezogenen Rechercheinstrumenten wie einschlägigen Nachschlagewerken oder Datenbanken umzugehen und Primärund Sekundärquellen aufzufinden und auszuwerten),
- · Forschungsfragen am Objekt zu entwickeln,
- die Gegenstände ihrer Fachgebiete forschend zu erschließen, zu anderen Fachgebieten in Beziehung zu setzen und so die interdisziplinäre Dimension des Themas zu berücksichtigen,
- die Objektkulturen der Wissenschaften zu anderen Feldern wie der Sachkulturund Provenienzforschung abzugrenzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

Lehrveranstaltung: Einführung in die Materielle Kultur der Wissenschaften (Seminar)	2 SWS
Prüfung: Referat mit Quellenauswahl und -vorstellung (ca. 30 Min.) sowie Verfassen einer Objektbiografie (max. 12 Seiten)	6 C
Prüfungsvorleistungen:	
Regelmäßige Teilnahme am Seminar	
Prüfungsanforderungen:	
Kenntnis der Grundlagen des objektorientierten Forschens anhand von	
Sammlungs- und Archivbeständen	
Reflexion eigener Forschungsmethoden und Fragestellungen	
 vertiefte Fähigkeiten des wissenschaftlichen Lesens und Schreibens 	
Fähigkeit zur Reflexion von objektorientierten Methoden und Theoriebildung	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Prof. Dr. Margarete Vöhringer
Angebotshäufigkeit:	Dauer:

wenigstens einmal im Studienjahr	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 12	
Bemerkungen: Das Modul M.Kug.201 kann nicht gemeinsam mit dem Modul SK.Phil-Obj.01 belegt werden.	

Georg-August-Universität Göttingen

Modul M.Kug.202: Sammlungsmanagement und Ausstellungspraxis

English title: Collection management and exhibition practice

12 C 6 SWS

Lernziele/Kompetenzen:

Im Modul gewinnen die Studierenden einen Überblick über die theoretischen und praktischen Objektkompetenzen und führen diese zusammen:

Durch das Praktikum kennen sie die Praxisfelder im Bereich des Sammlungsmanagements und beherrschen die angewandten Kompetenzen im Umgang mit wissenschaftlichen Objekten.

Durch die Teilnahme am Ausstellungsseminar (digital oder analog) besitzen sie die Fähigkeit, selbständig konzeptuelle und angewandte Aufgaben zu übernehmen, sich kritisch mit museumswissenschaftlichen Diskursen auseinander zu setzen und ihre wissensgeschichtlichen Kenntnisse in die nichtakademische Öffentlichkeit zu vermitteln. Zudem besitzen sie Erfahrungen im Projektmanagement (Planung, Durchführung und Präsentation einer Ausstellung) sowie in der Moderation gruppendynamischer Arbeitsprozesse. Sie schulen ihre Kompetenzen im Schreiben und Präsentieren in einem Format mit hoher Praxisrelevanz.

Die Studierenden sind nach Abschluss des Moduls in der Lage:

- Sammlungsobjekte zu lokalisieren, zu recherchieren und im Hinblick auf eine nachhaltige Bewahrung zu erfassen,
- wissenschaftliche Objekte in den angemessenen kulturhistorischen Kontext einzuordnen, fachübergreifende Fragestellungen zu entwickeln und im Rahmen einer gegenwartsrelevanten Thematik in einer Ausstellung aufzubereiten,
- eine Tätigkeit in den interdisziplinären Berufsfeldern von Sammlungen, Museen, Archiven, Kustodien und Ausstellungshäusern sowie in den Forschungsbereichen der Wissenschafts- und Sammlungsgeschichte sowie der Umweltwissenschaften anzutreten.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 276 Stunden

Lehrveranstaltung: Praktikum mit Blockveranstaltung zum Sammlungsmanagement Inhalte: Absolvieren eines Praktikums an der Zentralen Kustodie, an einer Sammlung der Georg-August-Universität Göttingen oder einer vergleichbaren Einrichtung im Umfang von mindestens 4 Wochen und mindestens 120 Std. Workload in der vorlesungsfreien Zeit (mit Praktikumsbescheinigung). Ein Praktikum an der Zentralen Kustodie der Georg-August-Universität Göttingen wird während den 4 Wochen durchgehend begleitet. Prüfung: Praktikumsbericht (max. 5 Seiten) und anschließendes Auswertungsgespräch (ca. 30 Min.), unbenotet Prüfungsvorleistungen: Regelmäßige Teilnahme am Praktikum

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Lehrveranstaltung: Konzeption und Realisierung einer Ausstellung (Seminar)

4 SWS

Inhalte:	
Die Vorbereitung und Realisierung einer Ausstellung wird mit 30 Std. begleitet.	
Prüfung: Objektbasierte Ausstellung mit eigener Fragestellung und/ oder These	6 C
sowie Präsentation (ca. 30 Min.)	
Prüfungsvorleistungen:	
Regelmäßige Teilnahme an der Ausstellungsvorbereitung	

Prüfungsanforderungen:

Die Studierenden zeigen in der Modulprüfung, dass sie in der Lage sind, die im Praktikum erworbenen anwendungsbezogenen Kenntnisse und Erfahrungen zu reflektieren und in ein konzeptuell anspruchsvolles Ausstellungsprojekt umzusetzen, selbstständig und termingerecht Aufgaben wahrzunehmen und ihre Tätigkeit theoretisch gefestigt und kritisch zu reflektieren.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Margarete Vöhringer
Angebotshäufigkeit: wenigstens einmal im Studienjahr	Dauer: 1-2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 12	

Bemerkungen:

Das Modul M.Kug.202 kann nicht gemeinsam mit den Modulen SK.Phil-Obj.02 und SK.Phil-Obj.03 belegt werden.

6 C Georg-August-Universität Göttingen 2 SWS Modul M.Kug.203a: Interdisziplinäre Wissenschaftskompetenz -Instrumente English title: Interdisciplinary Scientific Competence - Instruments Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls können die Absolvent*innen zentrale Präsenzzeit: materialbasierte Forschungsansätze an Objekten wissenschaftlicher Sammlungen 28 Stunden anwenden. Sie kennen empirische Methoden der Analyse und Sammlungsdidaktik Selbststudium: von Instrumenten, die in natur- oder kulturwissenschaftlichen Disziplinen (Mathematik, 152 Stunden Physik, Musikwissenschaft) entwickelt, erforscht und gesammelt werden. Sie sind sensibel für fachspezifische und übergreifende Fragestellungen an Instrumenten und geübt in der Verknüpfung materialbasierter Beobachtungen und theoretischer Schlussfolgerungen. Lehrveranstaltung: Importveranstaltung (aus Nachbarwissenschaften) 2 SWS Inhalte: Besuch einer Lehrveranstaltung aus den Nachbarwissenschaften, in welchen naturwissenschaftliche Instrumente und Modelle untersucht werden (z. B. Mathematik, Physik, Musikwissenschaft). Die Fachstudienberatung für den Studienschwerpunkt "Material Humanities" oder die Modulverantwortliche können bei der Auswahl geeigneter Lehrveranstaltungen behilflich sein. 6 C Prüfung: Lerntagebuch (max. 10 Seiten) oder Portfolio (max. 15 Seiten) und drei begleitende Auswertungsgespräche (ca. 15 Min., unbenotet) Prüfungsvorleistungen: Regelmäßige Teilnahme Prüfungsanforderungen: Die Studierenden zeigen in der Modulprüfung, dass sie in der Lage sind, die in der Lehrveranstaltung erworbenen objektbasierten Kenntnisse und Erfahrungen im konkreten Umgang mit Instrumenten in Forschung und Lehre kritisch in Bezug auf das eigene Fach zu reflektieren. Im Vordergrund steht hierbei die Frage, wie sich der fachwissenschaftsinterne und -externe Deutungshorizont der Instrumente unterscheiden. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Margarete Vöhringer Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester

Wiederholbarkeit:

Maximale Studierendenzahl:

zweimalig

Empfohlenes Fachsemester:

12	

6 C Georg-August-Universität Göttingen 2 SWS Modul M.Kug.203b: Interdisziplinäre Wissenschaftskompetenz -Schriftquellen English title: Interdisciplinary Scientific Competence - Written Sources Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls können die Absolvent*innen zentrale Präsenzzeit: materialbasierte Forschungsansätze an Objekten wissenschaftlicher Sammlungen 28 Stunden anwenden. Sie kennen empirische Methoden der Analyse und Sammlungsdidaktik Selbststudium: von Schriftquellen sowohl in historischen wie philologischen Disziplinen (Geschichte, 152 Stunden Germanistik/Philologien). Sie sind sensibel für fachspezifische und übergreifende Fragestellungen an Schriftquellen hinsichtlich ihrer Materialität und Objekthaftigkeit und geübt in der Verknüpfung materialbasierter Beobachtungen und theoretischer Schlussfolgerungen. Lehrveranstaltung: Importveranstaltung (aus Nachbarwissenschaften) 2 SWS Inhalte: Besuch einer Lehrveranstaltung aus den Nachbarwissenschaften, in welcher Schriftquellen untersucht werden (z. B. Geschichte, Germanistik/Philologien). Die Fachstudienberatung für den Studienschwerpunkt "Material Humanities" oder die Modulverantwortliche können bei der Auswahl geeigneter Lehrveranstaltungen behilflich sein. 6 C Prüfung: Lerntagebuch (max. 10 Seiten) oder Portfolio (max. 15 Seiten) und drei begleitende Auswertungsgespräche (ca. 15 Min., unbenotet) Prüfungsvorleistungen: Regelmäßige Teilnahme Prüfungsanforderungen: Die Studierenden zeigen in der Modulprüfung, dass sie in der Lage sind, die in der Lehrveranstaltung erworbenen objektbasierten Kenntnisse und Erfahrungen in der Auseinandersetzung mit Schriftquellen kritisch in Bezug auf das eigene Fach zu reflektieren. Im Vordergrund steht hierbei die Frage nach der Materialität der Textkörper in Bezug auf ihre Inhalte. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Margarete Vöhringer Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

12

6 C Georg-August-Universität Göttingen 2 SWS Modul M.Kug.203c: Interdisziplinäre Wissenschaftskompetenz -**Präparate** English title: Interdisciplinary Scientific Competence - Specimens Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls können die Absolvent*innen zentrale Präsenzzeit: materialbasierte Forschungsansätze an Objekten wissenschaftlicher Sammlungen 28 Stunden anwenden. Sie kennen empirische Methoden der Analyse und Sammlungsdidaktik von Selbststudium: Präparaten, die in den Wissenschaften des Lebens (Geologie, Zoologie, Anthropologie, 152 Stunden Ägyptologie, Antike Kulturen, Ethnologie) entdeckt, hergestellt, erforscht und gesammelt werden. Sie sind sensibel für fachspezifische und übergreifende Fragestellungen an Präparate und geübt in der Verknüpfung materialbasierter Beobachtungen und theoretischer Schlussfolgerungen. Lehrveranstaltung: Importveranstaltung (aus Nachbarwissenschaften) 2 SWS Inhalte: Besuch einer Lehrveranstaltung aus den Nachbarwissenschaften, in welcher natürliche und künstliche Präparate untersucht werden (z. B. Zoologie, Anthropologie oder Geologie) Die Fachstudienberatung für den Studienschwerpunkt "Material Humanities" oder die Modulverantwortliche können bei der Auswahl geeigneter Lehrveranstaltungen behilflich sein. Angebotshäufigkeit: jedes Wintersemester Prüfung: Lerntagebuch (max. 10 Seiten) oder Portfolio (max. 15 Seiten) und drei 6 C begleitende Auswertungsgespräche (ca. 15 Min., unbenotet) Prüfungsvorleistungen: Regelmäßige Teilnahme Prüfungsanforderungen: Die Studierenden zeigen in der Modulprüfung, dass sie in der Lage sind, die in der Lehrveranstaltung erworbenen objektbasierten Kenntnisse und Erfahrungen im Umgang mit Präparaten kritisch in Bezug auf das eigene Fach zu reflektieren. Im Vordergrund stehen hierbei Fragen zu den Verflechtungen von Natur/Kultur sowie Leben/Tod.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Margarete Vöhringer
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 12	

6 C Georg-August-Universität Göttingen 2 SWS Modul M.Kug.203d: Interdisziplinäre Wissenschaftskompetenz -Materielle Hinterlassenschaften English title: Interdisciplinary Scientific Competence - Material Legacies Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls können die Absolvent*innen zentrale Präsenzzeit: materialbasierte Forschungsansätze an Objekten wissenschaftlicher Sammlungen 28 Stunden anwenden. Sie kennen empirische Methoden der Analyse und Sammlungsdidaktik Selbststudium: von materiellen Hinterlassenschaften, die in historisch ausgerichteten sozial- und 152 Stunden kulturwissenschaftlichen Fächern erforscht werden (Archäologie, Ägyptologie, Antike Kulturen, Ethnologie). Sie sind sensibel für fachspezifische und übergreifende Fragestellungen an materielle Hinterlassenschaften und geübt in der Verknüpfung materialbasierter Beobachtungen und theoretischer Schlussfolgerungen. Lehrveranstaltung: Importveranstaltung (aus Nachbarwissenschaften) 2 SWS Inhalte: Besuch einer Lehrveranstaltung aus den Nachbarwissenschaften, in welcher materielle Hinterlassenschaften vergangener Kulturen untersucht werden (z. B. Archäologie, Ägyptologie, Antike Kulturen oder Ethnologie) Die Fachstudienberatung für den Studienschwerpunkt "Material Humanities" oder die Modulverantwortliche können bei der Auswahl geeigneter Lehrveranstaltungen behilflich sein. 6 C Prüfung: Lerntagebuch (max. 10 Seiten) oder Portfolio (max. 15 Seiten) und drei begleitende Auswertungsgespräche (ca. 15 Min., unbenotet) Prüfungsvorleistungen: Regelmäßige Teilnahme Prüfungsanforderungen: Die Studierenden zeigen in der Modulprüfung, dass sie in der Lage sind, die in der Lehrveranstaltung erworbenen objektbasierten Kenntnisse und Erfahrungen bei der Analyse materieller Hinterlassenschaften kritisch in Bezug auf das eigene Fach zu reflektieren. Im Vordergrund stehen hier Fragen der Multiperspektivität. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Margarete Vöhringer Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester

Wiederholbarkeit:

Maximale Studierendenzahl:

zweimalig

12

Empfohlenes Fachsemester:

3 C Georg-August-Universität Göttingen Modul M.Kug.204: Interdisziplinäre Objektkompetenz English title: Interdisciplinary Object Competence Lernziele/Kompetenzen: Arbeitsaufwand: Nach Abschluss des Moduls können die Studierenden eigenständig fachfremde Präsenzzeit: 0 Stunden Objekte unter einer bestimmten Fragestellung auswählen, beschreiben und historisch einordnen und haben hierdurch die Fähigkeit erworben, Objekte neu für die Forschung Selbststudium: zu erschließen. Sie sind sensibel für fachspezifische und übergreifende Fragestellungen 90 Stunden an materielle Hinterlassenschaften und geübt in der Verknüpfung materialbasierter Beobachtungen und theoretischer Schlussfolgerungen. Lehrveranstaltung: Independent Studies zu einem Objekt der Universitätssammlung 3 C Prüfung: Mündlich (ca. 15 Minuten) Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie in der Lage sind, ein Objekt der Universitätssammlungen eigenständig wissenschaftlich zu bearbeiten und Fragestellungen für weitere Forschung zu entwickeln, die einschlägige Fachliteratur zu recherchieren und kritisch einzuordnen, die Ergebnisse kritisch in Bezug auf das eigene Fach zu diskutieren. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Margarete Vöhringer Angebotshäufigkeit: Dauer: iedes Semester 1 Semester

Empfohlenes Fachsemester:

Wiederholbarkeit:

Maximale Studierendenzahl:

zweimalig

20

Georg-August-Universität Göttingen

Modul M.Kug.212: Mastermodul: Materialität des Wissens

English title: Master thesis: Material Humanities

30 C 2 SWS

Lernziele/Kompetenzen:

Das Modul dient dem selbständigen Erwerb, der Erweiterung und Anwendung von materialbasierten Analysen und Reflexions-Fähigkeiten durch Anfertigung einer umfangreicheren wissenschaftlichen Arbeit.

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage:

- die Konzeptualisierung der Masterarbeit und die gewählten Methoden zu begründen und ihre formalen Standards zu beherrschen;
- Fachliteratur in Hinblick auf Zielsetzung und Fragestellung der Masterarbeit zu recherchieren, auszuwerten und kritisch zu reflektieren;
- die Bedeutung der bearbeiteten Thematik für die Forschung wie für die berufliche Praxis zu erkennen;
- die gewählten Methoden adäquat einzusetzen;
- eigene Ausführungen in stringenter Gedankenführung und angemessener Sprache mündlich zu präsentieren sowie
- die Ergebnisse der eigenen Arbeit zusammenzufassen und in einem wissenschaftlichen Forum zu präsentieren, zu diskutieren und zu hinterfragen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 872 Stunden

2 SWS

30 C

Lehrveranstaltung: Forschungskolloquium zur Materialität des Wissens

Prüfung: Masterarbeit (max. 100 Seiten)

Prüfungsvorleistungen:

Regelmäßige Teilnahme am Kolloquium; Präsentation (ca. 35 Minuten)

Prüfungsanforderungen:

- Entwicklung einer eigenständigen, am Objekt entwickelten Fragestellung auf der Basis der erworbenen Kenntnisse und Kompetenzen
- Fähigkeit zur Recherche, Rezeption und Auswertung von Fachliteratur im Hinblick auf Zielsetzungen und Fragestellungen
- kritische Auseinandersetzung mit dem Forschungsstand der materiellen Kulturforschung und seine Aufarbeitung in komprimierter Form
- Sicherheit in der Konzeptualisierung und Begründung von methodischem Vorgehen und in der Anwendung material- oder objektbasierter Methoden
- Fähigkeit, Ergebnisse der Arbeit zusammenzufassen und im Forschungskontext zu diskutieren sowie Ausführungen in konsistenter Gedankenführung sowohl auf dem Niveau akademischer Debatten als auch in allgemeinverständlicher Form zu präsentieren
- Fähigkeit zur angemessenen kontextabhängigen Aufbereitung und Präsentation

Zugangsvoraussetzungen:

Module des Studiengangs im Umfang von wenigstens 70 C, darunter Module des Fachstudiums in Kunstgeschichte im Umfang von wenigstens 33 C;

Empfohlene Vorkenntnisse:

keine

Lateinkenntnisse mindestens im Umfang des Kleinen Latinums oder einer äquivalenten Prüfung	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Margarete Vöhringer
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: einmalig	Empfohlenes Fachsemester: ab 4
Maximale Studierendenzahl: 16	

Fakultät für Mathematik und Informatik:

Nach Beschluss des Fakultätsrats der Fakultät für Mathematik und Informatik vom 09.03.2022 hat das Präsidium der Georg-August-Universität Göttingen am 16.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Mathematical Data Science" genehmigt (§ 44 Abs. 1 Satz 2 NHG, §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II rückwirkend zum 01.04.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den Bachelor-Studiengang "Mathematical Data Science" (Amtliche Mitteilungen I Nr. 21/2018, S. 357, zuletzt geändert durch Amtliche Mitteilungen I Nr. 24/2022 S. 444)

Module

B.Inf.1101: Grundlagen der Informatik und Programmierung	5680
B.Inf.1102: Grundlagen der Praktischen Informatik	5682
B.Inf.1103: Algorithmen und Datenstrukturen	5684
B.Inf.1131: Data Science I: Algorithmen und Prozesse	5685
B.Inf.1201: Theoretische Informatik	5686
B.Inf.1202: Formale Systeme	5688
B.Inf.1206: Datenbanken	5689
B.Inf.1231: Infrastrukturen für Data Science	5690
B.Inf.1236: Machine Learning	5692
B.Inf.1237: Deep Learning	5693
B.Inf.1240: Visualization	5694
B.Inf.1241: Computational Optimal Transport	5695
B.Inf.1501: Algorithmen der Bioinformatik I	5696
B.Inf.1504: Maschinelles Lernen in der Bioinformatik	5697
B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik	5698
B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science	5699
B.Inf.1833: Fachpraktikum Data Science	5700
B.Inf.1834: Fachpraktikum Data Science I (klein)	5701
B.Inf.1835: Fachpraktikum Data Science II (klein)	5702
B.Inf.1841: Programmieren für Data Scientists I	5703
B.Mat.0011: Analysis I	5704
B.Mat.0012: Analytische Geometrie und Lineare Algebra I	5706
B.Mat.0021: Analysis II	5708
B.Mat.0022: Analytische Geometrie und Lineare Algebra II	5710
B.Mat.0720: Mathematische Anwendersysteme (Grundlagen)	5712
B.Mat.0721: Mathematisch orientiertes Programmieren	5714
B.Mat.0730: Praktikum Wissenschaftliches Rechnen	5716
B.Mat.0740: Stochastisches Praktikum	5718
B.Mat.0910: Linux effektiv nutzen	5720

Inhaltsverzeichnis

B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen	5722
B.Mat.0922: Mathematics information services and electronic publishing	5724
B.Mat.0931: Tutorentraining	5726
B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum	5728
B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt u Nutzung wissenschaftlicher Modellsammlungen	
B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen	5730
B.Mat.0940: Mathematik in der Welt, in der wir leben	5731
B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung	5733
B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld	5734
B.Mat.0952: Organisation einer mathematischen Veranstaltung	5735
B.Mat.0970: Betriebspraktikum	5736
B.Mat.1300: Numerische lineare Algebra	5737
B.Mat.1310: Methoden zur Numerischen Mathematik	5739
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie	5741
B.Mat.2110: Funktionalanalysis	5743
B.Mat.2220: Diskrete Mathematik	5745
B.Mat.2300: Numerische Analysis	5747
B.Mat.2310: Optimierung	5749
B.Mat.2410: Stochastik	5751
B.Mat.2420: Statistical Data Science	5753
B.Mat.3031: Wissenschaftliches Rechnen	5755
B.Mat.3043: Non-life insurance mathematics	5757
B.Mat.3044: Life insurance mathematics	5759
B.Mat.3131: Introduction to inverse problems	5761
B.Mat.3134: Introduction to optimisation	5763
B.Mat.3137: Introduction to variational analysis	5765
B.Mat.3138: Introduction to image and geometry processing	5767
B.Mat.3139: Introduction to scientific computing / applied mathematics	5769
B.Mat.3141: Introduction to applied and mathematical stochastics	5771
B.Mat.3145: Introduction to statistical modelling and inference	5773

B.Mat.3146: Introduction to multivariate statistics	5775
B.Mat.3147: Introduction to statistical foundations of data science	5777
B.Mat.3230: Proseminar "Numerische und Angewandte Mathematik"	5779
B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik"	5781
B.Mat.3240: Proseminar "Mathematische Stochastik"	5783
B.Mat.3244: Proseminar "Mathematische Statistik"	5784
B.Mat.3331: Advances in inverse problems	5785
B.Mat.3334: Advances in optimisation	5787
B.Mat.3337: Advances in variational analysis	5789
B.Mat.3338: Advances in image and geometry processing	5791
B.Mat.3339: Advances in scientific computing / applied mathematics	5793
B.Mat.3341: Advances in applied and mathematical stochastics	5795
B.Mat.3345: Advances in statistical modelling and inference	5797
B.Mat.3346: Advances in multivariate statistics	5799
B.Mat.3347: Advances in statistical foundations of data science	5801
B.Mat.3431: Seminar im Zyklus "Inverse Probleme"	5803
B.Mat.3434: Seminar im Zyklus "Optimierung"	5805
B.Mat.3437: Seminar im Zyklus "Variationelle Analysis"	5807
B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung"	5809
B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik"	5811
B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik"	5813
B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz"	5815
B.Mat.3446: Seminar im Zyklus "Multivariate Statistik"	5817
B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science"	5819
B.Sowi.20: Wissenschaft und Ethik	5821
B.WIWI-QMW.0001: Lineare Modelle	5822
B.WIWI-QMW.0008: Praktikum Statistische Modellierung	5824
B.WIWI-VWL.0007: Einführung in die Ökonometrie	5825
B.WIWI-WB.0001: Wissenschaftliches Programmieren	5827
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes)	5829
M.WIWI-QMW.0009: Introduction to Time Series Analysis	5831

Inhaltsverzeichnis

M.WIWI-VWL.0045: Wirtschafts- und Unternehmensethik	5833
SK.FS.EN-FW-C1-1: Business English I - C1.1	5835
SK.FS.EN-FW-C1-2: Business English II - C1.2	5837

Übersicht nach Modulgruppen

I. Grundlagen Mathematik, Informatik und Data Science

Es müssen Module im Umfang von insgesamt mindestens 85 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Orientierungsmodule

Es müssen folgende zwei Orientierungsmodule im Gesamtumfang von 18 C erfolgreich absolviert werden:

B.Mat.0012: Analytische Geometrie und Lineare Algebra I (9 C, 6 SWS) - Orientierungsmodul......5706

2. Grundlagenmodule Mathematik

Es müssen folgende zwei Pflichtmodule im Gesamtumfang von 18 C erfolgreich absolviert werden:

B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS)......5737

3. Grundlagenmodule Informatik

Es müssen folgende drei Pflichtmodule im Gesamtumfang von 25 C erfolgreich absolviert werden:

B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS) - Pflichtmodul........... 5680

B.Inf.1102: Grundlagen der Praktischen Informatik (10 C, 6 SWS) - Pflichtmodul.......5682

4. Grundlagenmodule Data Science

Es müssen folgende drei Pflichtmodule im Gesamtumfang von 24 C erfolgreich absolviert werden:

B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS) - Pflichtmodul......5741

B.Inf.1131: Data Science I: Algorithmen und Prozesse (6 C, 4 SWS) - Pflichtmodul.......5685

II. Schwerpunktbildung

Im Vertiefungsstudium sind von den in Nr. IV) "Vertiefungsstudium" genannten Wahlmodulen Module im Umfang von insgesamt mindestens 51 C erfolgreich absolvieren. In einem der dort genannten Fachgebiete ist die Abschlussarbeit anzufertigen, dieses ist zugleich der Studienschwerpunkt.

1. Studienschwerpunkt

In dem Studienschwerpunkt müssen Module im Umfang 30 C erfolgreich absolviert werden.

2. Wissensvertiefung

Von den verbleibenden 21 C können 9 C frei aus allen vier Fachgebieten gewählt werden.

3. Wissensverbreitung

Zur Wissensverbreiterung müssen 12 C in den drei von dem Studienschwerpunkt der Abschlussarbeit verschiedenen Fachgebieten erworben werden.

III. Professionalisierungsbereich

Im Professionalisierungsbereich sind Module im Umfang von insgesamt mindestens 32 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

1. Programmierkurs

Es muss einer der folgenden Programmierkurse im Umfang von mindestens 5C absolviert werden:

B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS).......5714

B.Inf.1841: Programmieren für Data Scientists I (5 C, 3 SWS)......5703

2. Praktikum Data Science

a.

Von den nachstehenden Modulen muss das Praktikum im Umfang von 9 C absolviert werden, das zu dem Studienschwerpunkt der Abschlussarbeit gehört.

B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)......5718

B.WIWI-QMW.0008: Praktikum Statistische Modellierung (9 C, 2 SWS)......5824

b.

Abweichend davon gelten im Studienschwerpunkt "Maschinelles Lernen" folgende Regelungen: Es muss wenigstens eines der folgenden Wahlpflichtmodule im Umfang von insgesamt mindestens 9 C erfolgreich absolviert werden:

B.Inf.1833: Fachpraktikum Data Science (9 C, 6 SWS).......5700

B.Inf.1834: Fachpraktikum Data Science I (klein) (5 C, 3 SWS)......5701

B.Inf.1835: Fachpraktikum Data Science II (klein) (5 C, 3 SWS)......5702

3. Fachbezogene Schlüsselkompetenzen

Es ist mindestens eines der in Nr. V) "Schlüsselkompetenzen" genannten Wahlmodule aus dem Angebot der Lehreinheit Mathematik zu absolvieren, dafür werden folgende Empfehlungen gegeben.

a.

Für den Übergang in den Master-Studiengang Mathematik (M.Sc.) wird folgendes Modul empfohlen:

B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C, 6 SWS)......5710

b.

Für den Übergang in den Master-Studiengang Angewandte Data Science (M.Sc) wird die Wahl des Studienschwerpunkts "Maschinelles Lernen" und darin die Module B.Inf.1236 und B.Inf.1237, sowie das folgende Modul empfohlen: B.Inf.1231: Infrastrukturen für Data Science.

C.

Weiterhin werden folgende Module empfohlen:

B.Mat.0922: Mathematics information services and electronic publishing (3 C, 2 SWS)......5724

B.Mat.0970: Betriebspraktikum (8 C)......5736

4. Fachübergreifende Schlüsselkompetenzen

Ferner können aus dem gesamten universitätsweiten Modulverzeichnis Schlüsselkompetenzen und aus dem Schlüsselkompetenzangebot der Fakultät für Mathematik und Informatik weitere Module frei gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen. Folgende Belegempfehlungen werden gegeben.

D. Int. 4004. Ethiopho, goodlock offliche und voolbliche Crumdle con für Date Coionee /2 C

a.

Die Belegung eines der folgenden Ethik-Module wird dringend empfohlen:

2 SWS)	5699
B.Sowi.20: Wissenschaft und Ethik (6 C, 2 SWS)	5821
M.WIWI-VWL.0045: Wirtschafts- und Unternehmensethik (6 C, 2 SWS)	5833

b.

Für den Ausbau der Kenntnisse der englischen Sprache werden folgende Module empfohlen:

SK.FS.EN-FW-C1-1: Business English I - C1.1 (6 C, 4 SWS)	5835

IV. Vertiefungsstudium

Das Studienangebot des Vertiefungsstudiums im Bachelor-Studiengang "Mathematical Data Science" setzt sich aus weiterführenden Modulen in den Fächern Mathematik, Informatik und Angewandte Statistik zusammen, die zum Teil in Zyklen organisiert sind. Nachfolgende Module können zugleich für die Zertifizierung des jeweiligen Schwerpunkts verwendet werden.

1. Studienschwerpunkt Optimierung und Bildverarbeitung

In diesem Studienschwerpunkt stehen folgende Wahlmodule zur Auswahl:	
B.Mat.0730: Praktikum Wissenschaftliches Rechnen (9 C, 4 SWS)	5716
B.Mat.1310: Methoden zur Numerischen Mathematik (4 C, 2 SWS)	5739
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	5743
B.Mat.2220: Diskrete Mathematik (9 C, 6 SWS)	5745
B.Mat.2300: Numerische Analysis (9 C, 6 SWS)	5747
B.Mat.2310: Optimierung (9 C, 6 SWS)	5749
B.Mat.3031: Wissenschaftliches Rechnen (6 C, 4 SWS)	5755
B.Mat.3131: Introduction to inverse problems (9 C, 6 SWS)	5761
B.Mat.3134: Introduction to optimisation (9 C, 6 SWS)	5763
B.Mat.3137: Introduction to variational analysis (9 C, 6 SWS)	5765
B.Mat.3138: Introduction to image and geometry processing (9 C, 6 SWS)	5767
B.Mat.3139: Introduction to scientific computing / applied mathematics (9 C, 6 SWS)	5769
B.Mat.3230: Proseminar "Numerische und Angewandte Mathematik" (3 C, 2 SWS)	5779
B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" (3 9 SWS)	
B.Mat.3331: Advances in inverse problems (9 C, 6 SWS)	5785
B.Mat.3334: Advances in optimisation (9 C, 6 SWS)	5787
B.Mat.3337: Advances in variational analysis (9 C, 6 SWS)	5789
B.Mat.3338: Advances in image and geometry processing (9 C, 6 SWS)	5791
B.Mat.3339: Advances in scientific computing / applied mathematics (9 C, 6 SWS)	5793
B.Mat.3431: Seminar im Zyklus "Inverse Probleme" (3 C, 2 SWS)	5803
B.Mat.3434: Seminar im Zyklus "Optimierung" (3 C, 2 SWS)	5805
B.Mat.3437: Seminar im Zyklus "Variationelle Analysis" (3 C, 2 SWS)	5807
B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung" (3 C, 2 SWS)	5809
B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" (3 C, 2 SWS)	5811
2. Studienschwerpunkt Mathematische Statistik	
In diesem Studienschwerpunkt stehen folgende Wahlmodule zur Auswahl:	
B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)	5718
B.Mat.2220: Diskrete Mathematik (9 C, 6 SWS)	5745

B.Mat.2410: Stochastik (9 C, 6 SWS)	5751
B.Mat.3043: Non-life insurance mathematics (6 C, 4 SWS)	5757
B.Mat.3044: Life insurance mathematics (6 C, 4 SWS)	5759
B.Mat.3141: Introduction to applied and mathematical stochastics (9 C, 6 SWS)	5771
B.Mat.3145: Introduction to statistical modelling and inference (9 C, 6 SWS)	5773
B.Mat.3146: Introduction to multivariate statistics (9 C, 6 SWS)	5775
B.Mat.3147: Introduction to statistical foundations of data science (9 C, 6 SWS)	5777
B.Mat.3240: Proseminar "Mathematische Stochastik" (3 C, 2 SWS)	5783
B.Mat.3244: Proseminar "Mathematische Statistik" (3 C, 2 SWS)	5784
B.Mat.3341: Advances in applied and mathematical stochastics (9 C, 6 SWS)	5795
B.Mat.3345: Advances in statistical modelling and inference (9 C, 6 SWS)	5797
B.Mat.3346: Advances in multivariate statistics (9 C, 6 SWS)	5799
B.Mat.3347: Advances in statistical foundations of data science (9 C, 6 SWS)	5801
B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik" (3 C, 2 SWS)	5813
B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz" (3 C, 2 SWS)	5815
B.Mat.3446: Seminar im Zyklus "Multivariate Statistik" (3 C, 2 SWS)	5817
B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science" (3 C, 2 SWS)	5819
3. Studienschwerpunkt Maschinelles Lernen	
In diesem Studienschwerpunkt stehen folgende Wahlmodule zur Auswahl:	
B.Inf.1833: Fachpraktikum Data Science (9 C, 6 SWS)	5700
B.Inf.1103: Algorithmen und Datenstrukturen (10 C, 6 SWS)	5684
B.Inf.1201: Theoretische Informatik (5 C, 3 SWS)	5686
B.Inf.1202: Formale Systeme (5 C, 3 SWS)	
	5688
B.Inf.1236: Machine Learning (6 C, 4 SWS)	
	5692
B.Inf.1236: Machine Learning (6 C, 4 SWS)	5692 5693
B.Inf.1236: Machine Learning (6 C, 4 SWS) B.Inf.1237: Deep Learning (6 C, 4 SWS)	5692 5693
B.Inf.1236: Machine Learning (6 C, 4 SWS) B.Inf.1237: Deep Learning (6 C, 4 SWS) B.Inf.1240: Visualization (5 C, 3 SWS)	5692 5693 5694 5695
B.Inf.1236: Machine Learning (6 C, 4 SWS) B.Inf.1237: Deep Learning (6 C, 4 SWS) B.Inf.1240: Visualization (5 C, 3 SWS) B.Inf.1241: Computational Optimal Transport (6 C, 4 SWS)	5692 5693 5694 5695

B.Mat.3147: Introduction to statistical foundations of data science (9 C, 6 SWS)	5777
B.Mat.3347: Advances in statistical foundations of data science (9 C, 6 SWS)	5801
B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science" (3 C, 2 SWS)	5819
4. Studienschwerpunkt Angewandte Statistik und Ökonometrie	
In diesem Studienschwerpunkt stehen folgende Wahlmodule zur Auswahl:	
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) (6 C, 4 SWS)	5829
M.WIWI-QMW.0009: Introduction to Time Series Analysis (6 C, 4 SWS)	5831
B.Mat.3147: Introduction to statistical foundations of data science (9 C, 6 SWS)	5777
B.WIWI-QMW.0001: Lineare Modelle (6 C, 4 SWS)	5822
B.WIWI-QMW.0008: Praktikum Statistische Modellierung (9 C, 2 SWS)	5824
B.WIWI-VWL.0007: Einführung in die Ökonometrie (6 C, 6 SWS)	5825
B.WIWI-WB.0001: Wissenschaftliches Programmieren (3 C, 1 SWS)	5827
V. Schlüsselkompetenzen	
Folgende von der Lehreinheit Mathematik oder der Lehreinheit Informatik angebotenen Schlüsselkompetenzmodule können in dem Professionalisierungsbereich eingebracht werden:	:
B.Inf.1231: Infrastrukturen für Data Science (6 C, 4 SWS)	5690
B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C, 6 SWS)	5710
B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	5712
B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)	5714
B.Mat.0730: Praktikum Wissenschaftliches Rechnen (9 C, 4 SWS)	5716
B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)	5718
B.Mat.0910: Linux effektiv nutzen (3 C, 2 SWS)	5720
B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen (3 C, 2 SWS)	5722
B.Mat.0922: Mathematics information services and electronic publishing (3 C, 2 SWS)	5724
B.Mat.0931: Tutorentraining (4 C, 2 SWS)	5726
B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum (3 C, 2 SWS)	5728
B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erh Nutzung wissenschaftlicher Modellsammlungen (4 C, 2 SWS)	
B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen (4 C, 2 SWS)	5730
B.Mat.0940: Mathematik in der Welt, in der wir leben (3 C, 2 SWS)	5731
B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung (3 C, 1 S	WS). 5733

B.Mat.0951:	Ehrenamtliches Engagement in einem mathematischen Umfeld (3 C, 1 SWS)	5734
B.Mat.0952:	Organisation einer mathematischen Veranstaltung (3 C, 2 SWS)	5735
B.Mat.0970:	Betriebspraktikum (8 C)	5736

VI. Bachelorarbeit

Durch die erfolgreiche Anfertigung der Bachelorarbeit werden 12 C erworben.

VII. Methods of examination and glossary

Methods of examination

As far as in this directory of modules a module description is published in the English language the following mapping applies:

Soweit in diesem Modulverzeichnis Modulbeschreibungen in englischer Sprache veröffentlicht werden, allt für die verwendeten Prüfungsformen nachfolgende Zuordnung:

- Oral examination = mündliche Prüfung [§ 15 Abs. 8 APO]
- Written examination = Klausur [§ 15 Abs. 9 APO]
- Term paper = Hausarbeit [§ 15 Abs. 11 APO]
- Presentation = Präsentation [§ 15 Abs. 12 APO]
- Presentation and written report = Präsentation mit schriftlicher Ausarbeitung [§ 15 Abs. 12 APO]

Glossary

APO = Allgemeinen Prüfungsordnung für Bachelor- und Master-Studiengänge sowie sonstige Studienangebote an der Universität Göttingen

PStO = Prüfungs- und Studienordnung für den Bachelor/Master-Studiengang "Mathematik"

WLH = Weekly lecture hours = SWS

Programme coordinator = Studiengangsbeauftrage/r

Georg-August-Universität Göttingen

Modul B.Inf.1101: Grundlagen der Informatik und Programmierung

English title: Introduction to Computer Science and Programming

10 C 6 SWS

Lernziele/Kompetenzen:

Studierende

- kennen grundlegende Begriffe, Prinzipien und Herangehensweisen der Informatik, kennen einige Programmierparadigmen und Grundzüge der Objektorientierung.
- erlangen elementare Grundkenntnisse der Aussagenlogik, verstehen die Bedeutung für Programmsteuerung und Informationsdarstellung und können sie in einfachen Situationen anwenden.
- verstehen wesentliche Funktionsprinzipien von Computern und der Informationsdarstellung und deren Konsequenzen für die Programmierung.
- erlernen die Grundlagen einer Programmiersprache und k\u00f6nnen einfache Algorithmen in dieser Sprache codieren.
- kennen einfache Datenstrukturen und ihre Eignung in typischen Anwendungssituationen, können diese programmtechnisch implementieren.
- analysieren die Korrektheit einfacher Algorithmen und bewerten einfache Algorithmen und Probleme nach ihrem Ressourcenbedarf.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

216 Stunden

6 SWS

10 C

Lehrveranstaltung: Informatik I (Vorlesung, Übung)

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen:

Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche Teilnahme an den Übungen.

Prüfungsanforderungen:

In der Prüfung wird das Verständnis der vermittelten Grundbegriffe sowie die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Kenntnis von Grundbegriffen nachweisen durch Umschreibung in eigenen Worten.
- Standards der Informationsdarstellung in konkreter Situation umsetzen.
- Ausdrücke auswerten oder Bedingungen als logische Ausdrücke formulieren usw.
- Programmablauf auf gegebenen Daten geeignet darstellen.
- Programmcode auch in nicht offensichtlichen Situationen verstehen.
- Fehler im Programmcode erkennen/korrigieren/klassifizieren.
- Datenstrukturen für einfache Anwendungssituationen auswählen bzw. geeignet in einem Kontext verwenden.
- Algorithmen für einfache Probleme auswählen und beschreiben (ggf. nach Hinweisen) und/oder einen vorgegebenen Algorithmus (ggf. fragmentarisch) programmieren bzw. ergänzen.
- einfache Algorithmen/Programme nach Ressourcenbedarf analysieren.
- einfachsten Programmcode auf Korrektheit analysieren.
- einfache Anwendungssituation geeignet durch Modul- oder Klassenschnittstellen modellieren.

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

keine	keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab bis
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen Modul B.Inf.1102: Grundlagen der Praktischen Informatik English title: Introduction to Computer Systems

Lernziele/Kompetenzen:

Die Studierenden

- beherrschen die Grundlagen einer deklarativen Programmiersprache und können Programme erstellen, testen und analysieren.
- kennen die Bausteine und den Aufbau von Schaltnetzen und Schaltwerken, sie können Schaltznetze und Schaltwerke konstruieren und analysieren.
- kennen die Komponenten und Konzepte der Von-Neumann-Architektur und den Aufbau einer konkreten Mikroprozessor-Architektur (z.B. MIPS-32), sie beherrschen die zugehörige Maschinensprache und können Programme erstellen und analysieren.
- kennen Aufgaben und Struktur eines Betriebssystems, die Verfahren zur Verwaltung, Scheduling und Synchronisation von Prozessen und zur Speicherverwaltung, sie können diese Verfahren jeweils anwenden, analysieren und vergleichen.
- kennen Grundlagen und verschiedene Beschreibungen (z.B. Automaten und Grammatiken) von formalen Sprachen, sie können die Beschreibungen konstruieren, analysieren und vergleichen.
- kennen die Syntax und Semantik von Aussagen- und Prädikatenlogik, sie können Formeln bilden und auswerten, sowie das Resolutionskalkül anwenden.
- kennen die Schichtenarchitektur von Computernetzwerken, sie kennen Dienste und Protokolle und können diese analysieren und vergleichen.
- kennen symmetrische und asymmetrische Verschlüsselungsverfahren und können diese anwenden, analysieren und vergleichen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

216 Stunden

Lehrveranstaltung: Informatik II (Vorlesung, Übung)	6 SWS
Prüfung: Klausur (90 Minuten)	10 C
Prüfungsvorleistungen:	
Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche	
Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Deklarative Programmierung, Schaltnetze und Schaltwerke, Maschinensprache,	
Betriebssysteme, Automaten und Formale Sprachen, Prädikatenlogik, Telematik,	
Kryptographie	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen		
Georg-August-Universität Göttingen		6 SWS
Modul B.Inf.1103: Algorithmen und Datenstrukturen		
English title: Algorithms and Data Structures		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Erwerb grundlegender Fähigkeiten im Umgang mit de	n Konzepten der theoretischen	Präsenzzeit:
Informatik, insbesondere mit dem Verhältnis von Dete	rminismus zu Nichtdeterminismus;	84 Stunden
Analyse und Entwurfsmethoden für effiziente Algorithr	men zu wichtigen	Selbststudium:
Problemstellungen.		216 Stunden
Lehrveranstaltung: Informatik III (Vorlesung, Übung)		6 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)		10 C
Prüfungsvorleistungen:		
Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche		
Teilnahme an den Übungen.		
Prüfungsanforderungen:		
Effiziente Algorithmen für grundlegende Probleme (z.		
Graphalgorithmen), Rekursive Algorithmen, Greedy-A		
Dynamische Programmierung, NP-Vollständigkeit		
Zugangsvoraussetzungen:	ugangsvoraussetzungen: Empfohlene Vorkenntnisse:	
keine	B.Inf.1101	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Stephan Waack	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		
200		

Georg-August-Universität Göttingen Modul B.Inf.1131: Data Science I: Algorithmen und Prozesse English title: Data Science I: Algorithms and Processes

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden • kennen die Phasen von Data Science Projekten und können diese definieren. Selbststudium: • kennen die Rollen die typischerweise in Data Science Projekten involviert sind. 124 Stunden • wissen was Regressionsprobleme sind und kennen verschiedene Modelle und Algorithmen zum Lösen von Regressionsproblemen. • wissen was Klassifikationsprobleme sind und kennen verschiedene Modelle und Algorithmen zur Klassifikationsproblemen. · wissen was Clustern ist und kennen verschiedene Modelle und Algorithmen zum Clustern von Daten. · wissen was Assoziationsregeln sind und kennen mindestens einen Algorithmus um Assoziationsregeln zu bestimmen. • kennen verschiedene Verfahren und Metriken zur Schätzung der Performanz von Modellen.

Lehrveranstaltung: Data Science I: Algorithmen und Prozesse (Vorlesung, Übung)	4 SWS
Prüfung: Klausur oder mündliche Prüfung Klausur (90 Min.) oder mündliche	6 C
Prüfung (ca. 20 Min.)	
Prüfungsanforderungen:	
Definition des Prozesses von Data Science Projekten, Definition der Rollen in	
Data Science Projekten, Definition und Kenntnis von Klassifikationsalgorithmen,	
Definition und Kenntnis von Regressionsalgorithmen, Definition und Kenntnis von	
Assoziationsregeln, Definition und Kenntnis von Clustering, Kenntnis von Verfahren und	
Metriken zu Performanzschätzung von Modellen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1102
Sprache:	Modulverantwortliche[r]:
Deutsch	N.N.
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	3
Maximale Studierendenzahl:	
50	

poor granguet erm er ertat e ettingen	5 C 3 SWS
Modul B.Inf.1201: Theoretische Informatik	3 3003
English title: Theoretical Computer Science	

Lernziele/Kompetenzen: Studierende • kennen grundlegende Begriffe und Methoden der theoretischen Informatik im Bereich formale Sprachen, Automaten und Berechenbarkeit. • verstehen Zusammenhänge zwischen diesen Gebieten und sowie Querbezüge zur praktischen Informatik. • wenden die klassischen Sätze, Aussagen und Methoden der theoretischen Informatik in typischen Beispielen an. • klassifizieren formale Sprachen nach Chomsky-Typen. • bewerten Probleme hinsichtlich ihrer (Semi-)Entscheidbarkeit.

Lehrveranstaltung: Theoretische Informatik (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe	
während der Übung, kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
In der Prüfung wird neben dem theoretischen Verständnis zentraler Begriffe der	
theoretischen Informatik die aktive Beherrschung der vermittelten Inhalte und Techniken	
nachgewiesen, z.B.	
durch Grammatik oder Akzeptormodell gegebene formale Sprache der	
nachweisbar richtigen Hierarchiestufe zuordnen, für gegebenes Wortproblem	
einen möglichst effizienten Entscheidungsalgorithmus konstruieren, dessen	
Laufzeitverhalten analysieren.	
aus Grammatik entsprechenden Akzeptor konstruieren (oder umgekehrt),	
Grammatik in Normalform überführen, reguläre Ausdrücke in endlichen Automaten	
überführen, Typ3-Grammatik in regulären Ausdruck usw.	
Algorithmus in vorgegebener Formalisierung darstellen, einfache	
Nichtentscheidbarkeitsbeweise durch Reduktion führen oder	
Abschlusseigenschaften von Sprachklassen herleiten, Semi-Entscheidbarkeit	
konkreter Probleme nachweisen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Grundlagen der Informatik, der Programmierung und der diskreten Mathematik.
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	
Maximale Studierendenzahl:	
100	

Georg-August-Universität Göttingen Modul B.Inf.1202: Formale Systeme English title: Formal Systems 5 C 3 SWS

Lernziele/Kompetenzen:

Die Studierenden

- können Sachverhalte in geeigneten logischen Systemen formalisieren und mit diesen Formalisierungen umgehen.
- verstehen grundlegende Begriffe und Methoden der mathematischen Logik.
- können die Ausdrucksstärke und Grenzen logischer Systeme beurteilen.

Syntaxdefinitionen durch Regelsysteme und ihre Anwendung.
Transformation und Analyseverfahren für Regelsysteme.
Einfache Modelle der Nebenläufigkeit (z.B. Petrinetze).

 beherrschen elementare Darstellungs- und Modellierungstechniken der Informatik, kennen die zugehörigen fundamentalen Algorithmen und können diese anwenden und analysieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

Lehrveranstaltung: Formale Systeme (Vorlesung, Übung)	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Aktive Teilnahme an den Übungen, belegt durch Nachweis von 50% der in den	
Übungsaufgaben eines Semesters erreichbaren Punkte.	
Prüfungsanforderungen:	
Strukturen, Syntax und Semantik von Aussagen- und Prädikatenlogik.	
Einführung in weitere Logiken (z.B. Logiken höherer Stufe).	
Entscheidbarkeit, Unentscheidbarkeit und Komplexität von logischen	
Spezifikationen.	
Grundlagen zu algebraischen Strukturen und partiell geordneten Mengen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Winfried Kurth
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
100	

Georg-August-Universität Göttingen Modul B.Inf.1206: Datenbanken English title: Databases

Lernziele/Kompetenzen:

Die Studierenden kennen die theoretischen Grundlagen sowie technischen Konzepte von Datenbanksystemen. Mit den erworbenen Kenntnissen in konzeptueller Modellierung und praktischen Grundkenntnissen in der am weitesten verbreiteten Anfragesprache "SQL" können sie einfache Datenbankprojekte durchführen. Sie wissen, welche grundlegende Funktionalität ihnen ein Datenbanksystem dabei bietet und können diese nutzen. Sie können sich ggf. auf der Basis dieser Kenntnisse mit Hilfe der üblichen Dokumentation in diesem Bereich selbständig weitergehend einarbeiten. Die Studierenden verstehen den Nutzen eines fundierten mathematisch-theoretischen Hintergrundes auch im Bereich praktischer Informatik.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

4 SWS

Lehrveranstaltung: Datenbanken (Vorlesung, Übung)

Inhalte:

Konzeptuelle Modellierung (ER-Modell), relationales Modell, relationale Algebra (als theoretische Grundlage der Anfragekonzepte), SQL-Anfragen, -Updates und Schemaerzeugung, Transaktionen, Normalisierungstheorie.

Literatur: R. Elmasri, S.B. Navathe: Grundlagen von Datenbanksystemen - Ausgabe Grundstudium (dt. Übers.), Pearson Studium (nach Praxisrelevanz ausgewählte Themen).

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)

5 C

Prüfungsanforderungen:

Nachweis über aufgebaute weiterführende Kompetenzen in den folgenden Bereichen: theoretische Grundlagen sowie technische Konzepte von Datenbanksystemen, konzeptuelle Modellierung und praktische Grundkenntnisse in der am weitesten verbreiteten Anfragesprache "SQL" in ihrer Anwendung auf einfache Datenbankprojekte, Nutzung grundlegender Funktionalitäten von Datenbanksystem, mathematischtheoretischer Hintergründe in der praktischen Informatik. Fähigkeit, die vorstehenden Kompetenzen weiter zu vertiefen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Module B.Inf.1231: Infrastructures of Data Science

Learning outcome, core skills:

Upon completion the course, students

- understand the basic functions of data science infrastructures and their significance.
- · understand basic data types and their specifics.
- understand the most important technical infrastructures for storing and processing data locally and in the cloud as well as their advantages and disadvantages in relation to data science applications.
- can apply the concept of the data lake to basic data science problems.
- are able to apply the different steps of data pre-processing to selected data sets.
- can identify the characteristics of time series and graph data and are able to recall the functions of DBMSs designed for their processing.
- can present the basic tasks of data analysis platforms and can describe them using examples.
- can apply methods and tools for the presentation and visualisation of data.
- can model basic data science workflows and are able to transfer their knowledge to basic data science projects.

Workload:

Attendance time: 56 h

Self-study time:

124 h

Course: Infrastructures of Data Science (Lecture, Exercise)

Contents:

- · Data types and their characteristics
- · Common functions of data science infrastructures
- · Storage, compute, and cloud infrastructures for data science
- · Concept of a data lake
- Data pre-processing methods and selected tools
- Time series and graph data, the respective DBMS, and query languages
- · Data analytics platforms
- · Data presentation and visualization
- · Data science workflows and selected infrastructure components

Examination: In-class, written exam (90 min) or oral exam (approx. 30 min.)

Students complete 50% of the homework exercises.

Examination requirements:

Examination prerequisites:

Through the examination students demonstrate that they are able to describe basic functions of (cloud-based) data science infrastructures as well as to specify and identify basic data types. Students can also prove their understanding of data lakes and can apply their knowledge of MapReduce and Hadoop in that particular context. They can analyse basic data pre-processing problems and sketch common solutions. Student can show that they understand time series and graph data as well as the corresponding DBMS and that they can present common tasks of data analysis platforms. Through the examination, students also demonstrate their ability to select appropriate methods for visualising data and show that they are able to create basic data science workflows.

4 WLH

6 C

Admission requirements: none	Recommended previous knowledge: Python and basic database knowledge (recommended, not mandatory)
Language: English	Person responsible for module: HonProf. Dr. Philipp Wieder
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 3 - 6; Master: 1 - 2
Maximum number of students: 50	

Georg-August-Universität Göttingen	6 C 4 WLH
Module B.Inf.1236: Machine Learning	4 WLH

Module B.Int.1236: Machine Learning	
Learning outcome, core skills: Students • learn concepts and techniques of machine learning and understand their advantages and disadvantages compared with alternative approaches • learn techniques of supervised learning for classification and regression • learn techniques of unsupervised learning for density estimation, dimensionality reduction and clustering • implement machine learning algorithms like linear regression, logistic regression, kernel methods, tree-based methods, neural networks, principal component analysis, k-means and Gaussian mixture models • solve practical data science problems using machine learning methods	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Machine Learning (Lecture) Bishop: Pattern recognition and machine learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1236.Ex: At least 50% of homework exercises solved and N-1 attempts presented to tutors Examination requirements: Knowledge of the working principles, advantages and disadvantages of the machine learning methods covered in the lecture	6 C
Course: Machine Learning - Exercise (Exercise) Contents: Students present their solutions of the homework exercises to tutors and discuss them with their tutors.	2 WLH

Admission requirements: none	Recommended previous knowledge: Knowledge of basic linear algebra and probability English language proficiency at level B2 (CEFR)
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4
Maximum number of students: 100	

Georg-August-Universität Göttingen Module B.Inf.1237: Deep Learning	6 C 4 WLH
Learning outcome, core skills:	Workload:
Students	Attendance time:

learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches
 learn to solve practical data science problems using deep learning
 implement deep learning techniques like multi-layer perceptrons, convolutional

• learn techniques for optimization and regularization of deep neural networks

neural networks and other modern deep learning architectures

• learn applications of deep neural networks for computer vision tasks such as segmentation and object detection

Course: Deep Learning for Computer Vision (Lecture)

Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org

Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml

Examination: Written examination (90 minutes)

Examination prerequisites:

B.Inf.1237.Ex: At least 50% of homework exercises solved and N-1 attempts presented to tutors

Examination requirements:

Knowledge of basic deep learning techniques, their advantages and disadvantages and approaches to optimization and regularization. Ability to implement these techniques.

Course: Deep Learning for Computer Vision - Exercise (Exercise)

Contents:

Students present their solutions of the homework exercises to tutors and discuss them with their tutors.

Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent
Language: English	Person responsible for module: Prof. Dr. Constantin Pape Prof. Dr. Alexander Ecker
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 5
Maximum number of students: 100	

Examination requirements:

Georg-August-Universität Göttingen	5 C
Module B.Inf.1240: Visualization	3 WLH

Learning outcome, core skills: Workload: Knowledge of Attendance time: 42 h · the potentials and limitations of data visualization Self-study time: • the fundamentals of visual perception and cognition and their implications for data 108 h visualization. Students can apply these to the design of visualizations and detect manipulative design choices • a broad variety of techniques for visual representation of data, including abstract and high-dimensional data. Students can select appropriate methods on new problems • integration of visualization into the data analysis process, algorithmic generation and interactive methods 3 WLH Course: Visualization (Lecture, Exercise) Examination: Practical project (2-3 weeks) with presentation and questions during | 5 C oral exam in groups (approx. 20 minutes per examinee). **Examination prerequisites:** At least 50% of homework exercises solved.

representation and how to use them.		
Admission requirements: none	Recommended previous knowledge: Foundations of linear algebra and analysis (e.g. B.Mat.0801 and B.Mat.0802) and programming skill (e.g. B.Inf.1842).	
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer	
Course frequency: once a year	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: 3 - 6	
Maximum number of students:		

Knowledge of potentials and limitations of data visualization, fundamentals of visual perception and their implications for good design choices, techniques for visual

Goorg August Chitorollar Collingon	6 C 4 WLH
Module B.Inf.1241: Computational Optimal Transport	4 WLH

Learning outcome, core skills:	Workload:
Knowledge of	Attendance time:
 the fundamental notions of optimal transport, and its strengths and limitations as a data analysis tool the discrete Kantorovich formulation, its convex duality, and Wasserstein distances classical numerical algorithms, entropic regularization, and their scopes of applicability examples for data analysis applications. Students can transfer these to new potential applications 	56 h Self-study time: 124 h
ροτοπιίαι αργιισατίστο	
Course: Computational Optimal Transport (Lecture, Exercise)	4 WLH
Examination: Written exam (90 minutes) or oral exam (approx. 20 minutes)	6 C
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of Kantorovich duality, Wasserstein distances, standard algorithms and	

Admission requirements: none	Recommended previous knowledge: Foundations of linear algebra and analysis (e.g. B.Mat.0801 and B.Mat.0802) and programming skills (e.g. B.Inf.1842).
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: 50	

implications for data analysis applications.

20

Georg-August-Universität Göttingen Modul B.Inf.1501: Algorithmen der Bioinformatik I English title: Algorithms in Bioinformatics I		5 C 4 SWS
Lernziele/Kompetenzen: Die Studierenden sollen die Spezifik der Modellbildung und der Algorithmik in der Bioinformatik kennen- und verstehen lernen. Ausgehend von konkreten biologischen Fragestellungen sollen Entwurf und Anwendung geeigneter Algorithmen verstanden werden.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Algorithmen der Bioinformatik I (Vorlesung, Übung)		4 SWS
Prüfung: Mündlich (ca. 20 Minuten) Prüfungsanforderungen: Die Studierenden sollen die Spezifik der Modellbildung und der Algorithmik in der Bioinformatik kennen und verstehen. Ausgehend von konkreten biologischen Fragestellungen sollen die Studierenden die Fähigkeit haben, geeignete Algorithmen zu entwerfen und anzuwenden.		5 C
Zugangsvoraussetzungen: B.Bio-NF.117: Genomanalyse	Empfohlene Vorkenntnisse: Biologische und mathematische Grundkenntnisse	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		5 C
Modul B.Inf.1504: Maschinelles Lernen in der Bioinformatik English title: Maschine Learning in Bioinformatics		4 SWS
Lernziele/Kompetenzen: Es sollen grundlegende Konzepte das maschinellen Lernens anschaulich vermittelt werden. Ziel ist das Verständnis der statistischen Voraussetzungen und der algorithmischen Umsetzung von maschinellen Lernverfahren. Dabei soll sowohl eine formale Beschreibung als auch die Implementation von einzelnen Methoden praktisch nachvollzogen werden können. Die Anwendungsmöglichkeiten der Methoden sollen vornehmlich im Kontext von mehrdimensionalen biomedizinschen Daten diskutiert und erprobt werden.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Maschinelles Lernen (Vorlesung, Übung)		4 SWS
Prüfung: Mündlich (ca. 20 Minuten)		5 C
Prüfungsanforderungen: Die Studierenden können Konzepte des Maschinellen Lernens selbständig verstehen und anwenden.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: Biologische und mathematische Grundkenntnisse	
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Peter Meinicke	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5	

Maximale Studierendenzahl:

15

Coord Assessed University Officers		5 C
Georg-August-Universität Göttingen		3 SWS
Modul B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik		
English title: Advanced Theoretical Computer Science		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Dieses Modul baut die Kompetenzen aus dem Modul	B.Inf.1201 aus. Es geht um	Präsenzzeit:
den Erwerb fortgeschrittener Kompetenz im Umgang	mit theoretischen Konzepten	42 Stunden
der Informatik und den damit verbundenen mathemati	schen Techniken und	Selbststudium:
Modellierungstechniken.		108 Stunden
Lehrveranstaltung: Vorlesungen zur Codierungsth	neorie. Informationstheorie oder	
Komplexitätstheorie (Vorlesung, Übung)		
Inhalte:		
Vertiefung in einem der folgenden Gebiete: Komplexit	ätstheorie (Erkundung der	
Grenzen effizienter Algorithmen), Datenstrukturen für boolesche Funktionen,		
Kryptographie, Informationstheorie, Codierungstheorie, Signalverarbeitung.		
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)		5 C
Training. Madadi (30 Milluteri) oder mundhene Fruiding (ca. 20 Mill.)		
Prüfungsanforderungen:		
Nachweis über den Erwerb vertiefter weiterführender Kompetenzen aus dem		
Kompetenzbereich der Module B.Inf.1201 Theoretisch	ne Informatik oder B.Inf.1202	
Formale Systeme.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Inf.1201, B.Inf.1202	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Stephan Waack	
	(Prof. Dr. Carsten Damm)	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		
30		

Georg-August-Universität Göttingen Modul B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science English title: Ethical, Social, and Legal Foundations of Data Science

Lernziele/Kompetenzen: Nach erfolgreichen Abschluss des Modules können Studenten: • die grundlegenden Konzepte der Ethik in Data Science sowie die rechtliche Grundlage in Deutschland und Europa definieren, • Prozesse und Werkzeuge für die Analyse von ethischen und rechtliche Fragestellungen benennen und anwenden, • mögliche Konsequenzen der Sammlung, Verarbeitung, Speicherung, Verwaltung und Freigabe von Daten erkennen und die resultierenden Risiken ableiten, • geeignete technische Methoden und Lösungen benennen und auswählen, um die Risiken zu minimieren.

Lehrveranstaltung: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science (Vorlesung)	2 SWS
Prüfung: Klausur oder mündliche Prüfung Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	3 C
Prüfungsanforderungen:	
Angewandte Ethik, ethische und rechtliche Rahmenwerke, Datenschutz und Privatheit, Anonymität, Dateneigentümerschaft, Nutzereinverständnis, Datensammlung, Datenverarbeitung, Datenspeicherung, Datenverwaltung, Datenfreigabe, Überwachung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Delphine Reinhardt
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen Modul B.Inf.1833: Fachpraktikum Data Science English title: Training Data Science	9 C 6 SWS
Lernziele/Kompetenzen:	Arbeitsaufwand:
Das Praktikum ist in einem speziellen Fachgebiet der Data Science (siehe Wahlmodule	Präsenzzeit:
"Data Science") angesiedelt. Die Lernziele und Kompetenzen ergeben sich aus den dort	84 Stunden
dargestellten.	Selbststudium:
	186 Stunden

Lehrveranstaltung: Fachpraktikum Data Science (Praktikum)	6 SWS
Prüfung: Vortrag (ca. 15 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten), unbenotet	9 C
Prüfungsvorleistungen:	
Bearbeitung von praktischen Aufgaben.	
Prüfungsanforderungen:	
Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Die in den	
Modulen B.Inf.1131, B.WIWI-QMW.0011, B.Inf.1841 und B.Inf.1842 erworbenen	
Kompetenzen und Fähigkeiten werden fachspezifisch vertieft.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1131, B.Inf.1841, B.Inf.1842, B.WIWI- QMW.0011
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Alexander Ecker
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Inf.1834: Fachpraktikum Data Sc English title: Training Data Science I	ience I (klein)	5 C 3 SWS
Lernziele/Kompetenzen: Das Praktikum ist im Professionalisierungsbereich Da II & III) angesiedelt. Die Lernziele und Kompetenzen e dargestellten.	· ·	Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Fachpraktikum Data Science I	(klein) (Praktikum)	3 SWS
Prüfung: Mündlich (ca. 15 Minuten), unbenotet Prüfungsvorleistungen: Erfolgreiche Bearbeitung von praktischen Aufgaben. Prüfungsanforderungen: Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Die in einem Module aus dem Professionalisierungsbereich Data Science erworbenen Kompetenzen und Fähigkeiten werden, mit den als Schlüsselkompetenzen erworbenen Programmierkenntnissen, fachspezifisch vertieft.		5 C
Zugangsvoraussetzungen: Die zugehörige Fachvorlesung; imperative und objektorientierte Programmierung; Programmierwerkzeuge; Verwendung von Application Programming Interfaces; Dokumentation von Softwaresystemen; Softwaretests; Prinzipien und Methoden der projektbasierten Teamarbeit.	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Fabian Sinz	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 30		
Bemerkungen:	1	

Das in Modul B.Inf.1834 eingebrachte Praktikum darf nicht dasselbe sein wie in Modul B.Inf.1835.

Georg-August-Universität Göttingen		5 C
Modul B.Inf.1835: Fachpraktikum Data Science II (klein) English title: Training Data Science II		3 SWS
Lernziele/Kompetenzen: Das Praktikum ist im Professionalisierungsbereich Data Science (siehe 2a und II & III) angesiedelt. Die Lernziele und Kompetenzen ergeben sich aus den dort dargestellten.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Fachpraktikum Data Science I	l (klein) (Praktikum)	3 SWS
Prüfung: Mündlich (ca. 15 Minuten), unbenotet Prüfungsvorleistungen: Erfolgreiche Bearbeitung von praktischen Aufgaben. Prüfungsanforderungen: Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Die in einem Module aus dem Professionalisierungsbereich Data Science erworbenen Kompetenzen und Fähigkeiten werden, mit den als Schlüsselkompetenzen erworbenen Programmierkenntnissen, fachspezifisch vertieft.		5 C
Zugangsvoraussetzungen: Die zugehörige Fachvorlesung; imperative und objektorientierte Programmierung; Programmierwerkzeuge; Verwendung von Application Programming Interfaces; Dokumentation von Softwaresystemen; Softwaretests; Prinzipien und Methoden der projektbasierten Teamarbeit.	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Fabian Sinz	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Das in Modul B.Inf.1835 eingebrachte Praktikum darf nicht dasselbe sein wie in Modul B.Inf.1834.

Georg-August-Universität Göttingen Modul B.Inf.1841: Programmieren für Data Scientists I English title: Programming for Data Scientists I

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen eine aktuelle Programmiersprache, sie Präsenzzeit: 42 Stunden • beherrschen den Einsatz von Editor, Compiler und weiteren Selbststudium: Programmierwerkzeugen (z.B. Build-Management-Tools). 108 Stunden • kennen grundlegende Techniken des Programmentwurfs und können diese anwenden. • kennen Standarddatentypen (z.B. für ganze Zahlen und Zeichen) und spezielle Datentypen (z.B. Felder und Strukturen). • kennen die Operatoren der Sprache und können damit gültige Ausdrücke bilden und verwenden. • kennen die Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) und können diese anwenden. • kennen die Möglichkeiten zur Strukturierung von Programmen (z.B. Funktionen und Module) und können diese einsetzen. kennen die Techniken zur Speicherverwaltung und können diese verwenden. • kennen die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und Gleitkommarithmetik) und können diese beim Programmentwurf berücksichtigen.

Lehrveranstaltung: Grundlagen der C-Programmierung (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten), unbenotet	5 C
Prüfungsanforderungen:	
Standarddatentypen, Konstanten, Variablen, Operatoren, Ausdrücke, Anweisungen,	
Kontrollstrukturen zur Steuerung des Programmablaufs, Strings, Felder, Strukturen,	
Zeiger, Funktionen, Speicherverwaltung, Rechnerarithmetik, Ein-/Ausgabe, Module,	
Standardbibliothek, Präprozessor, Compiler, Linker	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

• kennen die Programmbibliotheken und können diese einsetzen.

Georg-August-Universität Göttingen Modul B.Mat.0011: Analysis I English title: Analysis I

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit analytischem mathematischem Grundwissen vertraut. Sie

- wenden ihr Wissen über Mengen und Logik in verschiedenen Beweistechniken an;
- gehen sicher mit Ungleichungen reeller Zahlen sowie mit Folgen und Reihen reeller und komplexer Zahlen um;
- untersuchen reelle und komplexe Funktionen in einer Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von reellen und komplexen Funktionen in einer Veränderlichen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, eindimensionalen Analysis;
- analysieren klassische Funktionen und ihre Eigenschaften mit Hilfe von funktionalem Denken;
- erfassen grundlegende Eigenschaften von Zahlenfolgen und Funktionen;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Differenzial- und Integralrechnung I	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.0011.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen	
Lehrveranstaltung: Differenzial- und Integralrechnung I - Übung	2 SWS
Lehrveranstaltung: Differenzial- und Integralrechnung I - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfungsanforderungen:	
Grundkenntnisse der Analysis, Verständnis des Grenzwertbegriffs, Beherrschen von	
Beweistechniken	

keine

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: gemäß Bemerkung	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematik
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0012 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Wiederholungsregelungen

- Nicht bestandene Prüfungen zu diesem Modul können dreimal wiederholt werden.
- Ein vor Beginn der Vorlesungszeit des ersten Fachsemesters, z.B. im Rahmen des mathematischen Sommerstudiums, absolvierter Prüfungsversuch im Modul B.Mat.0011 "Analysis I" gilt im Falle des Nichtbestehens als nicht unternommen (Freiversuch); eine im Freiversuch bestandene Modulprüfung kann einmal zur Notenverbesserung wiederholt werden; durch die Wiederholung kann keine Verschlechterung der Note eintreten. Eine Wiederholung von bestandenen Prüfungen zum Zwecke der Notenverbesserung ist im Übrigen nicht möglich; die Bestimmung des §16 a Abs. 3 Satz 2 APO bleibt unberührt.

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.0012: Analytische Geometrie und Lineare Algebra I English title: Analytic geometry and linear algebra I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Selbststudium: Grundwissen vertraut. Sie 186 Stunden · definieren Vektorräume und lineare Abbildungen; · beschreiben lineare Abbildungen durch Matrizen; • lösen lineare Gleichungssysteme und Eigenwertprobleme und berechnen Determinanten: • erkennen Vektorräume mit geometrischer Struktur und ihre strukturerhaltenden Homomorphismen, insbesondere im Fall euklidischer Vektorräume. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in den Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie • formulieren mathematische Sachverhalte aus dem Bereich der linearen Algebra in schriftlicher und mündlicher Form korrekt; • lösen Probleme anhand von Fragestellungen der linearen Algebra; • erfassen das Konzept der Linearität bei unterschiedlichen mathematischen Objekten; • nutzen lineare Strukturen, insbesondere den Isomorphiebegriff, für die Formulierung mathematischer Beziehungen; · erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume: sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.0012.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen	
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Übung	2 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfungsanforderungen:	
Crumdle proteines der line gran Algebra, inchesenders über Lächerkeit und Läsungen	
Grundkenntnisse der linearen Algebra, insbesondere über Lösbarkeit und Lösungen	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematk
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0011 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.0021: Analysis II English title: Analysis II

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weitreichendem analytischen mathematischen Grundwissen vertraut. Sie

- beschreiben topologische Grundbegriffe mathematisch korrekt;
- · untersuchen Funktionen in mehreren Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von Funktionen in mehreren Veränderlichen;
- nutzen Konzepte der Ma
 ß- und Integrationstheorie zur Berechnung von Integralen;
- benennen Aussagen zur Existenz und Eindeutigkeit von Lösungen gewöhnlicher Differenzialgleichungen.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, mehrdimensionalen Analysis;
- analysieren klassische Funktionen in mehreren Variablen und ihre Eigenschaften mit Hilfe von funktionalem Denkens;
- erfassen grundlegende topologische Eigenschaften;

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

 sind mit der Entwicklung eines mathematischen (Axiomensystem vertraut. 	Gebietes aus einem	
•		
Lehrveranstaltung: Differenzial- und Integralrechn	ung II	4 SWS
Prüfung: Klausur (120 Minuten)		
Prüfungsvorleistungen:		
B.Mat.0021.Ue: Erreichen von mindestens 50% der Ül	bungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen		
Lehrveranstaltung: Differenzial- und Integralrechnung II - Übung		2 SWS
Lehrveranstaltung: Differenzial- und Integralrechn	ung II - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.		
Prüfungsanforderungen:		
Grundkenntnisse der Differenzial- und Integralrechnung in mehreren Veränderlichen		
sowie der Maß- und Integrationstheorie, Fähigkeit des Problemlösens		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

B.Mat.0011, B.Mat.0012

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0025 "Methoden der Analysis II" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.0022: Analytische Geometrie und Lineare Algebra II English title: Analytic geometry and linear algebra II Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Selbststudium: Grundwissen vertraut. Sie 186 Stunden bestimmen Normalformen von Matrizen: · erkennen Bilinearformen und Kegelschnitte; • sind mit den Konzepten der affinen und projektiven Geometrie vertraut; • erkennen Strukturen bei Gruppen, Ringen und Moduln. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie • formulieren mathematische Sachverhalte aus dem Bereich der Geometrie in schriftlicher und mündlicher Form korrekt; • lösen Probleme anhand von Fragestellungen der analytischen Geometrie; • wenden Konzepte der linearen Algebra auf geometrische Fragestellungen an; · erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume: • sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut. I ehrveranstaltung: Analytische Geometrie und Lineare Algebra II 4 SWS

Lenrveranstaltung: Analytische Geometrie und Lineare Algebra il		4 5005
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.0022.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Übung		2 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.		
Prüfungsanforderungen: Grundkenntnisse geometrischer Begriffe und in linearer Algebra		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik	
Angebotshäufigkeit: Dauer:		

jedes Sommersemester	1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0026 "Geometrie" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software

Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software	
Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden	Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium:
 die Grundprinzipien der Programmierung erfasst; die Befähigung zum sicheren Umgang mit einer Programmiersprache im mathematische Kontext erworben; Erfahrungen mit elementaren Algorithmen und deren Anwendungen gesammelt. 	62 Stunden
Kompetenzen:	
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kenntnisse über eine Programmiersprache im mathematischen Kontext erworben. Sie	
 haben die Fähigkeit erworben, Algorithmen in einer Programmiersprache umzusetzen; haben gelernt die Programmiersprache zum Lösen von Algebraischen Problemen zu nutzen (Computeralgebra CAS). 	
Lehrveranstaltung: Blockkurs	2 SWS
Inhalte:	
Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Einführung in Python und Computeralgebra".	
Prüfung: Klausur (90 Minuten)	3 C
Prüfungsanforderungen:	

Prüfung: Klausur (90 Minuten) 2 C Prüfungsanforderungen: Grundkenntnisse in einer Programmiersprache mit Fokus auf mathematisch orientierte Anwendung und Hintergrund.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

• Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik.

nouui D.IVIAL.U/20	nicht absolvieren		

6 C Georg-August-Universität Göttingen 3 SWS Modul B.Mat.0721: Mathematisch orientiertes Programmieren English title: Mathematics related programming

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 42 Stunden Das erfolgreiche Absolvieren des Moduls ermöglicht den Studierenden den sicheren Selbststudium: Umgang mit mathematischen Anwendersystemen. Die Studierenden 138 Stunden • erwerben die Befähigung zum sicheren Umgang mit mathematischen Anwendersystemen, • erfassen die Grundprinzipien der Programmierung, • sammeln Erfahrungen mit elementaren Algorithmen und deren Anwendungen, · verstehen die Grundlagen der Programmierung in einer high-level Programmiersprache, • lernen Kontroll- und Datenstrukturen kennen, • erlernen die Grundzüge des imperativen und funktionalen Programmierens, • setzen Bibliotheken zur Lösung naturwissenschaftlicher Fragestellungen ein, • erlernen verschiedene Methoden der Visualisierung, • beherrschen die Grundtechniken der Projektverwaltung (Versionskontrolle. Arbeiten im Team). Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Techniken für das Lösen mathematisch/physikalischer Problemstellungen mit der Hilfe einer high-level Programmiersprache erlernt. 2 SWS Lehrveranstaltung: Blockkurs Inhalte: Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Mathematisch orientiertes Programmieren"

John Market Fregrammers.	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 min)	6 C
Prüfungsanforderungen:	
Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten. Die Teilnehmer/	
innen weisen grundlegende Techniken für das Lösen mathematisch/physikalischer	
Problemstellungen mit der Hilfe einer Programmiersprache nach.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	Bachelor: 1 - 6; Master: 1 - 4	
Maximale Studierendenzahl: 120		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik		

9 C Georg-August-Universität Göttingen 4 SWS Modul B.Mat.0730: Praktikum Wissenschaftliches Rechnen English title: Practical course in scientific computing

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden praktische Selbststudium: Erfahrungen im wissenschaftlichen Rechnen. Sie 214 Stunden • erstellen größere Programmierprojekte in Einzel- oder Gruppenarbeit; • erwerben und festigen Programmierkenntnisse; • haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • mathematische Algorithmen und Verfahren in einer Programmiersprache oder einem Anwendersystem zu implementieren; · spezielle numerische Bibliotheken zu nutzen; • komplexe Programmieraufgaben so zu strukturieren, dass sie effizient in Gruppenarbeit bewältigt werden können. L ...

Lehrveranstaltung: Praktikum Wissenschaftliches Rechnen	4 SWS
Prüfung: Präsentation (ca. 30 Minuten) oder Hausarbeit (max. 50 Seiten ohne	9 C
Anhänge)	
Prüfungsvorleistungen:	
Regelmäßige Teilnahme im Praktikum	
Prüfungsanforderungen:	
Grundkenntnisse der numerischen Mathematik	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0721, B.Mat.1300 Kenntnis des objektorientierten Programmierens
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte(r)
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

nicht begrenzt	
Bemerkungen:	

gute Programmierkenntnisse

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen	9 C
Modul B.Mat.0740: Stochastisches Praktikum	6 SWS
English title: Practical course in stochastics	

Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den grundlegenden Eigenschaften und Methoden einer stochastischen Simulationsund Analyse-Software (z.B. "R" oder Matlab) vertraut. Sie haben in Projektarbeit Spezialkenntnisse in Stochastik erworben. Sie

- implementieren und interpretieren selbstständig einfache stochastische Problemstellungen in einer entsprechenden Software;
- schreiben selbständig einfache Progamme in der entsprechenden Software;
- beherrschen einige grundlegende Techniken der statistischen Datenanalyse und stochastischen Simulation, wie etwa der deskriptiven Statistik, der linearen, nichtlinearen und logistischen Regression, der Maximum-Likelihood-Schätzmethode, sowie von verschiedenen Testverfahren und Monte-Carlo-Simulationsmethoden.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- eine stochastische Simulations- und Analyse-Software auf konkrete stochastische Problemstellungen anzuwenden und die erhaltenen Resultate fachgerecht zu präsentieren;
- statistische Daten und ihre wichtige Eigenschaften adäquat zu visualisieren und interpretieren.

Lehrveranstaltung: Stochastisches Praktikum	6 SWS
, ,	9 C
Seiten ohne Anhänge)	

Prüfungsanforderungen: Weiterführende Kenntnisse in Stochastik

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.2410
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

84 Stunden

Selbststudium:

186 Stunden

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0910: Linux effektiv nutzen	2 SWS
English title: Effective use of Linux	

Lernziele/Kompetenzen:

Lernziele:

Das UNIX-Derivat Linux ist mit Abstand das meistgenutzte Betriebssystem, allerdings nicht auf dem Desktop, sondern in Mobiltelefonen, auf Heimgeräten und auf Servern. Auch MAC-Systeme beruhen auf einem UNIX-System. Diese Modul biete eine Einführung in Grundlagen des Systems und der Netzwerkanbindung von Linux. Der Schwerpunkt liegt in der Nutzung von Linux und der Automation von Aufgaben auf der Commandline. Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über fundierte Grundlagenkenntnisse in folgenden Bereichen:

- Linux als Einzelsystem;
- · Linux im Netzwerk;
- · Automatisierung von Aufgaben mit Shellskripten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · wesentlichen Abläufe im Linuxsystem zu verstehen;
- mit einem Mehrbenutzerbetriebssystem auf der Ebene einfacher Systemverwaltung im Einzel- und im Netzwerkbetrieb umzugehen;
- Skripte zur effektiven Aufgabenbewältigung zu erstellen.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Vorlesung mit integrierten Übungen	2 SWS
Prüfung: Klausur (90 Minuten), unbenotet	3 C
Prüfungsvorleistungen:	
B.Mat.0910.Ue: Erreichen von mindestens 50% der Übungspunkte	

Prüfungsanforderungen:

Grundkenntnisse in der Erstellung von Skripten im Einzel- und Netzwerkbetrieb, sicherer Umgang mit und Zuordnung von Begriffen aus einem Mehrbenutzerbetriebssystem im Einzel- und Netzwerkbetrieb.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Sicherer Umgang mit einem Computersystem
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Schlüsselkompetenz im Bereich "EDV/IKT-Kompetenz (IKT=Informations- und Kommunikationstechnologie)", auch für Studierende anderer Fakultäten.

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen	2 SWS
English title: Introduction to TeX/LaTeX with applications	

Anwendungen	2 3 7 7 3	
English title: Introduction to TeX/LaTeX with applications		
	<u> </u>	
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele:	Präsenzzeit:	
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit dem Einsatz von	28 Stunden	
TeX oder LaTeX zur Erstellung von wissenschaftlichen Texten und Vorträgen vertraut. Sie	Selbststudium: 62 Stunden	
sind vertraut mit ordentlicher Dokumentengliederung;		
erstellen Literaturangaben und Querverweise;		
erzeugen mathematische Formeln;		
erzeugen Grafiken und binden sie ein.		
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,		
einfache Dokumente mit LaTeX zu erstellen;		
ansprechende Vortragsfolien mit LaTeX zu erzeugen.		
Lehrveranstaltung: Blockkurs	1	
Inhalte:		
Einwöchige Blockveranstaltung mit Praktikum		
Prüfung: Hausarbeit (max. 10 Seiten), unbenotet	3 C	
Prüfungsvorleistungen:		
Regelmäßige Teilnahme an der Veranstaltung		
Prüfungsanforderungen:		
Erstellung eines wissenschaftlichen Portfolios mit TeX/LaTeX und der Folien für eine		
Präsentation mit Beamer-TeX.		

Prüfungsanforderungen: Sicherer Umgang mit den grundlegenden Funktionen von LaTeX und Bearmer-TeX

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse im Umgang mit einem Computer.
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen

Module B.Mat.0922: Mathematics information services and electronic publishing

3 C (incl. key comp.: 3 C) 2 WLH

Learning outcome, core skills:

Learning outcome:

After having successfully completed the module, students are familiar with the basics of mathematics information services and electronic publishing. They

- work with popular information services in mathematics and with conventional, nonelectronic as well as electronic media;
- know a broad spectrum of mathematical information sources including classification principles and the role of meta data;
- are familiar with current development in the area of electronic publishing in the subject mathematics.

Core skills:

After successfull completion of the module students have acquired subject-specific information competencies. They

- · have suitable research skills;
- are familiar with different information and specific publication services.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	
Contents:	
Lecture course with project report	
Examination: Written examination (90 minutes), not graded	3 C
Examination prerequisites:	
Regular participation in the course	

Examination requirements:

Application of the acquired skills in individual projects in the area of mathematical information services and electronic publishing

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Programme coordinator
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximum number of students: not limited	

Additional notes and regulations:

Instructors: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen		4 C (Anteil SK: 4
		C) 2 SWS
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:
Nach erfolgreichem Absolvieren des Moduls sind die und praktischen Fragestellungen der Vermittlung matl werden befähigt,		28 Stunden Selbststudium: 92 Stunden
 mathematische Inhalte an Studierende im ersten Semester zu vermitteln; eine heterogene Übungsgruppe zu leiten. verschiedene Lehrmethoden und Visualisierungstechniken einzusetzen; souverän aufzutreten. 		
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die	Studierenden in der Lage,	
 Rhetorik- und Präsentationstechniken einzusetzen; Teamkompetenzen (insb. Motivationsfähigkeit und sicherer Umgang mit Konfliktsituationen) einzusetzen; Methoden des Zeitmanagements zu verwenden; interkulturelle Kompetenzen, insbesondere interkulturelle Kommunikationswege einzusetzen. 		
Lehrveranstaltung: Integratives Projekt Inhalte: Neben dem Leiten einer Übungsgruppe während des einer Blockveranstaltung beinhaltet das Projekt ein Vo Abschlussseminar sowie begleitende Kurzveranstaltu		
Prüfung: Präsentation [Übungsstunde] (ca. 45 Minuten) und schriftliche Ausarbeitung (max. 5 Seiten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung		4 C
Prüfungsanforderungen: Nachweis des Erreichens der Lernziele und Erwerbs der Kompetenzen durch Umsetzung in einer Übungsstunde		
Zugangsvoraussetzungen: Übertragung der Leitung einer Übungsgruppe zu einer Lehrveranstaltung der Fakultät für Mathematik und Informatik im gleichen Semester	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Deutsch, Englisch	Dauer:	

jedes Wintersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen:	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen 3 C (Anteil SK: 3 C) Modul B.Mat.0932: Vermittlung mathematischer Inhalte an ein 2 SWS **Fachpublikum** English title: Communicating mathematical topics to a professional audience Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit theoretischen Selbststudium: und praktischen Grundlagen der Vermittlung mathematischen Wissens vertraut. Sie 62 Stunden • schätzen das Niveaus der Zielgruppe einer mathematischen Darbietung ein; · strukturieren Präsentationen gut; • beherrschen sicher stilistische und technische Aspekte der Darbietung; • wählen adäquate Hilfsmittel (z.B. zur Visualisierung); steuern die Diskussion mit dem Publikum. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über je nach Veranstaltung verschiedene Kommunikations- und Vermittlungskompetenzen sowie ggf. Fremdsprachenkompetenzen. Lehrveranstaltung: Veranstaltung mit theoretischem und praktischem Anteil, kann ggf. als Blockveranstaltung angeboten werden oder als Teil eines mathematischen Seminars. (Seminar) 3 C Prüfung: Präsentation (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung Prüfungsanforderungen: Nachweis des Erreichens der Lernziele durch Anfertigen einer Darbietung zur Vermittlung mathematischer Inhalte (Format der Darbietung je nach Veranstaltung) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Modulverantwortliche[r]: Sprache: Deutsch, Englisch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: keine Angabe 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt Bemerkungen:

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

2 SWS

Georg-August-Universität Göttingen

Modul B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und die Nutzung wissenschaftlicher Modellsammlungen

English title: Historical, museum-related, and technical aspects of the building-up, the maintenance and the use of scientific collections

4 C (Anteil SK: 4 C)

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse des Planens und Gestaltens von Mathematikunterricht und mathematikdidaktischen Forschungsprojekten

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls nutzen die Studierenden Kenntnisse der mathematischen Wissensvermittlung. Sie

- ordnen wissenschaftliche Modellsammlungen in ihren historischen Kontext ein,
- nutzen museumspädagogische Ansätze für die Vermittlung mit Hilfe von Objekten,
- kennen Beispiele für Techniken, die für den Aufbau und Erhalt von Objekten in Modellsammlungen erforderlich sind.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

92 Stunden

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen:

Erarbeitung historischer, museumspädagogischer und technischer Aspekte eines Modells oder mehrerer Modelle in Kontexten von Sammlungen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen English title: Media education for mathematical objects and problems 4 C (Anteil SK: 4 C) 2 SWS

Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse des Medienunterstützen Lehrens und Lernens zu mathematischen Objekten und Problemen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls ordnen die Studierenden wissenschaftliche Modellsammlungen in ihren historischen Kontext ein. Sie

- nutzen Kenntnisse der Medienbildung zur mathematischen Wissensvermittlung,
 vergleichen unterschiedliche Designs für die Illustration mathematischer Objekte und Probleme,
- implementieren beispielhaft unterschiedliche medientechnische Realisierungen mathematischer
- · Objekte.

Kontexten von Sammlungen.

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen:Erarbeitung medienbezogener Aspekte eines Modells oder mehrerer Modelle in

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

\mathbf{r}					ae	
-	Δn	noı	rv.	ıır	MC	ın.
$\mathbf{\omega}$			n	uı	ıuc	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Georg-August-Universität Göttingen Modul B.Mat.0940: Mathematik in der Welt, in der wir leben English title: The mathematical nature of the world we are living in

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit der Rolle der Mathematik in unserer Gesellschaft vertraut, wobei die Schwerpunktsetzung je nach Veranstaltung ausgestaltet wird. Die Studierenden

- entwickeln ein stärkeres Bewusstsein für die Rolle der Mathematik in anderen Fachdisziplinen;
- erwerben ein tieferes Verständnis für die Bedeutung der Mathematik für den (technologischen) Fortschritt;
- erkennen die Bedeutung der Mathematik für das Verständnis von Vorgängen und Erscheinungen in der Natur;
- verstehen die Rolle der Mathematik in der Gesellschaft.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über verschiedene Kompetenzen, je nach Ausgestaltung der Lehrveranstaltung haben sie

- · ihre Befähigung zum Logischen Denken ausgebaut;
- das mathematische Interpretieren von Observationen und Daten in einem außermathematischem Kontext erlernt;
- die Transferfähigkeit von abstraktem Wissen auf reelle Situationen erworben;
- ihre Methodenkompetenz im mathematischen Bereich gestärkt.

Lehrveranstaltung: Vorlesung oder Seminar Prüfung: Klausur (90 Minuten) oder Hausarbeit (max. 10 Seiten), unbenotet 3 C

Prüfungsanforderungen:

Nachweis des Erreichens der Lernziele durch Anwendung auf ausgewählte Problemstellungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

_			_				
R	em	Or	Ŀ	ın	~	٦n	
ப	CII		Nι	411	u	7 II	١.

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen		3 C (Anteil SK: 3	
Modul B.Mat.0950: Mitgliedschaft in der s akademischen Selbstverwaltung English title: Membership in the student or academic	C) 1 SWS		
Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen de Präsentation sowie Grundkenntnisse in der Projektpla in Rhetorik, in Selbstpräsentation und in freier Rede. Studierenden vertiefte Kenntnisse in den Bereichen M. Gesprächsführung sowie Entscheidungs- und Konflik	Arbeitsaufwand: Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden		
Lehrveranstaltung: Gremienveranstaltung			
Prüfung: Hausarbeit (max. 5 Seiten), unbenotet		3 C	
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähl der Praxis mit theoretischen Wissen verknüpfen und können.			
 Zugangsvoraussetzungen: Mitgliedschaft in mindestens einem der folgenden Gremien: Fakultätsrat der Fakultät für Mathematik und Informatik oder eine seiner Kommissionen Senat der Universität oder einer seiner Kommissionen Vorstand des Studentenwerks 	Empfohlene Vorkenntnisse: keine		
Sprache:	Modulverantwortliche[r]:		
Deutsch, Englisch	Studiengangsbeauftragte/r		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6		
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen:			

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

Georg-August-Universität Göttingen		3 C (Anteil SK: 3	
Modul B.Mat.0951: Ehrenamtliches Engagmathematischen Umfeld English title: Civic engagement in a mathematical en	C) 1 SWS		
		<u> </u>	
Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen der Präsentation sowie Grundkenntnisse in der Projektplain Rhetorik, in Selbstpräsentation und in freier Rede. Studierenden vertiefte Kenntnisse in mathematischer mindestens einem der folgenden Bereichen:	Arbeitsaufwand: Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden		
Moderationstechniken,GesprächsführungEntscheidungs- und Konfliktlösungsverhalten in	Gruppen.		
Lehrveranstaltung: Projektarbeit	Lehrveranstaltung: Projektarbeit		
Prüfung: Portfolio (max. 5 Seiten), unbenotet	3 C		
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befäh der Praxis mit theoretischen Wissen verknüpfen und können.	• •		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:		
Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B.	keine		
 bei der Durchführung der Mathematik- Olympiade oder dem Bundeswettbewerb Mathematik Nachhilfe im Rahmen von sozialen Projekten Mathematisches Korrespondenz-Zirkel MatheCamp 			
Sprache: Modulverantwortliche[r]:			
Deutsch, Englisch Studiengangsbeauftragte/r			
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester		
Wiederholbarkeit:			
zweimalig	notion: 1 - 6		
Maximale Studierendenzahl: nicht begrenzt			

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

Bemerkungen:

Georg-August-Universität Göttingen	3 C (Anteil SK: 3 C)
Modul B.Mat.0952: Organisation einer mathematischen Veranstaltung	2 SWS
English title: Event management in mathematics	

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Problemen, die Selbststudium: bei der Organisation einer mathematischen Veranstaltung entstehen, vertraut. Dabei 62 Stunden wird die Schwerpunktsetzung je nach dem zu organisierenden Veranstaltungsprojekt ausgestaltet, zu dem die Studierenden einen abgegrenzten, aktiven Beitrag leisten. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über verschiedene Kompetenzen, je nach Ausgestaltung des Veranstaltungsprojekts erwerben sie · Organisations- und Managementkompetenzen; · Kompetenzen im Informations- und Zeitmanagement; · Teamkompetenz. Lehrveranstaltung: Integratives Projekt Inhalte: Angebotshäufigkeit: jährlich 3 C Prüfung: Projektpräsentation (ca. 20 Minuten) oder Hausarbeit (max. 5 Seiten), unbenotet Prüfungsanforderungen: Nachweis der Kompetenzen und Fähigkeiten durch einen abgegrenzten, aktiven Beitrag

zu einem Veranstaltungsprojekt.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
keine Angabe	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Götting Modul B.Mat.0970: Betriebsprakti English title: Internship	8 C (Anteil SK: 8 C)			
Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Modul projektbezogener und forschungsorientierte Sie sind mit Verfahren, Werkzeugen und Porganisatorischen und sozialen Umfeld der	Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 240 Stunden			
Lehrveranstaltung: Prüfungskolloquium	n (Kolloquium)			
Prüfung: Präsentation (ca. 20 Minuten) r Seiten), unbenotet Prüfungsvorleistungen: Bescheinigung über die erfolgreiche Erfüllu Praktikumsplan	8 C			
Prüfungsanforderungen: Erfolgreiche Bearbeitung der gestellten Auf Studierenden, der Lehrperson und dem Be				
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:			
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r			
Angebotshäufigkeit: jedes Semester				
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4; Pron	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4; Promotion: 1 - 6		
Maximale Studierendenzahl: nicht begrenzt				
Bemerkungen:				

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen	9 C
Modul B.Mat.1300: Numerische lineare Algebra	6 SWS
English title: Numerical linear algebra	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden im Schwerpunkt "Numerische und Angewandte Mathematik" vertraut. Sie

- · gehen sicher mit Matrix- und Vektornormen um;
- formulieren für verschiedenartige Fixpunktgleichungen einen geeigneten Rahmen, der die Anwendung des Banachschen Fixpunktsatzes erlaubt;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraumverfahren, und analysieren die Konvergenz iterativer Verfahren;
- lösen nichtlineare Gleichungssysteme mit dem Newtonverfahren und analysieren dessen Konvergenz;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen numerisch Eigenwerte und -vektoren von Matrizen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage,

- grundlegende Verfahren zur numerischen Lösung von mathematischen Problemen anzuwenden;
- numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem zu implementieren;
- Grundprinzipien der Konvergenzanalysis numerischer Algorithmen zu nutzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

<u> </u>			
Lehrveranstaltung: Numerische Mathematik I (Vorlesung)		4 SWS	
Prüfung: Klausur (120 Minuten)		9 C	
Prüfungsvorleistungen:			
B.Mat.1300.Ue: Erreichen von mindestens 5	50% der Übungspunkte und zweimalige	s	
Vorrechnen von Lösungen in den Übungen			
Lehrveranstaltung: Numerische Mathematik I - Übung (Übung)		2 SWS	
Prüfungsanforderungen:			
Nachweis der Grundkenntnisse der numeris	chen und angewandten Mathematik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse):	
keine	B.Mat.0021, B.Mat.0022	B.Mat.0021, B.Mat.0022	
Sprache:	Modulverantwortliche[r]:	Modulverantwortliche[r]:	

Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

92 Stunden

Georg-August-Universität Göttingen 4 C 2 SWS Modul B.Mat.1310: Methoden zur Numerischen Mathematik English title: Methods for numerical mathematics

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden numerischen Methoden zum Modul "Grundlagen der Numerischen Mathematik" vertraut. Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogenen Kompetenzen angestrebt. Die Studierenden

- · gehen sicher mit numerischen Algorithmen zu linearen und nichtlinearen Gleichungssystemen um;
- formulieren für verschiedenartige Probleme aus der angewandten Mathematik Darstellungen und Modelle, die mit Hilfe eines numerischen Verfahrens aus dem Modul "Grundlagen der Numerischen Mathematik" gelöst werden können;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraum-Verfahren;
- analysieren und bewerten fortgeschrittene Newton-artige Verfahren hinsichtlich Konvergenzgeschwindigkeit und Komplexität und wenden sie auf nichtlineare Gleichungssysteme aus der Praxis an;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen Eigenwerte und -vektoren von Matrizen mit forgeschrittenen Verfahren wie effizienten Implementationen des QR-Verfahrens oder Krylovraum-Verfahren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden vertiefte Erfahrungen in der praktischen Umsetzung numerischer Algorithmen erworben. Sie

- haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen;
- implementieren numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem;
- sind mit Grundprinzipien der Konvergenzanalysis numerischer Algorithmen vertraut und unterscheiden die Stärken der verschiedenen Verfahren.

Lehrveranstaltung: Vorlesung "Methoden zur Numerischen Mathematik" mit 2 SWS Übungen Blockveranstaltung, alternativ parallel zur Vorlesung "Numerische Mathematik I" (B.Mat.1300) Prüfung: Klausur (45 Minuten) oder mündliche Prüfung (ca. 15 Minuten) 4 C Prüfungsanforderungen:

Nachweis grundlegender Kenntnisse der behandelten Methoden

Empfohlene Vorkenntnisse: Zugangsvoraussetzungen:

keine	B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragter
Angebotshäufigkeit: jährlich nach Bedarf WiSe oder SoSe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Modul B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie

English title: Measure and probability theory

9 C 6 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und Methoden der Maßtheorie sowie auch der Wahrscheinlichkeitstheorie vertraut, die die Grundlage des Schwerpunkts "Mathematische Stochastik" bilden. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen;
- verstehen grundlegende Eigenschaften sowie Existenz und Eindeutigkeitsaussagen von Maßen;
- gehen sicher mit allgemeinen Maß-Integralen um, insbesondere mit dem Lebesque-Integral;
- · kennen sich mit Lp-Räumen und Produkträumen aus;
- formulieren wahrscheinlichkeitstheoretische Aussagen mit Wahrscheinlichkeitsräumen, Wahrscheinlichkeitsmaßen und Zufallsvariablen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- beschreiben Wahrscheinlichkeitsmaße mit Hilfe von Verteilungsfunktionen bzw.
 Dichten;
- · verstehen und nutzen das Konzept der Unabhängigkeit;
- berechenen Erwartungswerte von Funktionen von Zufallsvariablen;
- verstehen die verschiedenen stochastischen Konvergenzbegriffe und ihre Beziehungen;
- · kennen charakteristische Funktionen und deren Anwendungen;
- besitzen Grundkenntnisse über bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte;
- verwenden das schwache Gesetz der großen Zahlen und den zentralen Grenzwertsatz:
- kennen einfache stochastische Prozesse wie z.B. Markov-Ketten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Mathematische Stochastik" erworben. Sie sind in der Lage,

- Maßräume und Maß-Integrale anzuwenden;
- stochastische Denkweisen einzusetzen und einfache stochastische Modelle zu formulieren:
- · stochastische Modelle mathematisch zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

durchzuführen; • grundlegende Grenzwertsätze der V	Vahrscheinlichkeitstheorie zu verwenden.	
Lehrveranstaltung: Maß- und Wahrsch	4 SWS	
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.1400.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Maß- und Wahrscheinlichkeitstheorie - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis von Grundkenntnissen in diskreter Stochastik sowie Maß- und Wahrscheinlichkeitstheorie		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022	
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen:	Mathamatical a Otack actil	

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen Modul B.Mat.2110: Funktionalanalysis English title: Functional analysis

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit funktionalanalytischer Denkweise und den zentralen Resultaten aus diesem Gebiet vertraut. Sie

- gehen sicher mit den gängigsten Beispielen von Funktionen- und Folgenräumen wie Lp, lp und Räumen stetiger Funktionen um und analysieren deren funktionalanalytische Eigenschaften;
- wenden die grundlegenden Sätze über lineare Operatoren in Banach-Räumen an, insbesondere die Sätze von Banach-Steinhaus, Hahn-Banach und den Satz über die offene Abbildung;
- argumentieren mit schwachen Konvergenzbegriffen und den grundlegenden Eigenschaften von Dual- und Bidualräumen;
- erkennen Kompaktheit von Operatoren und analysieren die Lösbarkeit linearer Operatorgleichungen mit Hilfe der Riesz-Fredholm-Theorie;
- sind mit grundlegenden Begriffen der Spektraltheorie und dem Spektralsatz für beschränkte, selbstadjungierte Operatoren vertraut.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- in unendlich-dimensionalen Räumen geometrisch zu argumentieren;
- Aufgabenstellungen in funktionalanalytischer Sprache zu formulieren und zu analysieren;
- die Relevanz funktionalanalytischer Eigenschaften wie der Wahl eines passenden Funktionenraums, Vollständigkeit, Beschränktheit oder Kompaktheit zu erkennen und zu beschreiben.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Funktionalanalysis (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2110.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Lehrveranstaltung: Funktionalanalysis - Übung (Übung)	2 SWS
Prüfungsanforderungen:	
Nachweis der Grundkenntnisse über Funktionalanalysis	
raditivolo dei Ordinakeinianose aber i dinkaentalajois	1

Sprache:	Modulverantwortliche[r]:
keine	B.Mat.0021, B.Mat.0022
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:

Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen Modul B.Mat.2220: Diskrete Mathematik English title: Discrete mathematics

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der diskrete Mathematik vertraut. Sie

- erwerben grundlegende Kenntnisse über diskrete Mathematik, insbesondere über enumerative Kombinatorik, erzeugende Funktionen, Rekursionen und asymptotische Analyse;
- erlernen algebraische Grundlagen der diskreten Mathematik, insbesondere üben sie den Umgang mit endlichen Gruppen und Körpern;
- sind mit Graphen, Bäumen, Netzwerken und Suchtheorien vertraut;
- kennen grundlegende Aspekte der spektralen Graphentheorie, z.B. Laplace-Matrix, Fiedler-Vektoren, Laplacian-Einbettung, spectral clustering und Cheeger-Schnitte.

Je nach Bedarf und konkreter Ausgestaltung der Vorlesung erwerben die Studierenden vertiefte Kenntnisse der diskreten Mathematik, z.B.

- im Bereich Zahlentheorie über Kryptographie, Gitter, Codes, Kugelpackungen;
- im Bereich algebraische Strukturen über Boolesche Algebra, Matroide, schnelle Matrixmultiplikation:
- im Bereich Geometrie über diskrete Geometrie und Polytope.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- elementare Denkweisen und Beweistechniken der diskreten Mathematik zu beherrschen:
- mit Grundbegriffen und grundlegenden Methoden der diskreten Mathematik zu argumentieren;
- mit Begriffen und Methoden aus weiterführenden Themen der diskreten Mathematik zu arbeiten

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Mathematik zu arbeiten.		
Lehrveranstaltung: Diskrete Mathematik (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.2220.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Diskrete Mathematik - Übung (2 SWS	
Prüfungsanforderungen: Nachweis der Grundkenntnisse der diskreten Mathematik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

keine	B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1200 "Algebra"
 - B.Mat.2210 "Zahlen und Zahlentheorie"
 - B.Mat.2220 "Diskrete Mathematik"

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2300: Numerische Analysis	6 SWS
English title: Numerical analysis	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden Begriffen und Methoden im Schwerpunkt "Numerische und angewandte Mathematik" vertraut. Sie

- interpolieren vorgegebene Stützpunkte mit Hilfe von Polynomen, trigonometrischen Polynomen und Splines;
- integrieren Funktionen numerisch mit Hilfe von Newton-Cotes Formeln, Gauß-Quadratur und Romberg-Quadratur;
- modellieren Evolutionsprobleme mit Anfangswertaufgaben für Systeme von gewöhnlichen Differenzialgleichungen, lösen diese numerisch mit Runge-Kutta-Verfahren und analysieren deren Konvergenz;
- erkennen die Steifheit von gewöhnlichen Differenzialgleichungen und lösen entsprechende Anfangswertprobleme mit impliziten Runge-Kutta-Verfahren;
- lösen je nach Ausrichtung der Veranstaltung Randwertprobleme oder sind mit Computer Aided Graphic Design (CAGD), Grundlagen der Approximationstheorie oder anderen Gebieten der Numerischen Mathematik vertraut.

Kompetenzen:

Prüfungsanforderungen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · Algorithmen zur Lösung mathematischer Probleme zu entwickeln und
- deren Stabilität, Fehlerverhalten und Komplexität abzuschätzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Numerische Mathematik II - Ubung	2 SWS
Lehrveranstaltung: Numerische Mathematik II	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2300.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	

Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine B.Mat.1300 Sprache: Modulverantwortliche[r]: Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: Empfohlenes Fachsemester:

Nachweis weiterführender Kenntnisse in numerischer Mathematik

zweimalig	4 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik	

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2310: Optimierung	0 3003
English title: Optimisation	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der Optimierung vertraut. Sie

- lösen lineare Optimierungsprobleme mit dem Simplex-Verfahren und sind mit der Dualitätstheorie der linearen Optimierung vertraut;
- beurteilen Konvergenzeigenschaften und Rechenaufwand von grundlegenden Verfahren für unrestringierte Optimierungsprobleme wie Gradienten- und (Quasi-)Newton-Verfahren;
- kennen Lösungsverfahren für nichtlineare, restringierte Optimierungsprobleme und gehen sicher mit den KKT-Bedingungen um;
- modellieren Netzwerkflussprobleme und andere Aufgaben als ganzzahlige Optimierungsprobleme und erkennen totale Unimodularität.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- Optimierungsaufgaben in der Praxis zu erkennen und als mathematische Programme zu modellieren sowie
- geeignete Lösungsverfahren zu erkennen und zu entwickeln.

Nachweis der Grundkenntnisse der Optimierung

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Übungen	2 SWS
Angebotshäufigkeit: jedes Wintersemester	
Lehrveranstaltung: Vorlesung (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2310.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Prüfungsanforderungen:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6

Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Arbeitsaufwand:

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2410: Stochastik	0 3003
English title: Stochastics	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit fortgeschrittenen Begriffen und Denkweisen der mathematischen Stochastik vertraut. Sie

- beherrschen weiterführende Konzepte der Maßtheorie;
- beherrschen bedingte Erwartungswerte;
- · verstehen gleichgradige Integrierbarkeit;
- lösen stochastische Probleme mittels Wahrscheinlichkeitsungleichungen und dem (multivariaten) zentralen Grenzwertsatz;
- verstehen das starke Gesetz der großen Zahlen (für Martingale);
- kennen verschiedene Modellklassen stochastischer Prozesse wie z.B.
 Markovketten und die Brownsche Bewegung und verstehen deren wichtigste Eigenschaften;
- simulieren Zufallsvariablen elementar und mit Markov-Ketten;
- beherrschen die Grundlagen moderner mathematischer Statistik;
- kennen wichtige statistische Test- und Schätzverfahren.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- fortgeschrittene stochastische Denkweisen und Beweistechniken anzuwenden;
- stochastische Problemstellungen über Wahrscheinlichskeitsräume und Zufallsvariablen zu modellieren und zu analysieren;
- Grenzwertsätze der fortgeschrittenen Wahrscheinlichkeitstheorie zu verwenden;
- stochastische Problemstellungen mit Hilfe von stochastischen Prozessen zu modelliere und analysieren;
- statistische Denkweisen und Methoden der mathematischen Statistik anzuwenden.

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

Lehrveranstaltung: Stochastik (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.1430.Ue: Erreichen von mindestens 50% Vorrechnen von Lösungen in den Übungen	6 der Übungspunkte und zweimaliges	9 C
Lehrveranstaltung: Stochastik - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis fortgeschrittener Kenntnisse in Wahrscheinlichkeitstheorie und mathematischer Statistik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

B.Mat.1400

Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

• Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2420: Statistical Data Science	0 3003
English title: Statistical Data Science	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Methoden und Denkweisen der Statistical Data Science vertraut. Sie

- gehen sicher mit den Grundbegriffen der deskriptiven Methoden der Statistical Data Science um wie etwa Histogrammen, Quantilen und anderen Kenngrößen von Verteilungen;
- kennen für die Statistical Data Science relevante Verteilungen von diskreten und stetigen Zufallsvariablen;
- erlernen grundlegende Algorithmen zur Erzeugung von Zufallszahlen und Computersimulationen;
- verstehen grundlegende stochastische Konvergenzbegriffe und Konvergenzsätze, elementare Beweistechniken und ihre Verwendung in der Statistical Data Science;
- konstruieren Schätzer wie etwa Maximum Likelihood-Schätzer,
 Momentenschätzer, Bayes-Schätzer und Kerndichteschätzer und kennen ihre elementaren Eigenschaften wie mittlerer quadratischer Fehler und Konsistenz;
- sind mit den zentralen Begrifflichkeiten zur Bewertung des Risikos dieser Schätzer vertraut:
- erlernen algorithmische Verfahren der Statistical Data Science zur Berechnung dieser Schätzer;
- · entwickeln Konfidenzbereiche zur Parameterschätzung;
- formulieren Hypothesentests und kennen ihre Grundlagen und Eigenschaften;
- sind mit Methoden von besonderer Wichtigkeit in verschiedenen Gebieten der Statistical Data Science vertraut wie etwa Varianz-, Cluster-, Diskriminanz-, Hauptkomponenten- und Regressionsanalyse.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich Statistical Data Science erworben. Sie sind in der Lage,

- statistische Denkweisen und deskriptive Methoden der Statistical Data Science anzuwenden:
- elementare Modelle der Statistical Data Science zu formulieren;
- grundlegende Schätzmethoden zu verwenden sowie Hypothesentests und einfache cluster- und diskriminanzanalytische Verfahren durchzuführen;
- konkrete Datensätze zu analysieren und entsprechende Verfahren der Statistical Data Science einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden			

Lehrveranstaltung: Statistical Data Science (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	

B.Mat.2420.Ue: Erreichen von mindestens Vorrechnen von Lösungen in den Übungen	0.	es
Lehrveranstaltung: Statistical Data Scien	nce - Übung (Übung)	2 SWS
Prüfungsanforderungen: Nachweis weiterführender Kenntnisse in St	atistical Data Science	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntniss B.Mat.0034, B.Mat.1400	se:
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemes 4 - 6	ter:
Maximale Studierendenzahl: nicht begrenzt		

- Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
- Universitätsweites Schlüsselkompetenzangebot

Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.Mat.3031: Wissenschaftliches Rechnen	4 3003
English title: Scientific computing	

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls haben die Studierenden Selbststudium: • Grundwissen zu numerischen Verfahren in einem ausgewählten aktuellen Gebiet 124 Stunden des wissenschaftlichen Rechnens erworben; • beispielbezogene Erfahrungen zur Anwendung dieser numerischen Verfahren in dem ausgewählten aktuellen Gebiet des wissenschaftlichen Rechnens und ihren theoretischen Hintergründen gesammelt. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden weitergehende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage, • numerische Verfahren des ausgewählten aktuellen Gebietes des wissenschaftlichen Rechnens einzusetzen; · diese numerischen Algorithmen in einem Anwendersystem oder in einer geeigneten Programmiersprache zu implementieren; • elementare Aussagen zu Konvergenz und Komplexität der ausgewählten numerischen Algorithmen herzuleiten; • die ausgewählten numerischen Verfahren des Gebietes exemplarisch anzuwenden.

Lehrveranstaltung: Weiterführende Vorlesung zu einem aktuellen Gebiet im Bereich der Verfahren des wissenschaftlichen Rechnens mit Übungen und/oder Praktikum	
Prüfung: Mündlich (ca. 20 Minuten)	6 C
Prüfungsvorleistungen:	
B.Mat.3031.Ue: Teilnahme an Übungen/Praktikum und mündlicher Vortrag	
Prüfungsanforderungen:	
Die Beherrschung der in der Veranstaltung behandelten Verfahren des	

	<u> </u>
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1300
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester

Wiederholbarkeit:

wissenschaftlichen Rechnens, ihre Anwendbarkeit und Eigenschaften

Empfohlenes Fachsemester:

zweimalig	4 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische	und Angewandte Mathematik

Georg-August-Universität Göttingen Module B.Mat.3043: Non-life insurance mathematics

6 C 4 WLH

Learning outcome, core skills:

Non-life insurance mathematics deals with models and methods of quantifying risks with both, the occurrence of the loss and its amount showing random patterns. In particular the following problems are to be solved:

- · determing appropriate insurance premiums;
- · calculate adequate loss reserves;
- determine how to allocate risk between policyholder and insurer resp. insurer and reinsurers.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

The aim of the module is to equip students with knowledge in four areas:

- 1. risk models;
- 2. pricing;
- 3. reserving;
- 4. risk sharing.

After having successfully completed the module, students are familiar with fundamental terms and methods of non-life insurance mathematics. They

- are familiar with and able to handle essential definitions and terms within non-life insurance mathematics:
- have an overview of the most valuable problem statements of non-life insurance;
- · understand central aspects of risk theory;
- · know substantial pricing and reserving methods;
- · estimate ruin probabilities;
- are acquainted with most important reinsurance forms and reinsurance pricing methods.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within non-life insurance. They are able to

- · evaluate and quantify fundamental risks;
- · model the aggregate loss with individual or collective model;
- apply a basic inventory of solving approaches;
- analyse and develop pricing models which mathematically are state of the art;
- · apply different reserving methods and calculate outstanding losses;
- · assess reinsurance contracts.

Workload:

Attendance time: 56 h
Self-study time:

124 h

Course: Lecture course with exercise session

4 WLH

Examination: Written examination (120 minutes)	6 C
Examination requirements:	
Fundamental knowledge of non-life insurance mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until winter

semester 2017/18

Georg-August-Universität Göttingen Module B.Mat.3044: Life insurance mathematics 6 C 4 WLH

Learning outcome, core skills:

This module deals with the basics of different branches in life insurance mathematics. In particular, students get to know both the classical deterministic model and the stochastic model as well as how to apply them to problems relevant in the respective branch. On this base the students describe

- · essential notions of present values;
- · premiums and their present values;
- · the actuarial reserve.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

After having successfully completed the module, students are familiar with fundamental terms

and methods of life insurance mathematics. In particular they

- assess cashflows in terms of financial and insurance mathematics;
- apply methods of life insurance mathematics to problems from theory and practise;
- characterise financial securities and insurance contracts in terms of cashflows;
- have an overview of the most valuable problem statements of life insurance;
- understand the stochastic interest structure;
- master fundamental terms and notions of life insurance mathematics;
- get an overwiew of most important problems in life insurance mathematics;
- · understand mortality tables and leaving orders within pension insurance;
- · know substantial pricing and reserving methods;
- know the economic and legal requirements of private health insurance in Germany;
- are acquainted with per-head loss statistics, present value factor calculation and biometric accounting principles.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within life insurance. They are able to

- assess cashflows with respect to both collateral and risk under deterministic interest structure;
- calculate premiums and provisions in life-, health- and pension-insurance;
- understand the actuarial equivalence principle as base of actuarial valuation in life insurance;
- apply and understand the actuarial equivalence principle for calculating premiums, actuarial reserves and ageing provisions;
- calculate profit participation in life insurance;
- · master premium calculation in health insurance;

Workload:

Attendance time: 56 h
Self-study time:

calculate present value and settlement value of pension obligations;	
find mathematical solutions to practical questions in life, health and pension	
insurance.	

Course: Lecture course with exercises	4 WLH
Examination: Written examination (120 minutes)	6 C

Examination requirements:	
Fundamental knowledge of life insurance mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until summer

semester 2019

Georg-August-Universität Göttingen Module B.Mat.3131: Introduction to inverse problems 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse problems of partial differential equations where the unknown is e. g. a coefficient, an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computed tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Inverse problems";
- explain basic ideas of proof in the area "Inverse problems";
- · illustrate typical applications in the area "Inverse problems".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20	9 C
minutes)	

Examination prerequisites: B.Mat.3131.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions 2 WLH Course: Exercise session (Exercise) **Examination requirements:** Proof of knowledge and mastery of basic competencies in the area "Inverse problems" Recommended previous knowledge: Admission requirements: B.Mat.1300 none Person responsible for module: Language: English Programme coordinator Course frequency: **Duration:**

1 semester[s]

Recommended semester:

Bachelor: 5 - 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

Number of repeat examinations permitted:

not specified

twice

not limited

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3134: Introduction to optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Optimisation";
- explain basic ideas of proof in the area "Optimisation";
- illustrate typical applications in the area "Optimisation".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites: B.Mat.3134.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Optimisation"		
Admission requirements:	Recommended previous known B.Mat.1300	wledge:
Language: English	Person responsible for modu Programme coordinator	le:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Georg-August-Universität Göttingen Module B.Mat.3137: Introduction to variational analysis

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Core skills:

Workload:

Attendance time: 84 h
Self-study time:

After having successfully completed the module, students will be able to discuss basic concepts of the area "Variational analysis"; • explain basic ideas of proof in the area "Variational analysis"; • illustrate typical applications in the area "Variational analysis". Course: Lecture course (Lecture) 4 WLH Examination: Written or oral examwritten examination (120 minutes) or oral 9 C examination (appr. 20 minutes) (120 minutes) **Examination prerequisites:** B.Mat.3137.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions 2 WLH Course: Exercise session (Exercise) **Examination requirements:** Proof of knowledge and mastery of basic competencies in the area "Variational analysis" Admission requirements: Recommended previous knowledge: none B.Mat.1300 Language: Person responsible for module: Programme coordinator English Course frequency: **Duration:** not specified 1 semester[s] Number of repeat examinations permitted: Recommended semester: Bachelor: 5 - 6; Master: 1 - 4 twice Maximum number of students: not limited

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module B.Mat.3138: Introduction to image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Image and geometry processing";
- explain basic ideas of proof in the area "Image and geometry processing";
- illustrate typical applications in the area "Image and geometry processing".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture) Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites: B.Mat.3138.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Image and geometry processing"	
ended previous know	vledge:
esponsible for modul ne coordinator	e:
er[s]	
ended semester: 5 - 6; Master: 1 - 4	
athe	ematics

Georg-August-Universität Göttingen Module B.Mat.3139: Introduction to scientific computing / applied mathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Scientific computing / applied mathematics";
- explain basic ideas of proof in the area "Scientific computing / applied mathematics";
- illustrate typical applications in the area "Scientific computing / applied mathematics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites: B.Mat.3139.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Scientific	
computing / applied mathematics"	

Admission requirements:	Recommended previous knowledge: B.Mat.1300
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module B.Mat.3141: Introduction to applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Applied and mathematical stochastics";
- explain basic ideas of proof in the area "Applied and mathematical stochastics";
- illustrate typical applications in the area "Applied and mathematical stochastics".

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

Workload:

Attendance time: 84 h

Self-study time: 186 h

the exercise points and presentation	,	
Course: Exercise session (Exercise)		
etencies in the area "Applied and		
Recommended previous known B.Mat.1400	Recommended previous knowledge: B.Mat.1400	
Person responsible for mod Programme coordinator	ule:	
Duration: 1 semester[s]		
Recommended semester: Bachelor: 5 - 6; Master: 1 - 4		
	B.Mat.1400 Person responsible for mod Programme coordinator Duration: 1 semester[s] Recommended semester:	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module B.Mat.3145: Introduction to statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- · are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- · are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical modelling and inference";
- explain basic ideas of proof in the area "Statistical modelling and inference";
- illustrate typical applications in the area "Statistical modelling and inference".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examoral examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites: B.Mat.3145.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Statistical modelling and inference"

Recommended previous knowledge: Admission requirements:

none	B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3146: Introduction to multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Multivariate statistics";
- explain basic ideas of proof in the area "Multivariate statistics";
- illustrate typical applications in the area "Multivariate statistics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture) 4 WLH

Examination: Written or oral examwritten examexamination (appr. 20 minutes) Examination prerequisites: B.Mat.3146.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	` '	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic compete statistics"	encies in the area "Multivariate	
Admission requirements:	Recommended previous known B.Mat.1400	vledge:
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: Recommended semester: Bachelor: 5 - 6; Master: 1 - 4		
Maximum number of students: not limited		
Additional notes and regulations:		

Module B.Mat.3147: Introduction to statistical foundations of data science

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in the area of "Statistical foundations of data science". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;

- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical foundations of data science";
- explain basic ideas of proof in the area "Statistical foundations of data science";
- illustrate typical applications in the area "Statistical foundations of data science".

Workload:

Attendance time: 84 h Self-study time: 186 h

Course: Lecture course (Lecture)		4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites: B.Mat.3147.Ue: Achievement of at least 50% of the	e exercise points and presentation.	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Statistical foundations of data science"		
Admission requirements:	Recommended previous knowledge: B.Mat.1400	
Language: English	Person responsible for module Programme coordinator	9 :
Course frequency: not specified Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	repeat examinations permitted: Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:		

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3230: Proseminar "Numerische und Angewandte Mathematik" English title: Proseminar on numerical and applied mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus dem Bereich "Numerische und Angewandte Mathematik" vor einem Fachpublikum 62 Stunden adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet der numerischen Mathematik oder der Optimierung; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, sich in ein Thema aus dem Gebiet "Numerische und Angewandte Mathematik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Fachgebiet "Numerische und Angewandte Mathematik". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Mat.1300 Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" English title: Proseminar on scientific computing / applied mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus dem Bereich des wissenschaftlichen Rechnens oder der angewandten Mathematik 62 Stunden vor einem Fachpublikum adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet des wissenschaftlichen Rechnens oder der angewandten Mathematik; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage sich in ein Thema aus einem der Gebiete "Wissenschaftliches Rechnen" oder "Angewandte Mathematik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Wissenschaftliches Rechnen / Angewandte Mathematik". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** B.Mat.1300 keine Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3240: Proseminar "Mathematische Stochastik" English title: Proseminar on mathematical stochastics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus einem Bereich der mathematischen Stochastik vor einem Fachpublikum adäquat 62 Stunden darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet der mathematischen Stochastik; • strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage • sich in ein Thema aus dem Gebiet "Mathematische Stochastik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen: • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) (Proseminar) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Fachgebiet "Mathematische Stochastik". **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine B.Mat.1400 Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Bemerkungen:

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3244: Proseminar "Mathematische Statistik" English title: Proseminar on mathematical statistics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus einem Bereich der mathematischen Statistik vor einem Fachpublikum adäquat 62 Stunden darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet der mathematischen Statistik; strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage • sich in ein Thema aus dem Gebiet "Mathematische Statistik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) (Proseminar) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Fachgebiet "Mathematische Statistik". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Mat.1400 Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: 1 Semester unregelmäßig Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalia Maximale Studierendenzahl: nicht begrenzt

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Bemerkungen:

Georg-August-Universität Göttingen Module B.Mat.3331: Advances in inverse problems

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse problems of partial differential equations where the unknown is e. g. a coefficient, an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Inverse problems" confidently;
- explain complex issues of the area "Inverse problems";
- apply methods of the area "Inverse problems" to new problems in this area.

Attendance time: 84 h

Workload:

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH	
Examination: Oral examination (approx. 20 minutes)	9 C	
Examination prerequisites:		

B.Mat.3331.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Inverse problems"	

Admission requirements:	Recommended previous knowledge: B.Mat.3131
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3131 "Introduction to inverse problems"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3334: Advances in optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Optimisation" confidently;
- · explain complex issues of the area "Optimisation";
- apply methods of the area "Optimisation" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min Examination prerequisites: B.Mat.3334.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	,	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competer module of the area "Optimisation"	ncies acquired in the introductory	
Admission requirements:	Recommended previous knowledge: B.Mat.3134	
Language: English	Person responsible for module Programme coordinator	e:
Course frequency: Usually subsequent to the module B.Mat.3134 "Introduction to optimisation"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Pof repeat examinations permitted: Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical ar	nd Applied Mathematics	

Georg-August-Universität Göttingen Module B.Mat.3337: Advances in variational analysis

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in the area of "Variational analysis" and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

Attendance time: 84 h

Self-study time: 186 h

After having successfully completed the module, students will be able to • handle methods and concepts of the area "Variational analysis" confidently; • explain complex issues of the area "Variational analysis"; • apply methods of the area "Variational analysis" to new problems in this area. Course: Lecture course (Lecture) 4 WLH **Examination: Oral examination (approx. 20 minutes)** 9 C **Examination prerequisites:** B.Mat.3337.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH **Examination requirements:** Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Variational analysis" Admission requirements: Recommended previous knowledge: none B.Mat.3137 Language: Person responsible for module: English Programme coordinator Course frequency: **Duration:**

1 semester[s]

Recommended semester:

Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

"Introduction in variational analysis"

twice

not limited

Usually subsequent to the module B.Mat.3137

Number of repeat examinations permitted:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3338: Advances in image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Image and geometry processing" confidently;
- · explain complex issues of the area "Image and geometry processing";

Workload:

Attendance time: 84 h Self-study time:

apply methods of the area "Image and geometre this area.	ry processing" to new problems in	
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minute Examination prerequisites: B.Mat.3338.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	•	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competence module of the area "Image and geometry processing	·	
Admission requirements:	Recommended previous knowledge: B.Mat.3138	
Language: English	Person responsible for module Programme coordinator	:
Course frequency: Usually subsequent to the module B.Mat.3138 "Introduction to image and geometry processing"	Duration: 1 semester[s]	
lumber of repeat examinations permitted: vice Recommended semester: Bachelor: 6; Master: 1 - 4		
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3339: Advances in scientific computing / applied mathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Scientific computing / Applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Scientific computing / applied mathematics" confidently;
- explain complex issues of the area "Scientific computing / applied mathematics";
- apply methods of the area "Scientific computing / applied mathematics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

	•
Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3339.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Scientific computing / applied mathematics"	

Admission requirements: none	Recommended previous knowledge: B.Mat.3139
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3139 "Introduction to scientific computing / applied mathematics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice Maximum number of students: not limited	Recommended semester: Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3341: Advances in applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis).

Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- · analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Applied and mathematical stochastics" confidently;
- explain complex issues of the area "Applied and mathematical stochastics";
- apply methods of the area "Applied and mathematical stochastics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3341.Ue: Achievement of at least 50% of th twice, of solutions in the exercise sessions	e exercise points and presentation,
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competer module of the area "Applied and mathematical sto	
Admission requirements:	Recommended previous knowledge: B.Mat.3141
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3141 "Introduction to applied and mathematical stochastics"	Duration: 1 semester[s]

Recommended semester: Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

not limited

Number of repeat examinations permitted:

Module B.Mat.3345: Advances in statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Statistical modelling and inference" confidently;
- explain complex issues of the area "Statistical modelling and inference";
- apply methods of the area "Statistical modelling and inference" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3345.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Statistical modelling and inference"	

Admission requirements:

Recommended previous knowledge:

none	B.Mat.3145
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3111 "Introduction to statistical modelling and inference"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3346: Advances in multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Multivariate statistics" confidently;
- explain complex issues of the area "Multivariate statistics";
- apply methods of the area "Multivariate statistics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C

Evamination	prerequisites:
Laminianon	Dicicuulaites.

B.Mat.3346.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Course: Exercise session (Exercise) 2 WLH

Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Multivariate statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.3146
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3146 "Introduction to multivariate statistics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3347: Advances in statistical foundations of data science

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle ""Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area ""Statistical foundations of data science" confidently;
- explain complex issues of the area ""Statistical foundations of data sciencee";
- apply methods of the area ""Statistical foundations of data science" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time: 186 h

Course: Lecture course (Lecture)	
Examination: Oral examination (approx. 20 minutes) Examination prerequisites:	
B.Mat.3347.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Statistical foundations of data science"	
Recommended previous knowledge: B.Mat.3147	
Person responsible for mo Programme coordinator	dule:
Duration: 1 semester[s]	
Recommended semester: Bachelor: 6; Master: 1 - 4	
	encies acquired in the introductory a science" Recommended previous king B.Mat.3147 Person responsible for mo Programme coordinator Duration: 1 semester[s]

Modul B.Mat.3431: Seminar im Zyklus "Inverse Probleme"

English title: Seminar on inverse problems

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Inverse Probleme" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Inverse Probleme" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit dem Phänomen der Schlechtgestelltheit vertraut und erkennen den Grad der Schlechtgestelltheit von typischen inversen Problemen;
- bewerten verschiedene Regularisierungsverfahren für schlecht gestellte inverse Probleme unter algorithmischen Aspekten und im Hinblick auf verschiedenartige apriori-Informationen und unterscheiden Konvergenzbegriffe für solche Verfahren bei deterministischen und stochastischen Datenfehlern;
- analysieren die Konvergenz von Regularisierungsverfahren mit Hilfe der Spektraltheorie beschränkter, selbstadjungierter Operatoren;
- analysieren die Konvergenz von Regularisierungsverfahren mit Methoden der konvexen Analysis;
- analysieren Regularisierungsverfahren unter stochastischen Fehlermodellen;
- wenden vollständig datengesteuerte Methoden zur Wahl von Regularisierungsparametern an und bewerten sie für konkrete Probleme;
- modellieren Identifikationsprobleme in Naturwissenschaften und Technik als inverse Probleme bei partiellen Differenzialgleichungen, bei denen die Unbekannte z.B. ein Koeffizient, eine Anfangs- oder Randbedingung oder die Form eines Gebiets ist:
- analysieren die Eindeutigkeit und konditionale Stabilität von inversen Problemen bei partiellen Differenzialgleichungen;
- leiten Sampling- und Probe-Methoden zur Lösung inverser Probleme bei partiellen Differenzialgleichungen her und analysieren die Konvergenz solcher Methoden;
- entwerfen mathematische Modelle von medizinischen Bildgebungsverfahren wie Computer-Tomographie (CT) oder Magnetresonanztomographie (MRT) und kennen grundlegende Eigenschaften entsprechender Operatoren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Inverse Probleme" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Inverse Probleme"		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3131	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik		

Georg-August-Universität Göttingen Modul B.Mat.3434: Seminar im Zyklus "Optimierung" English title: Seminar on optimisation

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Optimierung" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Optimierung", also der diskreten und kontinuierlichen Optimierung, kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- erkennen Optimierungsprobleme in anwendungsorientierten Fragestellungen und formulieren sie als mathematische Programme;
- beurteilen Existenz und Eindeutigkeit der Lösung eines Optimierungsproblemes;
- erkennen strukturelle Eigenschaften eines Optimierungsproblemes, u.a. die Existenz einer endlichen Kandidatenmenge, die Struktur der zugrunde liegenden Niveaumengen;
- wissen, welche speziellen Eigenschaften der Zielfunktion und der Nebenbedingungen (wie (quasi-)Konvexität, dc-Funktionen) bei der Entwicklung von Lösungsverfahren ausgenutzt werden können;
- analysieren die Komplexität eines Optimierungsproblemes;
- ordnen ein mathematisches Programm in eine Klasse von Optimierungsproblemen ein und kennen dafür die gängigen Lösungsverfahren;
- entwickeln Optimierungsverfahren und passen allgemeine Verfahren auf spezielle Probleme an:
- leiten obere und untere Schranken an Optimierungsprobleme her und verstehen ihre Bedeutung:
- verstehen die geometrische Struktur eines Optimierungsproblemes und machen sie sich bei Lösungsverfahren zunutze;
- unterscheiden zwischen exakten Lösungsverfahren, Approximationsverfahren mit Gütegarantie und Heuristiken und bewerten verschiedene Verfahren anhand der Qualität der aufgefundenen Lösungen und ihrer Rechenzeit;
- erwerben vertiefte Kenntnisse in der Entwicklung von Lösungsverfahren anhand eines speziellen Bereiches der Optimierung, z.B. der ganzzahligen Optimierung, der Optimierung auf Netzwerken oder der konvexen Optimierung;
- erwerben vertiefte Kenntnisse bei der Lösung von speziellen
 Optimierungsproblemen aus einem anwendungsorientierten Bereich, z.B. der Verkehrsplanung oder der Standortplanung;
- gehen mit erweiterten Optimierungsproblemen um, wie z.B.
 Optimierungsproblemen unter Unsicherheit oder multikriteriellen Optimierungsproblemen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

V6-SoSe22

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Optimierung" im Bereich "Optimierung" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45	3 C
Minuten)	
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Optimierung"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3134
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Modul B.Mat.3437: Seminar im Zyklus "Variationelle Analysis"

English title: Seminar on variational analysis

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Variationelle Analysis" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen in variationeller Analysis und kontinuierlicher Optimierung kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- verstehen fundamentale Begriffe der konvexen und variationellen Analysis für endlich- und unendlich-dimensionale Probleme;
- beherrschen die Eigenschaften von Konvexität und anderen Begriffen der Regularität von Mengen und Funktionen, um Existenz und Regularität der Lösungen variationeller Probleme zu beurteilen;
- verstehen fundamentale Begriffe der Konvergenz von Mengen und Stetigkeit mengenwertiger Funktionen;
- verstehen fundamentale Begriffe der variationellen Geometrie;
- berechnen und verwenden verallgemeinerte Ableitungen (Subdifferenziale und Subgradienten) nicht-glatter Funktionen;
- verstehen die verschiedenen Konzepte von Regularität mengenwertiger Funktionen und ihre Auswirkungen auf die Rechenregeln für Subdifferenziale nichtkonvexer Funktionale;
- analysieren mit Hilfe der Dualitätstheorie restringierte und parametrische Optimierungsprobleme;
- berechnen und verwenden die Fenchel-Legendre Transformation und infimale Entfaltungen;
- formulieren Optimalitätskriterien für kontinuierliche Optimierungsprobleme mit Werkzeugen der konvexen und variationellen Analysis;
- wenden Werkzeuge der konvexen und variationellen Analysis an, um verallgemeinerte Inklusionen zu lösen, die zum Beispiel aus Optimalitätskriterien erster Ordnung entstanden sind;
- verstehen die Verbindung zwischen konvexen Funktionen und monotonen Operatoren;
- untersuchen die Konvergenz von Fixpunktiterationen mit Hilfe der Theorie monotoner Operatoren;
- leiten Verfahren zur Lösung glatter und nichtglatter kontinuierlicher, restringierter Optimierungsprobleme her und analysieren deren Konvergenz;
- wenden numerische Verfahren zur Lösung glatter und nichtglatter kontinuierlicher, restringierter Programme auf aktuelle Probleme an;

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

- modellieren Anwendungsprobleme durch Variationsungleichungen, analysieren deren Eigenschaften und sind mit numerischen Verfahren zur Lösung von Variationsungleichungen vertraut;
- kennen Anwendungen in der Kontrolltheorie und wenden Methoden der dynamischen Programmierung an;
- benutzen Werkzeuge der variationellen Analysis in der Bildverarbeitung und bei Inversen Problemen;
- · kennen Grundbegriffe und Methoden der stochastischen Optimierung.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Variationelle Analysis" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45	3 C
Minuten)	
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Variationelle Analysis"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3137
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen Modul B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung" English title: Seminar on image and geometry processing

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Bild- und Geometrieverarbeitung" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Bild- und Geometrieverarbeitung", also der digitalen Bild- und Geometrieverarbeitung, kennenzulernen und anzuwenden. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit).

Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit der Modellierung von Problemen der Bild- und Geometrieverarbeitung in geeigneten endlich- und unendlich-dimensionalen Vektorräumen vertraut;
- erlernen grundlegende Methoden zur Analyse von ein- und mehrdimensionalen Funktionen in Banach- und Hilberträumen;
- erlernen grundlegende mathematische Begriffe und Methoden, die in der Bildverarbeitung verwendet werden, wie Fourier- und Wavelettransformationen;
- erlernen grundlegende mathematische Begriffe und Methoden, die in der Geometrieverarbeitung eine zentrale Rolle spielen, wie Krümmung von Kurven und Flächen:
- erwerben Kenntnisse zu kontinuierlichen und zu diskreten Problemen der Bilddatenanalyse und den zugehörigen Lösungsstrategien;
- kennen grundlegende Begriffe und Methoden der Topologie;
- sind mit Visualisierungs-Software vertraut;
- wenden verfügbare Software zur Lösung der zugehörigen numerischen Verfahren an und bewerten die Ergebnisse kritisch;
- wissen, welche speziellen Eigenschaften eines Bildes oder einer Geometrie mit welchen Methoden extrahiert und bearbeitet werden können:
- bewerten verschiedene numerische Verfahren zur effizienten Analyse mehrdimensionaler Daten anhand der Qualität der Lösungen, der Komplexität und der Rechenzeit;
- erwerben vertiefte Kenntnisse zu linearen und nichtlinearen Verfahren zur geometrischen und topologischen Analyse mehrdimensionaler Daten;
- sind über aktuelle Entwicklungen zur effizienten geometrischen und topologischen Datenanalyse informiert;
- adaptieren Lösungsstrategien zur Datenanalyse unter Ausnutzung spezieller struktureller Eigenschaften der gegebenen mehrdimensionalen Daten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

sich in ein mathematisches Thema im Bereich " einzuarbeiten und in einem Vortrag vorzustellen	-		
wissenschaftliche Diskussionen in einem bekan	wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.		
Lehrveranstaltung: Seminar (2 SWS) (Seminar)			
Prüfung: Präsentation (ca. 75 Minuten, bei Durchf Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	ührung als Blockseminar ca. 45 3 C		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komple im Bereich "Bild- und Geometrieverarbeitung"	xer mathematischer Sachverhalte		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Mat.3138		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl:			

Bemerkungen:

nicht begrenzt

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" English title: Seminar on scientific computing / applied mathematics

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Wissenschaftliches Rechnen/ Angewandte Mathematik" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Wissenschaftliches Rechnen/Angewandte Mathematik" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit der Theorie der grundlegenden mathematischen Modelle des jeweiligen Lehrgebietes, insbesondere zu Existenz und Eindeutigkeit von Lösungen, vertraut;
- kennen grundlegende Methoden zur numerischen Lösung dieser Modelle;
- analysieren Stabilität, Konvergenz und Effizienz numerischer Lösungsverfahren;
- wenden verfügbare Software zur Lösung der betreffenden numerischen Verfahren an und bewerten die Ergebnisse kritisch;
- bewerten verschiedene numerische Verfahren anhand der Qualität der Lösungen, der Komplexität und ihrer Rechenzeit:
- sind über aktuelle Entwicklungen des wissenschaftlichen Rechnens, wie zum

Beispiel GPU-Computing, informiert und wenden vorhandene Soft- und Hardware an; • setzen Methoden des wissenschaftlichen Rechnens zum Lösen von Anwendungsproblemen, z.B. aus Natur- und Wirtschaftswissenschaften, ein. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, sich in ein mathematisches Thema im Bereich"Wissenschaftliches Rechnen / Angewandte Mathematik" einzuarbeiten und in einem Vortrag vorzustellen; wissenschaftliche Diskussionen in einem bekannten Kontext zu führen. Lehrveranstaltung: Seminar (2 SWS) (Seminar) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Seminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich"Wissenschaftliches Rechnen / Angewandte Mathematik"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3139
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Modul B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik"

English title: Seminar on applied and mathematical stochastics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Angewandte und Mathematische Stochastik" ermöglicht es den Studierenden, eine breite Auswahl von Fragestellungen, Theorien, Modellierungs- und Beweistechniken aus der Stochastik zu verstehen und anzuwenden. Von grundlegender Wichtigkeit sind dabei stochastische Prozesse in Zeit und Raum und deren Anwendungen in der Modellierung und Statistik. Im Laufe des Zyklus werden die Studierenden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Ziele angestrebt: Die Studierenden

- sind mit weiterführenden Konzepten der maßtheoretisch fundierten Wahrscheinlichkeitstheorie vertraut und wenden diese selbstständig an;
- sind mit wesentlichen Begriffen und Vorgehensweisen der Wahrscheinlichkeitsmodellierung und der schließenden Statistik vertraut;
- kennen grundlegende Eigenschaften stochastischer Prozesse, sowie Bedingungen für deren Existenz und Eindeutigkeit;
- verfügen über einen Fundus von verschiedenen stochastischen Prozessen in Zeit und Raum und charakterisieren diese, grenzen sie gegeneinander ab und führen Beispiele an;
- verstehen und erkennen grundlegende Invarianzeigenschaften stochastischer Prozesse, wie Stationarität und Isotropie;
- · analysieren das Konvergenzverhalten stochastischer Prozesse;
- analysieren Regularitätseigenschaften der Pfade stochastischer Prozesse;
- modellieren adäquat zeitliche und räumliche Phänomene in Natur- und Wirtschaftswissenschaften als stochastische Prozesse, gegebenenfalls mit unbekannten Parametern;
- analysieren probabilistische und statistische Modelle hinsichtlich ihres typischen Verhaltens, schätzen unbekannte Parameter und treffen Vorhersagen ihrer Pfade auf nicht beobachteten Gebieten / zu nicht beobachteten Zeiten;
- diskutieren und vergleichen verschiedene Modellierungsansätze und beurteilen die Verlässlichkeit von Parameterschätzungen und Vorhersagen kritisch.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Angewandte und Mathematische Stochastik" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		3 C	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Angewandte und Mathematische Stochastik"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3141		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik			

Georg-August-Universität Göttingen Modul B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz" English title: Seminar on statistical modelling and inference

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Statistische Modellierung und Inferenz" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den Grundprizipien der parametrischen und nicht-parametrischen Modellierung in Statistik und Inferenz vertraut: Schätzung, Test, Konfidenzaussagen, Vorhersage, Modellauswahl und Validierung;
- sind mit den Werkzeugen der asymptotischen statistischen Inferenz vertraut;
- Kennen die Bayesianischen und frequentistischen Konzepte zur Datenmodellierung und Inferenz sowie deren Zusammenhang, insbesodere empirische Bayesianische Methoden;
- können statistische Monte Carlo Methoden für Bayesianische und frequentistische Inferenz implementieren und lernen deren theoretische Eigenschaften kennen;
- beherrschen nicht-parametrische (Regressions-)Modelle und Inferenz für verschiedene Datentypen: Zähldaten, kategorielle und abhängige Daten;
- können komplexe statistische Modelle für reale Datenprobleme entwickeln und auswerten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Statistische Modellierung und Inferenz" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Seminar	
Prüfungsanforderungen:	
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte	
im Bereich "Statistische Modellierung und Inferenz"	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.3145

Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen

Modul B.Mat.3446: Seminar im Zyklus "Multivariate Statistik"

English title: Seminar on multivariate statistics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Multivariate Statistik" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden nach und nach an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot, ggf. unterschiedlich geordnet und gewichtet, werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Methoden der multivariaten Statistik wie Schätzung, Test, Konfidenzaussage, Vorhersage, lineare und verallgemeinerte lineare Modelle vertraut und setzen diese in der Modellierung realer Anwendungen ein;
- können spezifische Methoden der multivariaten Statistik wie Dimensionsreduzierung PCA (principal component analysis), Faktoranalysis und multidimensionale Skalierung anwenden;
- sind mit dem Umgang mit nicht-euklidischen Daten wie "Directional analysis" oder "Shape data" vertraut und setzen dafür parametrische und nicht-parametrische Methoden ein:
- können verschachtelte Deskriptoren für nicht-Euklidische Daten verwenden und beherrschen Procrustes-Methoden in der "Shape analysis";
- sind mit zeitabhängigen Daten, Grundlagen der "Functional data analysis" und inferentiellen Konzepten wie kinematischen Formeln vertraut;
- analysieren wesentliche Abhängigkeiten zwischen Topologie/Geometrie der zu Grunde liegenden Abhängigkeiten und Grenzverteilungen;
- wenden Resampling-Methoden sicher auf nicht-euklidische Deskriptoren an;
- beherrschen hoch-dimensionale Diskriminierungs- und Klassifizierungstechniken wie Kern-PCA, Regularisierungsmethoden und "support vector maschines";
- erwerben grundlegendes Wissen über statistische Punktprozesse und der zugehörigen Bayesianischen Methoden;
- beherrschen Techniken der "large scale computational statistics";
- erarbeiten selbstständig aktuelle Themen der multivariaten und nicht-euklidischen Statistik;
- evaluieren komplexe statistische Methoden und entwickeln diese für die Anwendung auf reale Probleme weiter.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Multivariate Statistik" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		3 C	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Multivariate Statistik"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3146	_	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik			

Georg-August-Universität Göttingen

Modul B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science"

English title: Seminar on statistical foundations of data science

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Statistische Grundlagen der Data Science" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden nach und nach an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot, ggf. unterschiedlich geordnet und gewichtet, werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Methoden der statistischen Grundlagen der Data science wie Schätzung, Test, Konfidenzaussage, Vorhersage, Resampling, Mustererkennung und -klassifizierung vertraut und setzen diese in der Modellierung realer Modelle ein;
- setzen geeignete statistische Risiko- und Verlustkonzepte für eine präzise mathematische Evaluierung statistischer Methoden ein;
- verwenden untere und obere Informationsschranken für die Analyse der Charakteristiken statistischer Schätzmethoden;
- sind mit grundlegenden statistischen Verteilungsmodellen vertraut, die sich auf der Theorie exponentieller Familien stützen;
- beherrschen die Modellierung realer Datenstrukturen wie kategorielle Daten, mehr- und hochdimensionale Daten, Daten in Bildern, Daten mit seriellen Abhängigkeiten;
- sie wenden die erlernten Techniken und Modelle sowie Computersimulationen für eine präzise mathematische Analyse aus der Praxis stammender statistischer Probleme an;
- sie können Resampling-Methode mathematisch analysieren und zielgerichtet anwenden;
- sind mit Konzepten der "large scale computational statistics" vertraut;
- sind mit fortgeschrittenen Werkzeugen der nicht-parametrischen Statistik und der Theorie empirischer Prozesse vertraut;
- erarbeiten selbstständig aktuelle Themen der statistischen Data science;
- evaluieren komplexe statistische Methoden und entwickeln diese für die Anwendung auf reale Probleme weiter.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Statistische Grundlagen der Data Science" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)		
Prüfung: Präsentation (ca. 75 Minuten)		3 C
Prüfungsvorleistungen:		
Teilnahme am Seminar		
Prüfungsanforderungen:		
Selbständige Durchdringung und Darstellu	ung komplexer mathematischer Sachverhalte	•
im Bereich "Statistische Grundlagen der Data Science"		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.3147	
Sprache:	Modulverantwortliche[r]:	
Englisch, Deutsch	Studiengangsbeauftragte/r	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig	6	
Maximale Studierendenzahl:		
nicht begrenzt		
Bemerkungen:		
Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik		

Georg-August-Universität Göttingen		6 C
Modul B.Sowi.20: Wissenschaft und English title: Science and Ethics	Ethik	2 SWS
Lernziele/Kompetenzen: In diesem Seminar wird anhand unterschiedlicher Felder der Sozialwissenschaft, die Verantwortung von Wissenschaft bzw. von Wissenschaftlerinnen und Wissenschaftlern gegenüber der Gesellschaft thematisiert. Die Studierenden erwerben in diesem Modul zentrale Kompetenzen ethischer Grundsätze bezüglich (sozial-) wissenschaftlicher Forschung, um diese beispielsweise auf eigene empirische Vorhaben anwenden zu können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden
Lehrveranstaltung: Seminar (Seminar)		2 SWS
Prüfung: Referat (ca. 20 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten)		6 C
Prüfungsanforderungen: Kenntnisse über die Verantwortung (sozial-) wissenschaftlicher Forschung gegenüber der Gesellschaft und der Relevanz ethischer Grundsätze für die empirische Sozialforschung.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Michael Bonn-Gerdes	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen	6 C
Modul B.WIWI-QMW.0001: Lineare Modelle English title: Linear Models	4 SWS
Lernziele/Kompetenzen: Die Studierenden: • erlernen die grundlegenden Konzepte der statistischen Modellierung mit Hilfe	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium:
linearer Regressionsmodelle, • können die Annahmen des linearen Modells für gegebene Daten überprüfen und im Falle von Verletzungen der Annahmen geeignete Korrekturverfahren anwenden,	124 Stunden
 können die behandelten Verfahren in statistischer Software umsetzen und die Ergebnisse interpretieren. 	
Lehrveranstaltung: Lineare Modelle (Vorlesung) Inhalte:	2 SWS
Lineare Einfachregression (Modellannahmen, Kleinste-Quadrate-Schätzer, Tests und Konfidenzintervalle, Prognosen), multiple Regressionsmodelle (Modellannahmen, Modelldarstellung in Matrixnotation, Kleinste-Quadrate-Schätzer und ihre Eigenschaften, Tests und Konfidenzintervalle), Modellierung metrischer und kategorialer Einflussgrößen (Polynome, Splines, Dummy-Kodierung, Effekt-Kodierung, Varianzanalyse), Modelldiagnose, Modellwahl, Variablenselektion, Erweiterungen des klassischen Regressionsmodells (allgemeine lineare Modelle, Ridge-Regression, LASSO).	
Lehrveranstaltung: Lineare Modelle (Übung) Inhalte: Im Rahmen der begleitenden Übung vertiefen die Studierenden die Kenntnisse aus der	2 SWS
Vorlesung anhand ausgewählter Fragestellungen.	6 C
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie:	
 mit den grundlegenden Annahmen und Eigenschaften linearer Modelle vertraut sind und sie diese in praktischen Datenanalysen einsetzen können, in der Lage sind, Annahmen des linearen Modells kritisch zu prüfen und geeignete Korrekturverfahren zu identifizieren, lineare Modelle und ihre Erweiterungen mit Hilfe statistischer Software umsetzen 	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Gute Kenntnisse des Basismoduls Statistik
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Thomas Kneib
Angebotshäufigkeit:	Dauer:
jedes 2. Semester	1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen		9 C
Modul B.WIWI-QMW.0008: Praktikum Statistische Modellierung English title: Consulting statistical modeling		2 SWS
Lernziele/Kompetenzen: Die Studierenden: • erlenen die praktische Durchführung statistischer Analysen, • erlernen die Präsentation statistischer Ergebnisse, • können für praktische Probleme geeignete statistische Verfahren auswählen und anwenden.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 242 Stunden
Lehrveranstaltung: Praktikums Statistische Modellierung (Seminar) Inhalte: Im Rahmen des Praktikums Statistische Modellierung bearbeiten die Studierenden in Gruppen von bis zu vier Personen ein Anwendungsproblem mit Hilfe basierend auf Methoden der statistischen Modellierung. Das Praktikum statistische Modellierung wird in der Regel in Kooperation mit einen Praxispartner durchgeführt.		2 SWS
Prüfung: Hausarbeit (max. 30 Seiten) Prüfungsvorleistungen: 2 Präsentationen (je ca. 30 Minuten)		9 C
Prüfungsanforderungen: Im Rahmen des Praktikums bereiten die Studierenden die vom Anwendungspartner zur Verfügung gestellten Daten auf, untersuchen diese explorativ, wählen ein geeignetes Modell und führen die entsprechenden statistischen Analysen durch. Im Rahmen der Hausarbeit werden alle Schritte dieses Prozesses und insbesondere die erzielten Ergebnisse dokumentiert.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Thomas Kneib	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6	
Maximale Studierendenzahl:		

Coord August Universität Cättingen		6 C
Georg-August-Universität Göttingen		6 SWS
Modul B.WIWI-VWL.0007: Einführung in die Ökonometrie English title: Introduction to Econometrics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Das Modul gibt eine umfassende Einführung in die öke ökonomischer Fragestellungen. Die Studierenden erle linearer Regressionsanalyse erste eigene empirische Die vermittelten Kompetenzen beinhalten die Spezifikt Modellen, die Modellselektion und –schätzung. Darüb mit ersten Problemen im Bereich der linearen Regress Heteroskedastizität und Autokorrelation vertraut gema Fundament für weiterführende Ökonometrie Veranstal	ernen mit Hilfe der Methoden Studien durchzuführen. ation von ökonometrischen er hinaus werden Studierende sion wie beispielsweise acht. Dieses Modul bildet das	Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Einführung in die Ökonometrie Inhalte:	(Vorlesung)	2 SWS
 Einführung in lineare multiple Regressionsmodelle, Modellspezifikation, KQ-Schätzung, Prognose und Modellselektion, Multikollinearität und partielle Regression. Lineares Regressionsmodell mit normalverteilten Störtermen, Maximum-Likelihood-Schätzung, Intervallschätzung, Hypothesentests Asymptotische Eigenschaften des KQ- und GLS Schätzers Lineares Regressionsmodell mit verallgemeinerter Kovarianzmatrix, Modelle mit autokorrelierten und heteroskedastischen Fehlertermen, Testen auf Autokorrelation und Heteroskedastizität. 		
Lehrveranstaltung: Einführung in die Ökonometrie (Übung) Inhalte:		2 SWS
Die Großübung vertieft die Inhalte der Vorlesung anhand von Rechenaufgaben mit ökonomischen Fragestellungen und Datensätzen. Weiterhin werden theoretische Konzepte aus der Vorlesung detailliert hergeleitet.		
Lehrveranstaltung: Einführung in die Ökonometrie (Tutorium)		2 SWS
Inhalte: Das Tutorium vertieft die Inhalte der Vorlesung und Großübung anhand von Rechenaufgaben. Ein großer Teil beinhaltet das Schätzen von ökonometrischen Modellen mit realen Daten und mit Hilfe des Softwareprogramms Eviews.		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsanforderungen: Die Studierenden zeigen, dass sie einfache ökonometrische Konzepte verstanden haben. Darüber hinaus sind sie in der Lage, diese auf reale wirtschaftliche Fragestellungen anzuwenden.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik B.WIWI-OPH.0006 Statistik	

Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Helmut Herwartz
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-WB.0001: Wissenschaftliches Programmieren English title: Scientific Programming

Lernziele/Kompetenzen:

Die Studierenden:

- kennen die grundlegende Struktur und Arbeitsweise der Programmierumgebung MATLAB und die wichtigsten Methoden zur Programmierung mit Matrizen,
- erlernen die grundlegenden Konzepte und Denkweisen des wissenschaftlichen Programmierens,
- erlernen die Bedienung und effiziente Nutzung von fortgeschrittenen Entwicklungswerkzeugen, wie dem Debugger und dem Profiler,
- können Probleme visualisieren und professionelle Grafiken erzeugen,
- sind in der Lage, eigenständig Probleme in MATLAB durch eigene Programmierung zu lösen – beispielsweise im Rahmen einer wissenschaftlichen Arbeit.

Arbeitsaufwand:

Präsenzzeit: 18 Stunden

Selbststudium:

72 Stunden

1 SWS

Lehrveranstaltung: Wissenschaftliches Programmieren (Übung) Inhalte:

Die Veranstaltung zielt darauf ab, Studierende in die wissenschaftliche Programmierung mit der statistischen Standardanwendung "MathWorks MATLAB" einzuführen. Die Basic-Programmiersprache eignet sich hervorragend, um die grundlegenden Konzepte des Programmierens sowie der numerischen Datenverarbeitung zu vermitteln und erlaubt es den Studierenden, wichtige Schlüsselkompetenzen zu erwerben. Es wird ein modernes Skript in deutscher und englischer Sprache eingesetzt, das die Teilnehmer zur Anwendung motiviert und ihnen ermöglicht, ihren eigenen Lernerfolg während der Durchführung des Kurses an praktischen Übungsaufgaben nachzuvollziehen.

Themen

- 1. Benutzeroberfläche
- 2. Daten und Operationen
- 3. Funktionen
- 4. Programmierkonzepte
- 5. Entwicklungswerkzeuge
- 6. 2D- und 3D-Grafiken
- 7. Fortgeschrittene Lösungsverfahren

Prüfung: Klausur (60 Minuten)

3 C

Prüfungsanforderungen:

Kenntnis der Bedienung und Funktionsweise von MathWorks MATLAB. Anwendung von MATLAB-eigenen Operationen und Funktionen – insbesondere in Bezug auf Matrizen und lineare Algebra. Wissen über Import, Verarbeitung und statistischer Auswertung von Daten. Lösen von kurzen - auch grafischen - Programmieraufgaben. Wissen von Programmierkonzepten (z.B. Schleifen und Verzweigungen). Kenntnis des "guten Programmierstils".

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik, B.WIWI-OPH.0006 Statistik
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Helmut Herwartz
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: 25	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) Learning outcome, core skills: Workload: Upon completion of the module, the students have acquired the following competencies: Attendance time: 56 h • foundations and general properties of likelihood-based inference in statistics, Self-study time: bayesian approaches to statistical learning and their properties, 124 h implementation of both approaches in statistical software using appropriate numerical procedures. 2 WLH Course: Advanced Statistical Inference (Likelihood & Baye) (Lecture) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 2 WLH Course: Advanced Statistical Inference (Likelihood & Bayes) (Exercise) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 6 C Examination: Written examination (90 minutes) or oral examination (approx. 20 minutes) **Examination requirements:** The students demonstrate their general understanding of likelihood-based and Bayesian inference for different types of applications and research questions. They know about the advantages and disadvantages as well as general properties of both approaches, can critically assess the appropriateness for specific problems, and can implement them in statistical software. The exam covers contents of both the lecture and the exercise class. Admission requirements: Recommended previous knowledge: none none Person responsible for module: Language: Prof. Dr. Thomas Kneib English

Duration:

1 semester[s]

Course frequency:

every year

Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	
Additional notes and regulations: The actual examination will be published at the beginning of the semester.	

Georg-August-Universität Göttingen		6 C 4 WLH
Module M.WIWI-QMW.0009: Introduction to Time Series Analysis		4 ***
Learning outcome, core skills: The students:		Workload: Attendance time:
 learn concepts and techniques related to the ar forecasting, gain a solid understanding of the stochastic me 	·	56 h Self-study time: 124 h
 data, learn how to analyse time series using statistical interpret the results obtained. 		
Course: Introduction to Time Series Analysis (Le	cture)	2 WLH
Contents: Classical time series decomposition analysis (moving averages, transformations of time series, parametric trend estimates, seasonal and cyclic components), exponential smoothing, stochastic models for time series (multivariate normal distribution, autocovariance and autocorrelation function), stationarity, spectral analysis, general linear time series models and their properties, ARMA models, ARIMA models, ARCH and GARCH models.		
Course: Introduction to Time Series Analysis (Tutorial) Contents: Practical and theoretical exercises covering the content of the lecture. Implementation of time series models and estimation by common statistical software (e.g. R or Matlab). Interpretation of estimation results.		2 WLH
Examination: Written examination (90 minutes)		6 C
Examination requirements: The students show their ability to analyze time series using specific statistical techniques, can derive and interpret properties of stochastic models for time series, and can decide on appropriate models for given time series data. The students are able to implement time series analyses using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercise class.		
Admission requirements: none	Recommended previous knowled B.WIWI-OPH.0006 Statistics and QMW.0004 Econometrics I	J
Language: English	Person responsible for module: Prof. Dr. Helmut Herwartz	
Course frequency: once a year	Duration: 1 semester[s]	

Number of repeat examinations permitted:

twice

Recommended semester:

2 - 3

Maximum number of students:	
50	

Georg-August-Universität Göttingen

Modul M.WIWI-VWL.0045: Wirtschafts- und Unternehmensethik

English title: Business Ethics and Ethics of Economic Institutions

6 C 2 SWS

Lernziele/Kompetenzen:

Durch die erfolgreiche Teilnahme an dieser Veranstaltung sind die Studierenden in der Lage:

- die ethischen Herausforderungen an das wirtschaftliche Handeln zu erkennen,
- die möglichen Methoden einer ethischen Urteilsbildung zu unterscheiden und sie anzuwenden.
- ethisch motivierte Einwände gegen das marktwirtschaftliche System auf ihre Berechtigung hin zu prüfen,
- die systemischen Anreize und Sanktionen zu beschreiben, die im Blick auf die "Nachhaltigkeit", "Stabilität" und "Gerechtigkeit" marktwirtschaftlicher Prozesse notwendig sind.
- ethisch-ökonomische Konfliktfälle auf der Unternehmensebene zu analysieren,
- die Merkmale einer ethik-freundlichen Organisationsstruktur und "Kultur" des Unternehmens zu beschreiben.
- die politischen Herausforderungen und die unternehmens-spezifischen Möglichkeiten hinsichtlich der Gestaltung ethisch legitimer Regelsysteme zu benennen
- die Möglichkeiten einer "Corporate Social Responsibility" und eines ethisch verantwortlichen "Stakeholder Managements" zu analysieren,
- die besonderen ethischen Herausforderungen an transnationale Unternehmen zu beschreiben.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

Lehrveranstaltung: Wirtschafts- und Unternehmensethik (Vorlesung) *Inhalte*:

A) Grundlagen und Methoden ethischer Urteilsbildung

- 1. Ethik: Theorie des moralischen Handelns
- 2. Methoden ethischer Reflexion
- 3. Das spannungsreiche Verhältnis von moralischer Legitimität und ökonomischer Rationalität

B) Die Ethik gesamtwirtschaftlicher Institutionen

- Die ethischen Herausforderungen einer gesamtwirtschaftlichen Regelbildung
- Die ethische Ambivalenz des Marktsystems
- 6. Gerechtigkeit im Marktsystem
- 7. Stabilität im Marktsystem
- 8. Nachhaltigkeit im Marktsystem

2 SWS

Die Ethik des unternehmerischen Handelns Begründung und Möglichkeiten einer Unternehmensethik Ökonomisch-ethisch Konflikte und Möglichkeiten einer Konfliktbewältigung Corporate Social Responsibility und Stakeholder-Management Die Implementierung unternehmensethischer Ziele Ethische Herausforderungen für transnationale Unternehmen

Prüfungsanforderungen:

Prüfung: Klausur (120 Minuten)

- · Nachweis von Kenntnissen über wichtige ethische Reflexionssysteme,
- Befähigung zu Analyse ethisch-ökonomischer Konfliktfälle.
- Nachweis der Fähigkeit, Lösungsmöglichkeiten für ethisch-ökonomische Konflikte zu entwerfen,
- Nachweis von vertieften Kenntnissen über die notwendigen Anreize und Sanktionen, die den marktwirtschaftlichen Prozess den Zielen "Gerechtigkeit", "Stabilität" und "Nachhaltigkeit" annähern,
- Nachweis umfassender Kenntnisse der Elemente einer "Corporate Social Responsibility" und eines "Stakeholder-Managements".

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul B.WIWI-OPH.0007: Mikroökonomik I und Modul B.WIWI-OPH.0008 Makroökonomik I oder vergleichbare Veranstaltungen
Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester	Modulverantwortliche[r]: Prof. Dr. Hermann Sautter Dauer: 1 Semester
Wiederholbarkeit: zweimalig Maximale Studierendenzahl: nicht begrenzt	Empfohlenes Fachsemester: 1 - 4

6 C

Georg-August-Universität Göttingen Modul SK.FS.EN-FW-C1-1: Business English I - C1.1 English title: Business English I - C1.1

Lernziele/Kompetenzen:

Weiterentwicklung bereits vorhandener diskursiver Fertigkeiten und Kompetenzen auf einem über die Stufe B2 des *Gemeinsamen europäischen Referenzrahmens für Sprachen* hinausgehenden Niveau, mit Hilfe derer auch jede Art von beruflicher und wirtschaftswissenschaftlicher Sprachhandlung auf Englisch vollzogen werden kann, wie z.B.:

- Fähigkeit, mühelos an allen Unterhaltungen, Diskussionen und Verhandlungen mit allgemeinen und wirtschaftsbezogenen Inhalten teilzunehmen und dabei die Gesprächspartner problemlos zu verstehen sowie auf ihre Beiträge differenziert einzugehen bzw. eigene Beiträge inhaltlich komplex und sprachlich angemessen zu formulieren;
- Fähigkeit, auch umfangreichere wirtschaftsbezogene Publikationen zu allen
 Themen zu verstehen und unter Anwendung spezifischer Sprachstrukturen und konventionen sprachlich und stilistisch sicher selbst zu verfassen;
- Erwerb spezifischer sprachlicher und stilistischer Strukturen der englischen Sprache sowie Entwicklung eines differenzierten wirtschaftswissenschaftlichen Wortschatzes;
- Ausbau des operativen landeskundlichen und interkulturellen Wissens über die englischsprachigen Länder im beruflichen und wirtschaftlichen Kontext.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Business English I (Übung)

Inhalte:

- Management
- · Company Organisational Structures
- Business Entities
- · Sectors of the Economy
- · Production and Products
- Marketing
- Advertising
- Banking
- · Venture Capital
- Market Structure
- · Competition

In der Lehrveranstaltung werden die vier Sprachfertigkeiten und vier Kommunikationsmodi praktisch geübt. Der Kompetenzzuwachs basiert auf Self Assessment, Peer Assessment und dem Feedback der Lehrkraft zu den von den Studierenden erstellten sprachlichen Produkten bzw. bearbeiteten Aufgaben.

Prüfung: Fremdsprachenportfolio: 6-7 Aufträge (Gesamtumfang ca. 200 Min., schriftl. Arbeitsaufträge von insg. max. 1500 Wörtern) für die vier Fertigkeiten Hörverstehen, Leseverstehen, Schriftl. Ausdruck und Mündl. Ausdruck (jeweils 25 % der Gesamtnote)

6 C

4 SWS

Prüfungsvorleistungen:

regelmäßige und aktive Teilnahme

Prüfungsanforderungen:

Das Fremdsprachenportfolio umfasst separate oder integrierte Arbeitsaufträge zur Überprüfung der Kommunikationsmodi "Rezeption", "Produktion", "Interaktion" und "Mediation" und dient dem Nachweis von sprachlichen Handlungskompetenzen in interkulturellen und wirtschaftsbezogenen Kontexten in Studium, Forschung, Beruf und Alltag unter Anwendung der vier Fertigkeiten Hören, Sprechen, Lesen und Schreiben, d.h. dem Nachweis der Fähigkeit, rezeptiv wie produktiv auf eine dem Niveau C1.1 des *Gemeinsamen europäischen Referenzrahmens für Sprachen* angemessene Art mit mündlichen und schriftlichen Kommunikationssituationen umzugehen.

Der genaue Umfang und die Zusammensetzung der Arbeitsaufträge werden in der ersten Lehrveranstaltungssitzung und der Lernplattform bekanntgegeben.

Zugangsvoraussetzungen: Modul Mittelstufe II oder Einstufungstest mit abgeschlossenem Niveau B2.2 des GER	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Ashley Chandler Heather Kretschmer
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 25	

Georg-August-Universität Göttingen Modul SK.FS.EN-FW-C1-2: Business English II - C1.2 English title: Business English II - C1.2

Lernziele/Kompetenzen:

Weiterentwicklung vorhandener diskursiver Fertigkeiten und Kompetenzen bis zum Niveau C1 des *Gemeinsamen europäischen Referenzrahmens für Sprachen*, mit Hilfe derer auch sehr komplexe berufliche und wirtschaftswissenschaftliche Sprachhandlungen auf Englisch vollzogen werden können, wie z.B.:

- Weiterentwicklung der Fähigkeit, mühelos an allen Unterhaltungen, Diskussionen und Verhandlungen mit allgemeinen und wirtschaftsbezogenen Inhalten teilzunehmen, solche mündlichen Kommunikationssituationen zu leiten bzw. aktiv mitzugestalten sowie eigene Beiträge inhaltlich komplex und sprachlich angemessen zu formulieren;
- Weiterentwicklung der Fähigkeit, auch umfangreichere wirtschaftsbezogene Publikationen zu allen Themen zu verstehen und unter Anwendung spezifischer Sprachstrukturen und -konventionen sprachlich und stilistisch sicher auf einem hohen Niveau selbst zu verfassen;
- ergänzender Erwerb spezifischer sprachlicher und stilistischer Strukturen der englischen Sprache sowie Weiterentwicklung eines differenzierten wirtschaftswissenschaftlichen Wortschatzes;

Lehrveranstaltung: Business English II (Übung)

 Ausbau des operativen landeskundlichen und interkulturellen Wissens über die englischsprachigen Länder im beruflichen und wirtschaftlichen Kontext.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

4 SWS

Inhalte: Stock Exchanges · Bonds and Derivatives · Takeovers, Mergers and Buyouts · The Role of Government Taxation Central Banking · Economic Growth • The Business Cycle · Keynesianism and Monetarism Efficiency Employment · Exchange Rates · International Trade In der Lehrveranstaltung werden die vier Sprachfertigkeiten und vier Kommunikationsmodi praktisch geübt. Der Kompetenzzuwachs basiert auf Self Assessment, Peer Assessment und dem Feedback der Lehrkraft zu den von den Studierenden erstellten sprachlichen Produkten bzw. bearbeiteten Aufgaben. 6 C Prüfung: Fremdsprachenportfolio: 6-7 Aufträge (Gesamtumfang ca. 155 Min.,

schriftl. Arbeitsaufträge von insg. max. 1500 Wörtern) für die vier Fertigkeiten

Hörverstehen, Leseverstehen, Schriftl. Ausdruck und Mündl. Ausdruck (jeweils 25 % der Gesamtnote)

Prüfungsvorleistungen:

regelmäßige und aktive Teilnahme

Prüfungsanforderungen:

Das Fremdsprachenportfolio umfasst separate oder integrierte Arbeitsaufträge zur Überprüfung der Kommunikationsmodi "Rezeption", "Produktion", "Interaktion" und "Mediation" und dient dem Nachweis von sprachlichen Handlungskompetenzen in interkulturellen und wirtschaftsbezogenen Kontexten in Studium, Forschung, Beruf und Alltag unter Anwendung der vier Fertigkeiten Hören, Sprechen, Lesen und Schreiben, d.h. dem Nachweis der Fähigkeit, rezeptiv wie produktiv auf eine dem Niveau C1.1 des *Gemeinsamen europäischen Referenzrahmens für Sprachen* angemessene Art mit mündlichen und schriftlichen Kommunikationssituationen umzugehen.

Der genaue Umfang und die Zusammensetzung der Arbeitsaufträge werden in der ersten Lehrveranstaltungssitzung und der Lernplattform bekanntgegeben.

Zugangsvoraussetzungen: Modul Business English I	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Ashley Chandler Heather Kretschmer
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 25	

Fakultät für Mathematik und Informatik:

Nach Beschluss des Fakultätsrats der Fakultät für Mathematik und Informatik vom 09.03.2022 hat das Präsidium der Georg-August-Universität Göttingen am 16.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Mathematik" genehmigt (§ 44 Abs. 1 Satz 2 NHG, §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II rückwirkend zum 01.04.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den Bachelor-Studiengang "Mathematik" (Amtliche Mitteilungen I Nr. 14/2013 S. 285, zuletzt geaendert durch Amtliche Mitteilungen I Nr. 24/2022 S. 446)

Module

B.Che.1201: Einführung in die Organische Chemie	5866
B.Che.1301: Einführung in die Physikalische Chemie	5867
B.Che.1303: Materie und Strahlung	5869
B.Che.1304: Chemisches Gleichgewicht	5870
B.Che.1402: Atombau und Chemische Bindung	5871
B.Che.2301: Chemische Reaktionskinetik	5873
B.Che.3702: Einführung in die Makromolekulare Chemie	5874
B.Che.4104: Allgemeine und Anorganische Chemie (Lehramt und Nebenfach)	5875
B.Che.9107: Chemisches Praktikum für Studierende der Physik und Geowissenschaften	5876
B.Inf.1101: Grundlagen der Informatik und Programmierung	5878
B.Inf.1102: Grundlagen der Praktischen Informatik	5880
B.Inf.1201: Theoretische Informatik	5882
B.Inf.1202: Formale Systeme	5884
B.Inf.1203: Betriebssysteme	5885
B.Inf.1204: Telematik / Computernetzwerke	5887
B.Inf.1206: Datenbanken	5888
B.Inf.1209: Softwaretechnik	5889
B.Inf.1210: Computersicherheit und Privatheit	5891
B.Inf.1236: Machine Learning	5892
B.Inf.1237: Deep Learning	5893
B.Inf.1240: Visualization	5894
B.Inf.1241: Computational Optimal Transport	5895
B.Inf.1801: Programmierkurs	5896
B.Mat.0011: Analysis I	5897
B.Mat.0012: Analytische Geometrie und Lineare Algebra I	5899
B.Mat.0021: Analysis II	5901
B.Mat.0022: Analytische Geometrie und Lineare Algebra II	5903
B.Mat.0720: Mathematische Anwendersysteme (Grundlagen)	5905
B.Mat.0721: Mathematisch orientiertes Programmieren	5907

B.Mat.0730: Praktikum Wissenschaftliches Rechnen	5909
B.Mat.0740: Stochastisches Praktikum	5911
B.Mat.0801: Mathematik für Studierende der Informatik I	5913
B.Mat.0802: Mathematik für Studierende der Informatik II	5915
B.Mat.0803: Diskrete Mathematik für Studierende der Informatik	5917
B.Mat.0804: Diskrete Stochastik für Studierende der Informatik	5919
B.Mat.0811: Mathematische Grundlagen in der Biologie	5921
B.Mat.0821: Mathematische Grundlagen in den Geowissenschaften	5922
B.Mat.0822: Statistik für Studierende der Geowissenschaften	5923
B.Mat.0831: Mathematik für Studierende der Physik I	5925
B.Mat.0832: Mathematik für Studierende der Physik II	5927
B.Mat.0833: Mathematik für Studierende der Physik III	5929
B.Mat.0900: Mathematisches Propädeutikum	5931
B.Mat.0910: Linux effektiv nutzen	5932
B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen	5934
B.Mat.0922: Mathematics information services and electronic publishing	5936
B.Mat.0931: Tutorentraining	5938
B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum	5940
B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erha Nutzung wissenschaftlicher Modellsammlungen	
B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen	5942
B.Mat.0940: Mathematik in der Welt, in der wir leben	5943
B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung	5945
B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld	5946
B.Mat.0952: Organisation einer mathematischen Veranstaltung	5947
B.Mat.0970: Betriebspraktikum	5948
B.Mat.1100: Analysis auf Mannigfaltigkeiten	5949
B.Mat.1200: Algebra	5951
B.Mat.1300: Numerische lineare Algebra	5953
B.Mat.1310: Methoden zur Numerischen Mathematik	5955
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie	5957

Inhaltsverzeichnis

B.Mat.2100: Partielle Differenzialgleichungen	5959
B.Mat.2110: Funktionalanalysis	
B.Mat.2120: Funktionentheorie	
B.Mat.2200: Moderne Geometrie	5965
B.Mat.2210: Zahlen und Zahlentheorie	5967
B.Mat.2220: Diskrete Mathematik	5969
B.Mat.2300: Numerische Analysis	5971
B.Mat.2310: Optimierung	5973
B.Mat.2410: Stochastik	5975
B.Mat.2420: Statistical Data Science	5977
B.Mat.3000: Ausgewählte Themen der reinen Mathematik	5979
B.Mat.3031: Wissenschaftliches Rechnen	5980
B.Mat.3041: Overview on non-life insurance mathematics	5982
B.Mat.3042: Overview on life insurance mathematics	5983
B.Mat.3043: Non-life insurance mathematics	5984
B.Mat.3044: Life insurance mathematics	5986
B.Mat.3111: Introduction to analytic number theory	5988
B.Mat.3112: Introduction to analysis of partial differential equations	5990
B.Mat.3113: Introduction to differential geometry	5992
B.Mat.3114: Introduction to algebraic topology	5994
B.Mat.3115: Introduction to mathematical methods in physics	5996
B.Mat.3121: Introduction to algebraic geometry	5998
B.Mat.3122: Introduction to algebraic number theory	6000
B.Mat.3123: Introduction to algebraic structures	6002
B.Mat.3124: Introduction to groups, geometry and dynamical systems	6004
B.Mat.3125: Introduction to non-commutative geometry	6006
B.Mat.3131: Introduction to inverse problems	6008
B.Mat.3132: Introduction to approximation methods	6010
B.Mat.3133: Introduction to numerics of partial differential equations	6012
B.Mat.3134: Introduction to optimisation	6014
B.Mat.3137: Introduction to variational analysis	6016

B.Mat.3138: Introduction to image and geometry processing	6018
B.Mat.3139: Introduction to scientific computing / applied mathematics	6020
B.Mat.3141: Introduction to applied and mathematical stochastics	6022
B.Mat.3142: Introduction to stochastic processes	6024
B.Mat.3143: Introduction to stochastic methods of economathematics	6026
B.Mat.3144: Introduction to mathematical statistics	6028
B.Mat.3145: Introduction to statistical modelling and inference	6030
B.Mat.3146: Introduction to multivariate statistics	6032
B.Mat.3147: Introduction to statistical foundations of data science	6034
B.Mat.3210: Proseminar im Schwerpunkt SP 1 "Analysis, Geometrie, Topologie"	6036
B.Mat.3211: Proseminar im Zyklus "Analytische Zahlentheorie"	6038
B.Mat.3212: Proseminar im Zyklus "Analysis Partieller Differenzialgleichungen"	6040
B.Mat.3213: Proseminar im Zyklus "Differenzialgeometrie"	6042
B.Mat.3214: Proseminar im Zyklus "Algebraische Topologie"	6044
B.Mat.3215: Proseminar im Zyklus "Mathematische Methoden der Physik"	6046
B.Mat.3220: Proseminar im Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie"	6048
B.Mat.3221: Proseminar im Zyklus "Algebraische Geometrie"	6050
B.Mat.3222: Proseminar im Zyklus "Algebraische Zahlentheorie"	6052
B.Mat.3223: Proseminar im Zyklus "Algebraische Strukturen"	6054
B.Mat.3224: Proseminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme"	6056
B.Mat.3225: Proseminar im Zyklus "Nichtkommutative Geometrie"	6058
B.Mat.3230: Proseminar "Numerische und Angewandte Mathematik"	6060
B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik"	6062
B.Mat.3240: Proseminar "Mathematische Stochastik"	6064
B.Mat.3311: Advances in analytic number theory	6065
B.Mat.3312: Advances in analysis of partial differential equations	6067
B.Mat.3313: Advances in differential geometry	6069
B.Mat.3314: Advances in algebraic topology	6071
B.Mat.3315: Advances in mathematical methods in physics	6073
B.Mat.3321: Advances in algebraic geometry	6075
B.Mat.3322: Advances in algebraic number theory	6077

Inhaltsverzeichnis

B.Mat.3323: Advances in algebraic structures	6079
B.Mat.3324: Advances in groups, geometry and dynamical systems	6081
B.Mat.3325: Advances in non-commutative geometry	6083
B.Mat.3331: Advances in inverse problems	6085
B.Mat.3332: Advances in approximation methods	6087
B.Mat.3333: Advances in numerics of partial differential equations	6089
B.Mat.3334: Advances in optimisation	6091
B.Mat.3337: Advances in variational analysis	6093
B.Mat.3338: Advances in image and geometry processing	6095
B.Mat.3339: Advances in scientific computing / applied mathematics	6097
B.Mat.3341: Advances in applied and mathematical stochastics	6099
B.Mat.3342: Advances in stochastic processes	6101
B.Mat.3343: Advances in stochastic methods of economathematics	6103
B.Mat.3344: Advances in mathematical statistics	6105
B.Mat.3345: Advances in statistical modelling and inference	6107
B.Mat.3346: Advances in multivariate statistics	6109
B.Mat.3347: Advances in statistical foundations of data science	6111
B.Mat.3411: Seminar im Zyklus "Analytische Zahlentheorie"	6113
B.Mat.3412: Seminar im Zyklus "Analysis Partieller Differenzialgleichungen"	6115
B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie"	6117
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie"	6119
B.Mat.3415: Seminar im Zyklus "Mathematische Methoden der Physik"	6121
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie"	6123
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie"	6125
B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen"	6127
B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme"	6129
B.Mat.3425: Seminar im Zyklus "Nichtkommutative Geometrie"	6131
B.Mat.3431: Seminar im Zyklus "Inverse Probleme"	6133
B.Mat.3432: Seminar im Zyklus "Approximationsverfahren"	6135
B.Mat.3433: Seminar im Zyklus "Numerik Partieller Differenzialgleichungen"	6137
B.Mat.3434: Seminar im Zyklus "Optimierung"	6139

B.Mat.3437: Seminar im Zyklus "Variationelle Analysis"	6141
B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung"	6143
B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik"	6145
B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik"	6147
B.Mat.3442: Seminar im Zyklus "Stochastische Prozesse"	6149
B.Mat.3443: Seminar im Zyklus "Stochastische Methoden der Wirtschaftsmathematik"	6151
B.Mat.3444: Seminar im Zyklus "Mathematische Statistik"	6153
B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz"	6155
B.Mat.3446: Seminar im Zyklus "Multivariate Statistik"	6157
B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science"	6159
B.Phi.01: Basismodul Theoretische Philosophie	6161
B.Phi.03: Basismodul Geschichte der Philosophie	6163
B.Phi.03a: Basismodul Geschichte der Philosophie für Mathematik-Studierende	6165
B.Phi.04: Basismodul Logik	6166
B.Phi.05: Aufbaumodul Theoretische Philosophie	6167
B.Phy-NF.7005: Physikalisches Grundpraktikum für Studierende der Mathematik	6169
B.Phy-NF.7006: Experimentalphysik III - Wellen und Optik für Studierende der Mathematik	6170
B.Phy-NF.7007: Experimentalphysik IV - Atom- und Quantenphysik für Studierende der Mathematik	6171
B.Phy.1101: Experimentalphysik I - Mechanik (mit Praktikum)	6172
B.Phy.1102: Experimentalphysik II - Elektromagnetismus (mit Praktikum)	6174
B.Phy.1103: Experimentalphysik III - Wellen und Optik (mit Praktikum)	6176
B.Phy.1104: Experimentalphysik IV - Atom- und Quantenphysik (mit Praktikum)	6178
B.Phy.1201: Analytische Mechanik	6180
B.Phy.1202: Klassische Feldtheorie	6181
B.Phy.1203: Quantenmechanik I	6182
B.Phy.1204: Statistische Physik	6183
B.Phy.1601: Grundlagen der C-Programmierung	6184
B.Phy.1602: Computergestütztes wissenschaftliches Rechnen	6185
B.Phy.2101: Experimentalphysik I: Mechanik und Thermodynamik	6186
B.Phy.2102: Experimentalphysik II: Elektromagnetismus	6188
B.Phy.2103: Experimentalphysik III für 2FB: Wellen, Optik und Atomphysik	6189

Inhaltsverzeichnis

B.WIWI-BWL.0001: Unternehm	enssteuern I	6191
B.WIWI-BWL.0002: Interne Unt	ternehmensrechnung	6193
B.WIWI-BWL.0003: Unternehm	ensführung und Organisation	6195
B.WIWI-BWL.0004: Produktion	und Logistik	6197
B.WIWI-BWL.0005: Marketing		6199
B.WIWI-BWL.0006: Finanzmärk	kte und Bewertung	6201
B.WIWI-BWL.0089: Corporate I	Financial Management	6203
B.WIWI-OPH.0004: Einführung	in die Finanzwirtschaft	6205
B.WIWI-OPH.0005: Jahresabso	chluss	6207
B.WIWI-OPH.0007: Mikroökono	omik I	6209
B.WIWI-OPH.0008: Makroökon	omik I	6212
B.WIWI-VWL.0001: Mikroökono	omik II	6214
B.WIWI-VWL.0002: Makroökon	omik II	6216
B.WIWI-VWL.0003: Einführung	in die Wirtschaftspolitik	6218
B.WIWI-VWL.0004: Einführung	in die Finanzwissenschaft	6220
B.WIWI-VWL.0005: Grundlager	n der internationalen Wirtschaftsbeziehungen	6222
B.WIWI-VWL.0006: Wachstum	und Entwicklung	6224
B.WIWI-VWL.0007: Einführung	in die Ökonometrie	6226
B.WIWI-VWL.0075: Dynamisch	e Methoden in der Ökonomie	6228
B.WIWI-WIN.0031: Design Scie	ence und Design Thinking	6230

Übersicht nach Modulgruppen

I. Basisstudium

Es müssen Module im Umfang von insgesamt 36 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Orientierungsmodule

Es müssen folgende zwei Orientierungsmodule im Gesamtumfang von 18 C erfolgreich absolviert werden.

B.Mat.0012: Analytische Geometrie und Lineare Algebra I (9 C, 6 SWS) - Orientierungsmodul......5899

2. Basismodule

Es müssen folgende zwei Basismodule im Gesamtumfang von 18 C erfolgreich absolviert werden.

B.Mat.0021: Analysis II (9 C, 6 SWS) - Pflichtmodul.......5901

B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C, 6 SWS) - Pflichtmodul...... 5903

II. Aufbau und Vertiefungsstudium

Es muss eines der drei nachfolgenden Profile im Umfang von insgesamt wenigstens 132 C gewählt werden.

1. Profil "F - allgemein"

Im forschungsorientierten Profil "F - allgemein" sind Module im Gesamtumfang von mindestens 132 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

a. Grundstudium im Profil F

Im Grundstudium im Profil F müssen folgende Module im Gesamtumfang von 36 C erfolgreich absolviert werden, die zugleich für die Zertifizierung des entsprechenden Studienschwerpunkts heran gezogen werden können:

aa. SP 1. Eines der folgenden vier Module:

B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS)	5949
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)	5959
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	5961
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)	5963

bb. SP 2.

B.Mat.1200: Algebra (9 C, 6 SWS)5951
cc. SP 3.
B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS)5953
dd. SP 4.
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS)5957

b. Vertiefungsstudium im Profil F

Im Vertiefungsstudium in Profil F sind von den in "III.Vertiefungsstudium" genannten Wahlmodulen Module im Umfang von insgesamt mindestens 48 C erfolgreich zu absolvieren, davon mindestens 3 C für ein Proseminar- oder Seminarmodul.

c. Nebenfach im Profil F

Im Profil F sind in einem der in "IV. Nebenfach" genannten Nebenfächer nach Maßgabe der dort genannten Bestimmungen Module im Gesamtumfang von mindestens 30 C erfolgreich zu absolvieren.

d. Schlüsselkompetenzen im Profil F

Im Profil F sind im Professionalisierungsbereich "Schlüsselkompetenzen" Module im Umfang von insgesamt mindestens 18 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

a. EDV/IKT-Kompetenz

Es ist ein Programmierkurs zu einer höheren, objektorientierten Programmiersprache im Umfang von mindestens 5 C erfolgreich zu absolvieren; empfohlen wird eines der nachstehenden Module:

3.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)	907
3.Inf.1801: Programmierkurs (5 C, 3 SWS)5	896

b. Fachbezogene und fächerübergreifende Schlüsselkompetenzen

Zum Auffüllen auf 18C kann aus den unter V. "Schlüsselkompetenzen" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik frei gewählt werden. Weiterhin können Module im Gesamtumfang von maximal 10C aus dem gesamten zulässigen Schlüsselkompetenzangebot der Universität frei gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen.

2. Profil "P - mit Praxisbezug"

Im forschungsorientierten Profil "P - mit Praxisbezug" sind Module im Gesamtumfang von insgesamt mindestens 132 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

a. Grundstudium im Profil P - Wahlpflichtbereich

Im Grundstudium im Profil P ist eines der folgenden fünf Module im Umfang von 9 C erfolgreich zu absolvieren:

B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS)	5949
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)	5959
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	5961
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)	5963
B.Mat.1200: Algebra (9 C, 6 SWS)	5951

b. Grundstudium im Profil P - Pflichtbereich

Im Pflichtbereich des Grundstudiums im Profil P müssen folgende Module im Gesamtumfang von 27 C erfolgreich absolviert werden, die zugleich für die Zertifizierung des entsprechenden Schwerpunkts heran gezogen werden können:

aa. SP 3.

B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS)5953
bb. SP 4.
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS)
B.Mat.2410: Stochastik (9 C, 6 SWS)
c. Vertiefungsstudium im Profil P - Wahlpflichtbereich
Im Vertiefungsstudium im Profil P ist eines der folgenden zwei Vertiefungsmodule im Umfang von 9 C erfolgreich zu absolvieren:
B.Mat.2300: Numerische Analysis (9 C, 6 SWS)

d. Weiteres Vertiefungsstudium im Profil P

Weiterhin sind im Vertiefungsstudium im Profil P aus den in "III. Vertiefungsstudium" genannten Wahlmodulen Module im Umfang von insgesamt mindestens 39 C erfolgreich zu absolvieren, davon mindestens 3 C für ein Proseminar- oder Seminarmodul.

B.Mat.2310: Optimierung (9 C, 6 SWS)......5973

e. Nebenfach im Profil P

Im Profil P sind in einem der in "IV. Nebenfach" genannten Nebenfächer nach Maßgabe der dort genannten Bestimmungen Module im Gesamtumfang von mindestens 30 C erfolgreich zu absolvieren.

f. Schlüsselkompetenzen im Profil P

Im Profil P sind im Professionalisierungsbereich "Schlüsselkompetenzen" Module im Umfang von insgesamt wenigstens 18 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

a. EDV/IKT-Kompetenz

Es ist ein Programmierkurs zu einer höheren, objektorientierten Programmiersprache im Umfang von mindestens 5 C erfolgreich zu absolvieren; empfohlen wird eines der nachstehenden Module:

B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)	5907
B.Inf.1801: Programmierkurs (5 C, 3 SWS)	5896

b. Fachbezogene Schlüsselkompetenzen

Es ist eines der folgenden drei Module im Umfang von mindestens 8 C erfolgreich zu absolvieren:

B.Mat.0970: Betriebspraktikum (8 C)	5948
B.Mat.0730: Praktikum Wissenschaftliches Rechnen (9 C, 4 SWS)	5909
B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)	5911

c. Fachbezogene und fachübergreifende Schlüsselkompetenzen

Ferner können aus den unter V. "Schlüsselkompetenzen" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik und aus dem gesamten zulässigen Schlüsselkompetenzangebot der Universität weitere Module frei gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen.

3. Profil "Phy - physikorientiert"

Im forschungsorientierten Profil "Phy - physikorientiert" sind Module im Gesamtumfang von mindestens 132 C nach Maßgabe der folgenden Bestimmungen erfolgreich zu absolvieren.

a. Grundstudium im Profil Phy

Im Grundstudium im Profil Phy müssen folgende Module im Gesamtumfang von insgesamt 36 C erfolgreich absolviert werden, die zugleich für die Zertifizierung des entsprechenden Schwerpunkts heran gezogen werden können:

aa. SP 1. Eines der folgenden vier Module:

B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS)	5949
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)	5959
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	5961
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)	5963

bb. SP 2. B.Mat.1200: Algebra (9 C, 6 SWS)......5951 cc. SP 3. B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS)......5953 dd. SP 4. b. Vertiefungsstudium im Profil Phy Im Vertiefungsstudium sind im Profil Phy von den in "III. Vertiefungsstudium" genannten Wahlmodulen Module im Umfang von insgesamt mindestens 40 C erfolgreich zu absolvieren, davon mindestens 3 C für ein Proseminar- oder Seminarmodul. Ferner muss zusätzlich folgendes Modul im Umfang von 8 C erfolgreich absolviert werden: c. Nebenfach im Profil Phy Im Profil Phy sind im außermathematischen Kompetenzbereich folgende Module im Gesamtumfang von mindestens 34 C erfolgreich zu absolvieren: aa. Bereich A Es müssen Module im Gesamtumfang von 26 C nach Maßgabe der folgenden Bestimmungen gewählt werden. Es gibt zwei Alternativen zur Absolvierung dieser 26 C, welche unter den folgenden Punkten "i. Alternative 1)" und "ii. Alternative 2)" näher ausgeführt sind. i. Alternative 1) Es müssen die folgenden drei Module im Gesamtumfang von 26 C erfolgreich absolviert werden: B.Phy.1101: Experimentalphysik I - Mechanik (mit Praktikum) (9 C, 9 SWS).......6172 B.Phy.1102: Experimentalphysik II - Elektromagnetismus (mit Praktikum) (9 C, 9 SWS). 6174 B.Phy.1201: Analytische Mechanik (8 C, 6 SWS)......6180 ii. Alternative 2) Es müssen die folgenden vier Module im Gesamtumfang von 26 C erfolgreich absolviert

werden:

B.Phy-NF.7005: Physikalisches Grundpraktikum für Studierende der Mathematik (6 C, 5 SWS)61	69
B.Phy.1201: Analytische Mechanik (8 C, 6 SWS)61	80
bb. Bereich B	
Ferner ist eines der folgenden Module im Umfang von mindestens 8 C erfolgreich zu absolvieren, empfohlen wird B.Phy.1202 "Klassische Feldtheorie".	
B.Phy.1103: Experimentalphysik III - Wellen und Optik (mit Praktikum) (9 C, 9 SWS) 61	76
B.Phy.1104: Experimentalphysik IV - Atom- und Quantenphysik (mit Praktikum) (9 C, 9 SWS)	78
B.Phy.1202: Klassische Feldtheorie (8 C, 6 SWS)61	81
B.Phy.1204: Statistische Physik (8 C, 6 SWS)61	83

d. Schlüsselkompetenzen im Profil Phy

Im Profil Phy sind im Professionalisierungsbereich "Schlüsselkompetenzen" Module im Gesamtumfang von mindestens 14 C nach Maßgabe der folgenden Bestimmungen zu absolvieren.

a. EDV/IKT-Kompetenz

Es wird empfohlen einen Programmierkurs zu einer höheren, objektorientierten Programmiersprache zu absolvieren; z.B. eines der nachstehenden Module:

B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)	5907
B.Phy.1601: Grundlagen der C-Programmierung (6 C, 3 SWS)	6184
B.Phy.1602: Computergestütztes wissenschaftliches Rechnen (6 C, 6 SWS)	. 6185
B.Inf.1801: Programmierkurs (5 C. 3 SWS)	.5896

b. Fachbezogene und fachübergreifende Schlüsselkompetenzen

Ferner können aus den unter "V. Schlüsselkompetenzehn" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik und dem gesamten zulässigen Schlüsselkompetenzangebot der Universität weitere Module frei gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen.

III. Vertiefungsstudium

Das Studienangebot des Vertiefungsstudiums im Fach Mathematik setzt sich aus weiterführenden mathematischen Modulen zusammen, die zum Teil in Zyklen organisiert sind. Nachfolgende Module können zugleich für die Zertifizierung des jeweiligen Schwerpunkts verwendet werden. Je nach gewähltem Profil sind Module im Umfang von insgesamt wenigstens 48 C (Profil F), 30 C (Profil P) oder 40 C (Profil Phy) zu absolvieren.

1. Weiterführende mathematische Module SP1 (Analysis, Geometrie, Topologie)

Im Schwerpunkt SP1 stehen folgende Wahlmodule zur Auswahl:	
B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS)) 49
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)59) 59
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)59	961
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)59	963
B.Mat.3000: Ausgewählte Themen der reinen Mathematik (6 C, 4 SWS)59	979
B.Mat.3210: Proseminar im Schwerpunkt SP 1 "Analysis, Geometrie, Topologie" (3 C, 2 SWS)60)36
2. Weiterführende mathematische Module SP2 (Algebra, Geometrie, Zahlentheorie) Im Schwerpunkt SP2 stehen folgende Wahlmodule zur Auswahl:	
B.Mat.2200: Moderne Geometrie (9 C, 6 SWS)	965
B.Mat.2210: Zahlen und Zahlentheorie (9 C, 6 SWS)59	
B.Mat.2220: Diskrete Mathematik (9 C, 6 SWS)	
B.Mat.3000: Ausgewählte Themen der reinen Mathematik (6 C, 4 SWS)59	979
B.Mat.3220: Proseminar im Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie" (3 C, 2 SWS)	
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik)	
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte	
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik)	
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl:	905
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 959
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 959
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 959 961
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 961 971
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 959 961 971 973
3. Weiterführende mathematische Module SP3 (Numerische und Angewandte Mathematik) Im Schwerpunkt SP3 stehen folgende Wahlmodule zur Auswahl: B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	905 907 909 955 959 961 971 973

B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)59	11
B.Mat.2410: Stochastik (9 C, 6 SWS)	75
B.Mat.2420: Statistical Data Science (9 C, 6 SWS)	77
B.Mat.3041: Overview on non-life insurance mathematics (3 C, 2 SWS)	82
B.Mat.3042: Overview on life insurance mathematics (3 C, 2 SWS)	83
B.Mat.3043: Non-life insurance mathematics (6 C, 4 SWS)	84
B.Mat.3044: Life insurance mathematics (6 C, 4 SWS)	86
B.Mat.3240: Proseminar "Mathematische Stochastik" (3 C, 2 SWS)606	64
5. Weiterführende mathematische Module in Zyklen im SP1 (Analysis, Geometrie, Topologie)	
Ferner stehen im Vertiefungsstudium die folgenden Wahlmodule zur Auswahl, aus denen sich die Zyklen in diesem Schwerpunkt zusammen setzen:	
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS)598	88
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS)599	90
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS)	92
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS)599	94
B.Mat.3115: Introduction to mathematical methods in physics (9 C, 6 SWS)599	96
B.Mat.3211: Proseminar im Zyklus "Analytische Zahlentheorie" (3 C, 2 SWS)603	38
B.Mat.3212: Proseminar im Zyklus "Analysis Partieller Differenzialgleichungen" (3 C, 2 SWS)604	40
B.Mat.3213: Proseminar im Zyklus "Differenzialgeometrie" (3 C, 2 SWS)	42
B.Mat.3214: Proseminar im Zyklus "Algebraische Topologie" (3 C, 2 SWS)604	44
B.Mat.3215: Proseminar im Zyklus "Mathematische Methoden der Physik" (3 C, 2 SWS) 604	46
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS)606	65
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS)606	67
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS)606	69
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS)607	71
B.Mat.3315: Advances in mathematical methods in physics (9 C, 6 SWS)607	73
B.Mat.3411: Seminar im Zyklus "Analytische Zahlentheorie" (3 C, 2 SWS)611	13
B.Mat.3412: Seminar im Zyklus "Analysis Partieller Differenzialgleichungen" (3 C, 2 SWS)611	15
B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie" (3 C, 2 SWS)	17
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie" (3 C, 2 SWS)611	19

B.Mat.3415: Seminar im Zyklus "Mathematische Methoden der Physik" (3 C, 2 SWS)	6121
6. Weiterführende mathematische Module in Zyklen im SP2 (Algebra, Geometrie, Zahlentheorie)	
Ferner stehen im Vertiefungsstudium die folgenden Wahlmodule zur Auswahl, aus denen sich Zyklen in diesem Schwerpunkt zusammen setzen:	die
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS)	5998
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS)	6000
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS)	6002
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS)	6004
B.Mat.3125: Introduction to non-commutative geometry (9 C, 6 SWS)	6006
B.Mat.3221: Proseminar im Zyklus "Algebraische Geometrie" (3 C, 2 SWS)	6050
B.Mat.3222: Proseminar im Zyklus "Algebraische Zahlentheorie" (3 C, 2 SWS)	6052
B.Mat.3223: Proseminar im Zyklus "Algebraische Strukturen" (3 C, 2 SWS)	6054
B.Mat.3224: Proseminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme" (3 C, 2 SWS)	6056
B.Mat.3225: Proseminar im Zyklus "Nichtkommutative Geometrie" (3 C, 2 SWS)	6058
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS)	6075
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS)	6077
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS)	6079
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS)	6081
B.Mat.3325: Advances in non-commutative geometry (9 C, 6 SWS)	6083
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie" (3 C, 2 SWS)	6123
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie" (3 C, 2 SWS)	6125
B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen" (3 C, 2 SWS)	6127
B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme" (3 C, 2 SWS) 6129
B.Mat.3425: Seminar im Zyklus "Nichtkommutative Geometrie" (3 C, 2 SWS)	6131
7. Weiterführende mathematische Module in Zyklen im SP3 (Numerische Angewandte Mathematik)	und
Ferner stehen im Vertiefungsstudium die folgenden Wahlmodule zur Auswahl, aus denen sich Zyklen in diesem Schwerpunkt zusammen setzen:	die
B.Mat.3131: Introduction to inverse problems (9 C, 6 SWS)	6008
B.Mat.3132: Introduction to approximation methods (9 C, 6 SWS)	6010

B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS)	6012
B.Mat.3134: Introduction to optimisation (9 C, 6 SWS)	6014
B.Mat.3137: Introduction to variational analysis (9 C, 6 SWS)	6016
B.Mat.3138: Introduction to image and geometry processing (9 C, 6 SWS)	6018
B.Mat.3139: Introduction to scientific computing / applied mathematics (9 C, 6 SWS)	6020
B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" (3 SWS)	
B.Mat.3331: Advances in inverse problems (9 C, 6 SWS)	6085
B.Mat.3332: Advances in approximation methods (9 C, 6 SWS)	6087
B.Mat.3333: Advances in numerics of partial differential equations (9 C, 6 SWS)	6089
B.Mat.3334: Advances in optimisation (9 C, 6 SWS)	6091
B.Mat.3337: Advances in variational analysis (9 C, 6 SWS)	6093
B.Mat.3338: Advances in image and geometry processing (9 C, 6 SWS)	6095
B.Mat.3339: Advances in scientific computing / applied mathematics (9 C, 6 SWS)	6097
B.Mat.3431: Seminar im Zyklus "Inverse Probleme" (3 C, 2 SWS)	6133
B.Mat.3432: Seminar im Zyklus "Approximationsverfahren" (3 C, 2 SWS)	6135
B.Mat.3433: Seminar im Zyklus "Numerik Partieller Differenzialgleichungen" (3 C, 2 SWS)	6137
B.Mat.3434: Seminar im Zyklus "Optimierung" (3 C, 2 SWS)	6139
B.Mat.3437: Seminar im Zyklus "Variationelle Analysis" (3 C, 2 SWS)	6141
B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung" (3 C, 2 SWS)	6143
B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" (3 C. 2 SWS)	
8. Weiterführende mathematische Module in Zyklen im SP4 (Mathematische Stochastik)	he
Ferner stehen im Vertiefungsstudium die folgenden Wahlmodule zur Auswahl, aus denen sich Zyklen in diesem Schwerpunkt zusammen setzen:	die
B.Mat.3141: Introduction to applied and mathematical stochastics (9 C, 6 SWS)	6022
B.Mat.3142: Introduction to stochastic processes (9 C, 6 SWS)	6024
B.Mat.3143: Introduction to stochastic methods of economathematics (9 C, 6 SWS)	6026
B.Mat.3144: Introduction to mathematical statistics (9 C, 6 SWS)	6028
B.Mat.3145: Introduction to statistical modelling and inference (9 C, 6 SWS)	6030
B.Mat.3146: Introduction to multivariate statistics (9 C, 6 SWS)	6032

B.Mat.3147: Introduction to statistical foundations of data science (9 C, 6 SWS)	6034
B.Mat.3341: Advances in applied and mathematical stochastics (9 C, 6 SWS)	6099
B.Mat.3342: Advances in stochastic processes (9 C, 6 SWS)	6101
B.Mat.3343: Advances in stochastic methods of economathematics (9 C, 6 SWS)	6103
B.Mat.3344: Advances in mathematical statistics (9 C, 6 SWS)	6105
B.Mat.3345: Advances in statistical modelling and inference (9 C, 6 SWS)	6107
B.Mat.3346: Advances in multivariate statistics (9 C, 6 SWS)	6109
B.Mat.3347: Advances in statistical foundations of data science (9 C, 6 SWS)	6111
B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik" (3 C, 2 SWS)	6147
B.Mat.3442: Seminar im Zyklus "Stochastische Prozesse" (3 C, 2 SWS)	6149
B.Mat.3443: Seminar im Zyklus "Stochastische Methoden der Wirtschaftsmathematik" (3 C, 2 SWS)	6151
B.Mat.3444: Seminar im Zyklus "Mathematische Statistik" (3 C, 2 SWS)	6153
B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz" (3 C, 2 SWS)	6155
B.Mat.3446: Seminar im Zyklus "Multivariate Statistik" (3 C, 2 SWS)	6157
B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science" (3 C, 2 SWS)	6159

IV. Nebenfach

Im Profil P sowie im Profil F ist eines der folgenden Nebenfächer nach Maßgabe der genannten Bestimmungen im Gesamtumfang von mindestens 30 C erfolgreich zu absolvieren.

1. Betriebswirtschaftslehre

	B.WIWI-BWL.0005: Marketing (6 C, 4 SWS)	.6199
	B.WIWI-BWL.0006: Finanzmärkte und Bewertung (6 C, 4 SWS)	6201
	B.WIWI-BWL.0089: Corporate Financial Management (6 C, 4 SWS)	6203
	B.WIWI-WIN.0031: Design Science und Design Thinking (6 C, 2 SWS)	6230
2.	. Chemie	
	a. Chemie - Grundlagen	
	Es müssen die folgenden vier Module im Gesamtumfang von 26 C erfolgreich absolviert werde	en.
	B.Che.1201: Einführung in die Organische Chemie (6 C, 5 SWS)	.5866
	B.Che.1301: Einführung in die Physikalische Chemie (8 C, 7 SWS)	5867
	B.Che.4104: Allgemeine und Anorganische Chemie (Lehramt und Nebenfach) (6 C, 6 SWS)	5875
	B.Che.9107: Chemisches Praktikum für Studierende der Physik und Geowissenschaften (6 C, 8 SWS)	. 5876
	b. Chemie - Wahlpflichtbereich	
	Ferner ist eines der folgenden Module im Umfang von wenigstens 4 C erfolgreich zu absolvier	en.
	B.Che.1303: Materie und Strahlung (4 C, 3 SWS)	.5869
	B.Che.1304: Chemisches Gleichgewicht (6 C, 4 SWS)	5870
	B.Che.1402: Atombau und Chemische Bindung (5 C, 4 SWS)	.5871
	B.Che.2301: Chemische Reaktionskinetik (6 C, 4 SWS)	5873
	B.Che.3702: Einführung in die Makromolekulare Chemie (4 C, 3 SWS)	.5874
3.	. Experimentalphysik	
fo	n Nebenfach Experimentalphysik müssen Module im Gesamtumfang von 30 C nach Maßgabe d Igenden Bestimmungen gewählt werden. Es gibt zwei Alternativen zur Absolvierung dieser 30 C elche unter den folgenden Punkten a. und b. näher ausgeführt sind.	
	a. Alternative 1)	
	Es sind folgende Module im Gesamtumfang von 30 C erfolgreich zu absolvieren.	
	B.Phy.2101: Experimentalphysik I: Mechanik und Thermodynamik (6 C, 6 SWS)	6186
	B.Phy.2102: Experimentalphysik II: Elektromagnetismus (6 C, 6 SWS)	6188
	B.Phy-NF.7005: Physikalisches Grundpraktikum für Studierende der Mathematik (6 C, 5 SWS)	. 6169
	B.Phy-NF.7006: Experimentalphysik III - Wellen und Optik für Studierende der Mathematik (6 6 SWS)	

	B.Phy-NF.7007: Experimentalphysik IV - Atom- und Quantenphysik für Studierende der Mathematik (6 C, 6 SWS)	6171
	b. Alternative 2)	
	Es müssen mindestens drei der folgenden Module im Gesamtumfang von wenigstens 27 C erfolgreich absolviert werden. Ferner können aus den Modulen mit den Nummern B.Phy.**** weitere Module frei gewählt werden. Das Modul B.Phy.1301 kann nicht belegt werden.	
	B.Phy.1101: Experimentalphysik I - Mechanik (mit Praktikum) (9 C, 9 SWS)	. 6172
	B.Phy.1102: Experimentalphysik II - Elektromagnetismus (mit Praktikum) (9 C, 9 SWS)	. 6174
	B.Phy.1103: Experimentalphysik III - Wellen und Optik (mit Praktikum) (9 C, 9 SWS)	. 6176
	B.Phy.1104: Experimentalphysik IV - Atom- und Quantenphysik (mit Praktikum) (9 C, 9 SWS).	3178
4.	. Informatik	
	a. Informatik - Grundlagen	
	Es müssen die folgenden zwei Module im Gesamtumfang von 20 C erfolgreich absolviert wer	den.
	B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS)	5878
	B.Inf.1102: Grundlagen der Praktischen Informatik (10 C, 6 SWS)	5880
	b. Informatik - Wahlpflichtbereich	
	Ferner sind zwei der folgenden Module im Gesamtumfang von 10 C erfolgreich zu absolvierer	n.
	B.Inf.1201: Theoretische Informatik (5 C, 3 SWS)	5882
	B.Inf.1202: Formale Systeme (5 C, 3 SWS)	5884
	B.Inf.1203: Betriebssysteme (5 C, 3 SWS)	5885
	B.Inf.1204: Telematik / Computernetzwerke (5 C, 3 SWS)	. 5887
	B.Inf.1206: Datenbanken (5 C, 4 SWS)	5888
	B.Inf.1209: Softwaretechnik (5 C, 3 SWS)	5889
	B.Inf.1210: Computersicherheit und Privatheit (5 C, 4 SWS)	5891
	B.Inf.1236: Machine Learning (6 C, 4 SWS)	. 5892
	B.Inf.1237: Deep Learning (6 C, 4 SWS)	5893
	B.Inf.1240: Visualization (5 C, 3 SWS)	5894
	B.Inf.1241: Computational Optimal Transport (6 C, 4 SWS)	. 5895
_	Distriction	

5. Philosophie

a. Philosophie - Grundlagen

	Es müssen folgende drei Module im Gesamtumfang von 25 C erfolgreich absolviert werden.
	B.Phi.01: Basismodul Theoretische Philosophie (9 C, 4 SWS)
	B.Phi.04: Basismodul Logik (6 C, 4 SWS)6166
	B.Phi.05: Aufbaumodul Theoretische Philosophie (10 C, 4 SWS)
	b. Philosophie - Wahlpflichtbericht
	Weiterhin muss eines der beiden folgenden Module im Umfang von mindestens 5 C absolviert werden.
	B.Phi.03: Basismodul Geschichte der Philosophie (9 C, 4 SWS)6163
	B.Phi.03a: Basismodul Geschichte der Philosophie für Mathematik-Studierende (5 C, 2 SWS). 6165
6.	Theoretische Physik
	a. Physik - Grundlagen
	Es müssen mindestens zwei der folgenden vier Module im Gesamtumfang von wenigstens 16 C erfolgreich absolviert werden. Empfohlen werden B.Phy.1201 und B.Phy.1202.
	B.Phy.1201: Analytische Mechanik (8 C, 6 SWS)6180
	B.Phy.1202: Klassische Feldtheorie (8 C, 6 SWS)6181
	B.Phy.1203: Quantenmechanik I (8 C, 6 SWS)6182
	B.Phy.1204: Statistische Physik (8 C, 6 SWS)6183
	b. Physik - Wahlpflichtbereich
	Ferner können aus den Modulen mit den Nummern B.Phy.**** weitere Module frei gewählt werden. Das Modul B.Phy.1301 kann nicht belegt werden. Es wird empfohlen, unter den folgenden Modulen auszuwählen.
	B.Phy.2101: Experimentalphysik I: Mechanik und Thermodynamik (6 C, 6 SWS)6186
	B.Phy.2102: Experimentalphysik II: Elektromagnetismus (6 C, 6 SWS)
	B.Phy.2103: Experimentalphysik III für 2FB: Wellen, Optik und Atomphysik (6 C, 6 SWS)6189
7.	Volkswirtschaftslehre
	a. Volkswirtschaftslehre - Grundlagen
	Es müssen die folgenden zwei Module im Gesamtumfang von 12 C erfolgreich absolviert werden.
	B.WIWI-OPH.0007: Mikroökonomik I (6 C, 5 SWS)
	P W//W/I ODH 0009: Makroäkonomik I /6 C /4 SW/S) 6212

b. Volkswirtschaftslehre - Wahlpflichtbereich Ferner sind drei der folgenden Module im Gesamtumfang von 18 C erfolgreich zu absolvieren. B.WIWI-VWL.0003: Einführung in die Wirtschaftspolitik (6 C, 4 SWS).......6218 B.WIWI-VWL.0004: Einführung in die Finanzwissenschaft (6 C, 4 SWS).......6220 B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen (6 C, 4 SWS)...... 6222 B.WIWI-VWL.0007: Einführung in die Ökonometrie (6 C, 6 SWS).......6226 V. Schlüsselkompetenzen Folgende von der Lehreinheit Mathematik angebotenen Schlüsselkompetenzmodule können nach Maßgabe der in den Profilen jeweils angegebenen Bestimmungen in dem Schlüsselkompetenzbereich eingebracht werden: B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS).......5907 B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen (3 C, 2 SWS)......5934 B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum (3 C, 2 SWS).......5940 B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und die B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen (4 C, 2 SWS)....... 5942 B.Mat.0940: Mathematik in der Welt, in der wir leben (3 C, 2 SWS).......5943 B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung (3 C, 1 SWS). 5945 B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld (3 C, 1 SWS)...... 5946 B.Mat.0952: Organisation einer mathematischen Veranstaltung (3 C, 2 SWS)......5947

VI. Freiwillige Zusatzleistungen (Zusatzmodule)

Es können weitere als die erforderlichen Module als Zusatzmodule absolviert werden. Es wird zwischen den nachstehenden Gruppen unterschieden.

1. Mathematische Zusatzmodule

Auf Antrag werden Noten von freiwilligen Zusatzleistungen (Zusatzmodulen) in Modulen B.Mat.**** des Bachelorstudiengangs Mathematik im Umfang von höchstens 30 C bei der Berechnung des Gesamtergebnisses der Bachelorprüfung berücksichtigt. Diese Zusatzmodule werden als freiwillige Zusatzleistungen in Zeugnis und Zeugnisergänzung (Transcript of Records) ausgewiesen. Folgende Module (Exportmodule) sind ausgeschlossen:

3.Mat.0900: Mathematisches Propädeutikum (4 C, 5 SWS)	5931
3.Mat.0801: Mathematik für Studierende der Informatik I (9 C, 6 SWS)	5913
3.Mat.0802: Mathematik für Studierende der Informatik II (9 C, 6 SWS)	5915
3.Mat.0803: Diskrete Mathematik für Studierende der Informatik (9 C, 6 SWS)	5917
3.Mat.0804: Diskrete Stochastik für Studierende der Informatik (9 C, 6 SWS)	5919
3.Mat.0811: Mathematische Grundlagen in der Biologie (6 C, 4 SWS)	5921
3.Mat.0821: Mathematische Grundlagen in den Geowissenschaften (6 C, 4 SWS)	5922
3.Mat.0822: Statistik für Studierende der Geowissenschaften (6 C, 4 SWS)	5923
3.Mat.0831: Mathematik für Studierende der Physik I (12 C, 10 SWS)	5925
3.Mat.0832: Mathematik für Studierende der Physik II (12 C, 8 SWS)	5927
3.Mat.0833: Mathematik für Studierende der Physik III (6 C. 6 SWS)	5929

2. Vorstudium

Studierende, die bereits wenigstens 150 C aus Modulen des Bachelor-Studiengangs "Mathematik" erworben haben, können Module des konsekutiven Master-Studiengangs "Mathematik" im Umfang von insgesamt bis zu 24 C als Zusatzmodule absolvieren. Diese Zusatzmodule werden weder in das Zeugnis noch in die Zeugnisergänzungen (Transcript of Records) aufgenommen, sie werden bei der Berechnung der Gesamtnote der Bachelorprüfung **nicht** berücksichtigt.

3. Weitere Module

Über die in den vorhergehenden Punkten genannten Zusatzmodule hinaus können weitere, für den Bachelorabschluss nicht erforderliche Module als Zusatzmodule absolviert werden. Diese werden in Zeugnis und Zeugnisergänzung (Transcript of Records) als freiwillige Zusatzleistungen gelistet, jedoch bei der Berechnung des Gesamtergebnisses der Bachelorprüfung **nicht** berücksichtigt. Im Fall von Modulen, die nicht in diesem Modulverzeichnis genannt werden, muss die Belegung vorab genehmigt werden.

VII. Bachelorarbeit

Durch die erfolgreiche Anfertigung der Bachelorarbeit werden 12 C erworben.

VIII. Methods of examination and glossary

Methods of examination

As far as in this directory of modules a module description is published in the English language the following mapping applies:

Soweit in diesem Modulverzeichnis Modulbeschreibungen in englischer Sprache veröffentlicht werden, gilt für die verwendeten Prüfungsformen nachfolgende Zuordnung:

- Oral examination = mündliche Prüfung [§ 15 Abs. 8 APO]
- Written examination = Klausur [§ 15 Abs. 9 APO]
- Term paper = Hausarbeit [§ 15 Abs. 11 APO]
- Presentation = Präsentation [§ 15 Abs. 12 APO]
- Presentation and written report = Präsentation mit schriftlicher Ausarbeitung [§ 15 Abs. 12 APO]

Glossary

APO = Allgemeinen Prüfungsordnung für Bachelor- und Master-Studiengänge sowie sonstige Studienangebote an der Universität Göttingen

PStO = Prüfungs- und Studienordnung für den Bachelor/Master-Studiengang "Mathematik"

WLH = Weekly lecture hours = SWS

Programme coordinator = Studiengangsbeauftrage/r

Georg-August-Universität Göttingen 6 C 5 SWS Modul B.Che.1201: Einführung in die Organische Chemie English title: Introduction to Organic Chemistry Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende Präsenzzeit: 70 Stunden sicher mit der Nomenklatur, den Substanzklassen, funktionellen Gruppen, Selbststudium: Bindungstheorie und Projektionen umgehen können. 110 Stunden grundlegende naturwissenschaftliche Kenntnisse und Kompetenzen auf dem Gebiet der Organischen Chemie auf Fragen der Stoffchemie anwenden können. Prinzipien der Organischen Chemie und ihrer Reaktionsmechanismen als Reaktionsgleichungen formulieren. mit dem Überblick über organisch-chemische Prozesse einen Bezug zum täglichen Leben und auf Biomoleküle des Zellgeschehens herstellen können. Lehrveranstaltung: Vorlesung Experimentalchemie II (Organische Chemie) (Vorlesung) Lehrveranstaltung: Übungen zur Experimentalchemie II (Organische Chemie) Prüfung: Klausur (120 Minuten) Prüfungsanforderungen: Bindungstheorie; Stereochemie; Stoffchemie und einfache Transformationen (Kohlenwasserstoffe, Halogenalkane, Alkohole, Ether, Amine, Aromaten, Carbonyl-Verbindungen, Carbonsäuren und Derivate); Mechanismen (Nucleophile Substitution, Eliminierung, Addition, aromatische Substitution, Oxidation, Reduktion, Umlagerungen, pericyclische Reaktionen); Naturstoffchemie: Fette, Kohlehydrate, Peptide/Proteine, Nukleinsäuren, Terpene, Steroide, Alkaloide, Antibiotika, Flavone Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Modulverantwortliche[r]: Sprache: Deutsch Prof. Dr. Manuel Alcarazo Dauer: Angebotshäufigkeit: iedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalia

Maximale Studierendenzahl:

180

Georg-August-Universität Göttingen Modul B.Che.1301: Einführung in die Physikalische Chemie English title: Introduction to Physical Chemistry

Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende ...

- die Grundprinzipien der physikalisch-chemischen Denk- und Experimentierweisen verstehen und insbesondere Gesetze der Mathematik und der Physik zur Lösung von Problemstellungen in der Chemie anwenden können;
- über grundlegende Kenntnisse zum mikroskopischen Aufbau und den makroskopischen Erscheinungsformen der Materie verfügen;
- (chemische) Gleichgewichte berechnen können;
- die Eigenschaften von Elektrolytlösungen quantitativ beschreiben können;
- thermochemische Größen erläutern und berechnen können;
- als Schlüsselkompetenzen sicheres Arbeiten im Labor, die Auswertung physikalisch-chemischer Experimente und das Verfassen von Versuchsprotokollen beherrschen (unter Beachtung der guten wissenschaftlichen Praxis).

Arbeitsaufwand:

Präsenzzeit: 98 Stunden Selbststudium:

142 Stunden

Lehrveranstaltung: Vorlesung Einführung in die Physikalische Chemie (Vorlesung)

Lehrveranstaltung: Übungen zur Einführung in die Physikalische Chemie

Lehrveranstaltung: Praktikum Physikalisch-Chemisches Einführungspraktikum

Lehrveranstaltung: Seminar zum Physikalisch-Chemischen Einführungspraktikum (Seminar)

Prüfung: Klausur (180 Minuten)

Prüfungsvorleistungen:

Testierte Praktikumsprotokolle; erfolreiche Teilnahme an den Übungen, Näheres regelt die Seminar- und Übungsordnung

Prüfungsanforderungen:

Atommodelle, Aggregatzustände, Zustandsgleichungen für ideale und reale Gase, mechanisches und thermisches Gleichgewicht, Phasengleichgewichte, ideale und reale Mischungen, Leitfähigkeit von Elektrolytlösungen, Säure-Base Gleichgewichte, Arbeit und Wärme, Innere Energie und der erste Hauptsatz der Thermodynamik.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: apl. Prof. Dr. Thomas Zeuch
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:

Maximale Studierendenzahl:	
128	

Georg-August-Universität Göttingen		4 C
Modul B.Che.1303: Materie und Strahlung English title: Matter and Radiation	l	3 SWS
Lernziele/Kompetenzen: Absolvent/innen des Moduls		Arbeitsaufwand: Präsenzzeit:
kennen die Arten energetisch angeregter Molekülzustände, ihre Bedeutung für die Erscheinungsformen der Materie, die zu Grunde liegenden physikalischen Gesetze und Prinzipien und die resultieren- den molekularen Eigenschaften		42 Stunden Selbststudium: 78 Stunden
können mit ihren Kenntnissen über die Wechselwirk und Materie resultierende Zustände und Prozesse b	•	
kennen die Aufbauprinzipien wichtiger Spektrometertypen sowie Kriterien und Lösungen zur Optimierung ihrer analytischen Leistungen können mit ihren Kenntnissen charakteristische Eigenschaften experi- menteller Spektren (Lage, Form, Strukturen) im Hinblick auf die ent- sprechenden molekularen Eigenschaften interpretieren		
kennen die physikalische Basis der magnetischen Resonanz-Spektro- skopie und moderner NMR-Verfahren		
Lehrveranstaltung: Vorlesung: Molekülzustände und ihre Spektroskopie (Vorlesung)		2 SWS
Lehrveranstaltung: Übungen zur Vorlesung: Molekülzustände und ihre Spektroskopie		1 SWS
Prüfung: Klausur (180 Minuten)		
Prüfungsanforderungen: Harmonischer Oszillator, starrer Rotator; Auswahlregeln, Intensitäten und Lienienbreiten; Rotations- und Schwingungsbanden, Ramanspektren; Atomare Spektralserien; Elektronische Prozesse in Molekülen, Franck-Condon Prinzip, vibronische Spektren; Stark- und Zeemann-Effekt; Laser, Monochromatoren, Fourier- Transform Spektrometer; NMR; elektromagnetische Strahlung		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	e: Modulverantwortliche[r]:	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

100

Georg-August-Universität Göttingen Modul B.Che.1304: Chemisches Gleichgewicht English title: Chemical Equilibrium

Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls kann die bzw. der Studierende ... Präsenzzeit: 56 Stunden die physikalische Bedeutung grundlegender Größen und Gesetze der Selbststudium: Thermodynamik sowie ihre statistisch-mechanischen Grundlagen verstehen und 124 Stunden mit ihrer mathematischen Formulierung umgehen; · diese Gesetze auf reversible und irreversible Zustandsänderungen von 1-Stoff-Systemen und Mischungen anwenden; Phasen- und Reaktionsgleichgewichte berechnen; elektrochemische Potentiale auf der Basis von Elektrolyteigenschaften quantitativ bestimmen; thermodynamische Zustandsgrößen auf der Basis molekularer Eigenschaften berechnen;

Lehrveranstaltung: Vorlesung Chemisches Gleichgewicht (Vorlesung)	2 SWS
Lehrveranstaltung: Proseminar Chemisches Gleichgewicht	1 SWS
Lehrveranstaltung: Übungen zur Vorlesung Chemisches Gleichgewicht	1 SWS
Prüfung: Klausur (180 Minuten)	6 C
Prüfungsvorleistungen:	
Erfolgreiche Teilnahme an den Übungen; Näheres regelt die Übungs-Ordnung	
Prüfungsanforderungen:	
Hauptsätze der Thermodynamik, Reale Gase, Wärmekraftmaschinen, Thermochemie,	
chemisches Gleichgewicht, Phasengleichwicht, Phasendiagramme, Elektrolytlösungen,	
elektrochemisches Gleichgewicht und EMK; Verteilungen und statistische	
Gesamtheiten, Zustandssummen, spezifische Wärme	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Martin Suhm
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 150	

Georg-August-Universität Göttingen Modul B.Che.1402: Atombau und Chemische Bindung English title: Atomic Structure and Chemical Bonds Lernziele/Kompetenzen: 5 C 4 SWS Arbeitsaufwand:

Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende ...

- die Postulate der Wellenmechanik anwenden k\u00f6nnen und wichtige daraus abgeleitete S\u00e4tze beherrschen;
- mit den analytischen Lösungen der zeitunabhängigen Schrödinger-gleichung für einfache Systeme (Teilchen im ein- und mehrdimensionalen Kasten, Teilchen auf einer Kugeloberfläche, Einelektronenatom) operieren können;
- Hamiltonoperatoren für atomare und molekulare Systeme angeben und analysieren können;
- die Bedeutung des Elektronenspins verstehen und seine mathematische Beschreibung durchführen können;
- das verallgemeinerte Pauli-Prinzip und seine Konsequenzen für die Wellenfunktion eines Mehrelektronensystems (Slater-Determinante) kennen;
- die Elektronenstruktur eines Atoms in der Orbitalnäherung beschreiben können;
- den qualitativen Umgang mit Molekülorbitalen beherrschen, insbesondere auch hinsichtlich ihrer Symmetrie;
- Näherungsverfahren zur Beschreibung des molekularen Zwei-elektronenproblems anwenden können;
- Elektronendichten für einfache Systeme berechnen können;
- · das Konzept der Hybridisierung anwenden können.

Präsenzzeit: 56 Stunden Selbststudium:

94 Stunden

Lehrveranstaltung: Pflichtvorlesung Atombau und Chemische Bindung	
Prüfung: Klausur (180 Minuten)	5 C

Prüfungsanforderungen:

Grundlegende Begriffe, Postulate und Sätze der Quantenmechanik, Teilchen im Kasten, Drehimpuls, Elektronenstruktur von Atomen, Elektronendichte, Molekülorbitaltheorie, chemische Bindung in zweiatomigen und mehratomigen Molekülen, Symmetrie, Ligandenfeldtheorie, metallische Bindung

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
IB.Che.1002 und B.Che.1003 oder	B.Che.1301
B.Mat.011 und B.Mat.012;	
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Ricardo Mata

Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 120	

Georg-August-Universität Göttingen Modul B.Che.2301: Chemische Reaktionskinetik English title: Kinetics of Chemical Reactions		6 C 4 SWS
Lernziele/Kompetenzen: Die Studierenden können chemische Elementarreaktionen, Transportvorgänge und Reaktionsmechanismen in verschiedenen Aggregatzuständen analysieren bzw. auf molekularer Basis verstehen. Sie sind mit Anwendungen der Reaktionskinetik in Gebieten wie der Photochemie, Atmosphärenchemie und Umweltchemie vertraut.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung: Chemische Reaktionskinetik (Vorlesung)		2 SWS
Lehrveranstaltung: Proseminar: Chemische Reaktionskinetik		1 SWS
Lehrveranstaltung: Übung zu: Chemische Reaktionskinetik (Übung)		1 SWS
Prüfung: Klausur (180 Minuten)		
Prüfungsanforderungen: Formale Reaktionskinetik, experimentelle Methoden of Beschreibung von Elementarreaktionen und Transporteaktionskinetik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Alec Wodtke	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
Modul B.Che.3702: Einführung in die Makromolekulare Chemie English title: Introduction to Macromolecular Chemistry		3 SWS
Lernziele/Kompetenzen: Die Studierenden beherrschen grundlegende Konzepte und theoretische Grundlagen der Makromolekularen Chemie und haben Kenntnis über industrielle Anwendungen von Polymeren. Sie haben Wissen über die Struktur von Polymeren, über die verschiedenen Polymerisationsreaktionen (Kettenwachstums- und Stufenwachstumsprozesse), über Copolymersationen, über technische Verfahren zur Herstellung von Kunststoffen sowie über chemische Modifizierung von Polymeren. Es werden die		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 78 Stunden
Grundlagen der wesentlichen polymeranalytischen Methoden (v.a. Molmassen- und Strukturbestimmungsmethoden) behandelt. In den Übungen wird der Stoff der Grundvorlesung anhand ausgewählter Beispiele vertieft.		
Lehrveranstaltung: Vorlesung: Einführung in die Makromolekulare Chemie (Vorlesung)		2 SWS
Lehrveranstaltung: Übung zur Vorlesung: Einführung in die Makromolekulare Chemie (Übung)		1 SWS
Prüfung: Klausur (120 Minuten)		4 C
Prüfungsanforderungen: Kenntnis über: Grundlegende Konzepte der Makromolekularen Chemie; Stufenwachstumspolymerisation; Radikalische Polymerisation; Technische Polymerisationsprozesse; Ionische Polymerisation; Kontrollierte Radikalische Polymerisation; Copolymerisation; Polymercharakterisierung (Lichtstreuung, Viskosimetrie, Sedimentation, GPC, MS, NMR, IR); Chemische Modifizierung von Polymeren		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Philipp Vana	
Angebotshäufigkeit:	Dauer:	

1 Semester

Empfohlenes Fachsemester:

jedes Wintersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

dreimalig

40

Georg-August-Universität Göttingen Modul B.Che.4104: Allgemeine und Anorganische Chemie (Lehramt und Nebenfach) English title: Introduction to General and Inorganic Chemistry		6 C 6 SWS
Lernziele/Kompetenzen: Die Studierenden verstehen die allgemeinen Prinzipien und Gesetzmäßigkeiten der Chemie und sind mit grundlegenden Begriffen der allgemeinen und anorganischen Chemie vertraut. Sie erwerben erste Kenntnisse der anorganischen Stoffchemie.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: "Experimentalchemie I (Allgemeine und Anorganische Chemie)" (Vorlesung)		4 SWS
Lehrveranstaltung: "Experimentalchemie I (Allgemeine und Anorganische Chemie)" (Übung)		2 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Erfolgreiche Teilnahme an den Übungen; Näheres regelt die Übungs-Ordnung		6 C
Prüfungsanforderungen: Allgemeine Chemie: Atombau und Periodensystem, Elemente und Verbindungen, Chemische Gleichungen und Stöchiometrie, Lösungen und Lösungsvorgänge, chemische Gleichgewichte, einfache Thermodynamik und Kinetik, Säure-Base- Reaktionen, Fällungs- und Komplexbildungsreaktionen, Redoxreaktionen; Grundlagen der Anorganischen Chemie: Vorkommen, Darstellung, Eigenschaften einiger Elemente und ihrer wichtigsten Verbindungen.		
Zugangsvoraussetzungen: Keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Dietmar Stalke	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	

Georg-August-Universität Göttingen Modul B.Che.9107: Chemisches Praktikum für Studierende der Physik und Geowissenschaften English title: Laboratory course in General and Inorganic Chemistry for Physisists and Geologists 6 C 8 SWS

	T
Lernziele/Kompetenzen:	Arbeitsaufwand:
Verstehen der allgemeinen Prinzipien und Gesetzmäßigkeiten der allgemeinen und	Präsenzzeit:
anorganischen Chemie, sicherer Umgang mit deren Begriffen. Anwendung der im Modul	112 Stunden
B.Che.4104 erworbenen Kenntnisse der anorganischen Stoffchemie, Kennenlernen	Selbststudium:
experimenteller Arbeitstechniken anhand von Schlüsselreaktionen.	68 Stunden
Integrative Vermittlung von Schlüsselkompetenzen: Teamarbeit; gute wissenschaftliche	
Praxis; Protokollführung; sicheres Arbeiten im Labor.	
Lehrveranstaltung: Chemisches Praktikum für Studierende der Physik und	6 SWS
Geowissenschaften	
Angebotshäufigkeit: jedes Semester	
Lehrveranstaltung: Seminar zum Chemischen Praktikum für Studierende der	2 SWS
Physik und Geowissenschaften (Seminar)	
Angebotshäufigkeit: jedes Semester	
Prüfung: Klausur (120 Minuten)	6 C
Prüfungsvorleistungen:	
Erfolgreiche Teilnahme am Praktikum, Details siehe Praktikumsordnung	
Prüfungsanforderungen:	
Atombau und Periodensystem, Grundbegriffe, Elemente und Verbindungen, Aufbau	
der Materie, einfache Bindungskonzepte, Chemische Gleichungen und Stöchiometrie,	
Chemische Gleichgewichte, einfache Thermodynamik und Kinetik, Säure-Base-	
Reaktionen inklusive Puffer, Redoxreaktionen, Löslichkeit, einfache Elektrochemie,	
Vorkommen, Darstellung und Eigenschaften der Elemente und ihrer wichtigsten	

Zugangsvoraussetzungen: B.Che.4104	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Franc Meyer
Angebotshäufigkeit: jedes Wintersemester (Blockpraktikum in vorlesungsfreier Zeit) und jedes Sommersemester (in der Vorlesungszeit)	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:

Bemerkungen:

Das Seminar wird von den Dozierenden und Assistent/innen der Anorganischen Chemie durchgeführt.

Verbindungen, Einführung in spektroskopische Methoden.

Ansprechpersonen für das Praktikum sind Frau Dr. Stückl sowie die entsprechenden Assistent/innen.

Georg-August-Universität Göttingen

Modul B.Inf.1101: Grundlagen der Informatik und Programmierung

English title: Introduction to Computer Science and Programming

10 C 6 SWS

Lernziele/Kompetenzen:

Studierende

- kennen grundlegende Begriffe, Prinzipien und Herangehensweisen der Informatik, kennen einige Programmierparadigmen und Grundzüge der Objektorientierung.
- erlangen elementare Grundkenntnisse der Aussagenlogik, verstehen die Bedeutung für Programmsteuerung und Informationsdarstellung und können sie in einfachen Situationen anwenden.
- verstehen wesentliche Funktionsprinzipien von Computern und der Informationsdarstellung und deren Konsequenzen für die Programmierung.
- erlernen die Grundlagen einer Programmiersprache und können einfache Algorithmen in dieser Sprache codieren.
- kennen einfache Datenstrukturen und ihre Eignung in typischen Anwendungssituationen, können diese programmtechnisch implementieren.
- analysieren die Korrektheit einfacher Algorithmen und bewerten einfache Algorithmen und Probleme nach ihrem Ressourcenbedarf.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden

Selbststudium:

216 Stunden

Lehrveranstaltung: Informatik I (Vorlesung, Übung)

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen:

Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche Teilnahme an den Übungen.

Prüfungsanforderungen:

In der Prüfung wird das Verständnis der vermittelten Grundbegriffe sowie die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Kenntnis von Grundbegriffen nachweisen durch Umschreibung in eigenen Worten.
- Standards der Informationsdarstellung in konkreter Situation umsetzen.
- Ausdrücke auswerten oder Bedingungen als logische Ausdrücke formulieren usw.
- Programmablauf auf gegebenen Daten geeignet darstellen.
- Programmcode auch in nicht offensichtlichen Situationen verstehen.
- Fehler im Programmcode erkennen/korrigieren/klassifizieren.
- Datenstrukturen für einfache Anwendungssituationen auswählen bzw. geeignet in einem Kontext verwenden.
- Algorithmen für einfache Probleme auswählen und beschreiben (ggf. nach Hinweisen) und/oder einen vorgegebenen Algorithmus (ggf. fragmentarisch) programmieren bzw. ergänzen.
- einfache Algorithmen/Programme nach Ressourcenbedarf analysieren.
- einfachsten Programmcode auf Korrektheit analysieren.
- einfache Anwendungssituation geeignet durch Modul- oder Klassenschnittstellen modellieren.

6 SWS

10 C

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab bis
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen Modul B.Inf.1102: Grundlagen der Praktischen Informatik English title: Introduction to Computer Systems

Lernziele/Kompetenzen:

Die Studierenden

- beherrschen die Grundlagen einer deklarativen Programmiersprache und können Programme erstellen, testen und analysieren.
- kennen die Bausteine und den Aufbau von Schaltnetzen und Schaltwerken, sie können Schaltznetze und Schaltwerke konstruieren und analysieren.
- kennen die Komponenten und Konzepte der Von-Neumann-Architektur und den Aufbau einer konkreten Mikroprozessor-Architektur (z.B. MIPS-32), sie beherrschen die zugehörige Maschinensprache und können Programme erstellen und analysieren.
- kennen Aufgaben und Struktur eines Betriebssystems, die Verfahren zur Verwaltung, Scheduling und Synchronisation von Prozessen und zur Speicherverwaltung, sie können diese Verfahren jeweils anwenden, analysieren und vergleichen.
- kennen Grundlagen und verschiedene Beschreibungen (z.B. Automaten und Grammatiken) von formalen Sprachen, sie können die Beschreibungen konstruieren, analysieren und vergleichen.
- kennen die Syntax und Semantik von Aussagen- und Prädikatenlogik, sie können Formeln bilden und auswerten, sowie das Resolutionskalkül anwenden.
- kennen die Schichtenarchitektur von Computernetzwerken, sie kennen Dienste und Protokolle und können diese analysieren und vergleichen.
- kennen symmetrische und asymmetrische Verschlüsselungsverfahren und können diese anwenden, analysieren und vergleichen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden

Selbststudium:

216 Stunden

Lehrveranstaltung: Informatik II (Vorlesung, Übung)	6 SWS
Prüfung: Klausur (90 Minuten)	10 C
Prüfungsvorleistungen:	
Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche	
Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Deklarative Programmierung, Schaltnetze und Schaltwerke, Maschinensprache,	
Betriebssysteme, Automaten und Formale Sprachen, Prädikatenlogik, Telematik,	
Kryptographie	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101
Sprache:	Modulverantwortliche[r]:
Deutsch	Dr. Henrik Brosenne
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen	5 C 3 SWS
Modul B.Inf.1201: Theoretische Informatik	3 3003
English title: Theoretical Computer Science	

Lernziele/Kompetenzen: Studierende • kennen grundlegende Begriffe und Methoden der theoretischen Informatik im Bereich formale Sprachen, Automaten und Berechenbarkeit. • verstehen Zusammenhänge zwischen diesen Gebieten und sowie Querbezüge zur praktischen Informatik. • wenden die klassischen Sätze, Aussagen und Methoden der theoretischen Informatik in typischen Beispielen an. • klassifizieren formale Sprachen nach Chomsky-Typen. • bewerten Probleme hinsichtlich ihrer (Semi-)Entscheidbarkeit.

Lehrveranstaltung: Theoretische Informatik (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe	
während der Übung, kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
In der Prüfung wird neben dem theoretischen Verständnis zentraler Begriffe der	
theoretischen Informatik die aktive Beherrschung der vermittelten Inhalte und Techniken	
nachgewiesen, z.B.	
durch Grammatik oder Akzeptormodell gegebene formale Sprache der	
nachweisbar richtigen Hierarchiestufe zuordnen, für gegebenes Wortproblem	
einen möglichst effizienten Entscheidungsalgorithmus konstruieren, dessen	
Laufzeitverhalten analysieren.	
aus Grammatik entsprechenden Akzeptor konstruieren (oder umgekehrt),	
Grammatik in Normalform überführen, reguläre Ausdrücke in endlichen Automaten	
überführen, Typ3-Grammatik in regulären Ausdruck usw.	
Algorithmus in vorgegebener Formalisierung darstellen, einfache	
Nichtentscheidbarkeitsbeweise durch Reduktion führen oder	
Abschlusseigenschaften von Sprachklassen herleiten, Semi-Entscheidbarkeit	
konkreter Probleme nachweisen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Grundlagen der Informatik, der Programmierung und der diskreten Mathematik.
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Inf.1202: Formale Systeme English title: Formal Systems 5 C 3 SWS

Lernziele/Kompetenzen:

Die Studierenden

- können Sachverhalte in geeigneten logischen Systemen formalisieren und mit diesen Formalisierungen umgehen.
- verstehen grundlegende Begriffe und Methoden der mathematischen Logik.
- können die Ausdrucksstärke und Grenzen logischer Systeme beurteilen.
- beherrschen elementare Darstellungs- und Modellierungstechniken der Informatik, kennen die zugehörigen fundamentalen Algorithmen und können diese anwenden und analysieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

Lehrveranstaltung: Formale Systeme (Vorlesung, Übung)	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Aktive Teilnahme an den Übungen, belegt durch Nachweis von 50% der in den	
Übungsaufgaben eines Semesters erreichbaren Punkte.	
Prüfungsanforderungen:	
Strukturen, Syntax und Semantik von Aussagen- und Prädikatenlogik.	
Einführung in weitere Logiken (z.B. Logiken höherer Stufe).	
Entscheidbarkeit, Unentscheidbarkeit und Komplexität von logischen	
Spezifikationen.	
Grundlagen zu algebraischen Strukturen und partiell geordneten Mengen.	
Syntaxdefinitionen durch Regelsysteme und ihre Anwendung.	
Transformation und Analyseverfahren für Regelsysteme.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Winfried Kurth
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
100	

• Einfache Modelle der Nebenläufigkeit (z.B. Petrinetze).

Joseph August Sintolollar Sollingsin	5 C 3 SWS
Modul B.Inf.1203: Betriebssysteme	3 3 4 4 5
English title: Operating Systems	

Lernziele/Kompetenzen:

Die Studierenden

- kennen Aufgaben, Betriebsarten und Struktur eines Betriebssystems.
- kennen die Verfahren zu Verwaltung, Scheduling, Kommunikation und Synchronisation von Prozessen und Threads, sie k\u00f6nnen diese Verfahren jeweils anwenden, analysieren und vergleichen.
- kennen die Definition und die Voraussetzungen für Deadlocks, sowie Strategien zur Deadlock-Behandlung und können diese Strategien anwenden, analysieren und vergleichen.
- kennen die Unterschiede und den Zusammenhang zwischen logischem, physikalischem und virtuellem Speicher, sie kennen Methoden zur Speicherverwaltung und Verfahren zur Speicherabbildung und können diese anwenden, analysieren und vergleichen.
- kennen die Schichtung von Abstraktionsebenen zur Verwaltung von Ein-/Ausgabe-Geräten, sowie verschiedene Ein-/Ausgabe-Hardwareanbindungen.
- kennen unterschiedliche Konzepte zur Dateiverwaltung und Verzeichnisimplementierung und können diese anwenden, analysieren und vergleichen.
- kennen die Benutzerschnittstelle eines ausgewählten Betriebssystems und können diese benutzen.
- kennen die Systemschnittstelle eines ausgewählten Betriebssystems. Sie können Programme, die die Systemschnittstelle benutzen, in einer aktuellen Programmiersprache erstellen, testen und analysieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

Lehrveranstaltung: Betriebssysteme (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten)	5 C
Prüfungsvorleistungen:	
Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe (Präsentation	
und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Aufgaben, Betriebsarten und Struktur eines Betriebssystems; Verwaltung, Scheduling,	
Kommunikation und Synchronisation von Prozessen und Threads; Deadlocks;	
Speicherverwaltung; Ein-/Ausgabe; Dateien und Dateisysteme; Benutzerschnittstelle;	
Programmierung der Systemschnittstelle.	

Zugangsvoraussetzungen: B.Inf.1801 oder B.Inf.1841 oder B.Phy.1601	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit:	Dauer:

1 Semester
Empfohlenes Fachsemester:

Georg-August-Universität Göttingen Module B.Inf.1204: Telematics / Computer Networks 5 C 3 WLH

Module B.Inf.1204: Telematics / Computer Networks Learning outcome, core skills: The students • know the core principles and concepts of computer networks. Workload: Attendance time: 42 h

- know the principle of layering and the coherences and differences between the layers of the internet protocol stack.
- know the properties of protocols that are used for data forwarding in wired and wireless networks. They are able to analyse and compare these protocols.
- · know details of the internet protocol.
- know the different kinds of routing protocols, both in the intra-domain and interdomain level. They are able to apply, analyse and compare these protocols.
- know the differences between transport layer protocols as well as their commonalities. They are able to use the correct protocol based on the demands of an application.
- · know the principles of Quality-of-Service infrastructures and networked multimedia
- know the basics of both symmetric and asymmetric encryption with regards
 to network security. They know the various advantages and disadvantages of
 each kind of encryption when compared to each other and can apply the correct
 encryption method based on application demands.

Self-study time: 108 h

Course: Computernetworks (Lecture, Exercise)	3 WLH
Examination: Written examination (90 minutes)	5 C
Examination requirements:	
Layering; ethernet; forwarding in wired and wireless networks; IPv4 and IPv6; inter-	
domain and intra-domain routing protocols; transport layer protocols; congestion control;	
flow control; Quality-of-Service infrastructures; asymmetric and symmetric cryptography	

Admission requirements:	Recommended previous knowledge: B.Inf.1101, B.Inf.1801
Language: English	Person responsible for module: Prof. Dr. Xiaoming Fu
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students:	

Georg-August-Universität Göttingen Modul B.Inf.1206: Datenbanken English title: Databases

Lernziele/Kompetenzen:

Die Studierenden kennen die theoretischen Grundlagen sowie technischen Konzepte von Datenbanksystemen. Mit den erworbenen Kenntnissen in konzeptueller Modellierung und praktischen Grundkenntnissen in der am weitesten verbreiteten Anfragesprache "SQL" können sie einfache Datenbankprojekte durchführen. Sie wissen, welche grundlegende Funktionalität ihnen ein Datenbanksystem dabei bietet und können diese nutzen. Sie können sich ggf. auf der Basis dieser Kenntnisse mit Hilfe der üblichen Dokumentation in diesem Bereich selbständig weitergehend einarbeiten. Die Studierenden verstehen den Nutzen eines fundierten mathematisch-theoretischen Hintergrundes auch im Bereich praktischer Informatik.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

4 SWS

Lehrveranstaltung: Datenbanken (Vorlesung, Übung)

Inhalte:

Konzeptuelle Modellierung (ER-Modell), relationales Modell, relationale Algebra (als theoretische Grundlage der Anfragekonzepte), SQL-Anfragen, -Updates und Schemaerzeugung, Transaktionen, Normalisierungstheorie.

Literatur: R. Elmasri, S.B. Navathe: Grundlagen von Datenbanksystemen - Ausgabe Grundstudium (dt. Übers.), Pearson Studium (nach Praxisrelevanz ausgewählte Themen).

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)

5 C

Prüfungsanforderungen:

Nachweis über aufgebaute weiterführende Kompetenzen in den folgenden Bereichen: theoretische Grundlagen sowie technische Konzepte von Datenbanksystemen, konzeptuelle Modellierung und praktische Grundkenntnisse in der am weitesten verbreiteten Anfragesprache "SQL" in ihrer Anwendung auf einfache Datenbankprojekte, Nutzung grundlegender Funktionalitäten von Datenbanksystem, mathematischtheoretischer Hintergründe in der praktischen Informatik. Fähigkeit, die vorstehenden Kompetenzen weiter zu vertiefen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

coorg / tagact crittorollar collinger	5 C
Modul B.Inf.1209: Softwaretechnik	3 SWS
English title: Software Engineering	

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 42 Stunden • kennen Geschichte, Definition, Aufgaben und Wissensgebiete der Selbststudium: Softwaretechnik. 108 Stunden • wissen was ein Softwareprojekt ist, welche Personen und Rollen in Softwareprojekten ausgefüllt werden müssen und wie Softwareprojekte in Unternehmensstrukturen eingebettet werden können. · kennen unterschiedliche Vorgehens- und Prozessmodelle der Softwaretechnik, · kennen deren Vor- und Nachteile und wissen wie die Qualität von Softwareentwicklungsprozessen bewertet werden können. • kennen verschiedene Methoden der Kosten- und Aufwandsschätzung für Softwareprojekte. • kennen die Prinzipien und verschiedene Verfahren für die Anforderungsanalyse für Softwareprojekte. • kennen die Prinzipien und mindestens eine Vorgehensweise für den Software Entwurf. · kennen die Prinzipien der Software Implementierung. • kennen die grundlegenden Methoden für die Software Qualitätssicherung.

Lehrveranstaltung: Softwaretechnik (Vorlesung, Übung)	3 SWS
Inhalte:	3 3 4 4 5
Software-Qualitätsmerkmale, Projekte, Vorgehensmodelle, Requirements-Engineering,	
Machbarkeitsstudie, Analyse, Entwurf, Implementierung, Qualitätssicherung	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
B.Inf.1209.Ue: Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe	
(Präsentation und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den	
Übungen.	
Prüfungsanforderungen:	
Definition und Aufgaben der Softwaretechnik, Definition Softwareprojekt,	
Personen und Rollen in Softwareprojekten, Einbettung von Softwareprojekten in	
Unternehmensstrukturen, Vorgehens- und Prozessmodelle und deren Bewertung,	
Aufwands- und Kostenabschätzung, Anforderungsanalyse, Design, Implementierung	
und Qualitätssicherung	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1801, B.Inf.1802
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Jens Grabowski
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul B.Inf.1210: Computersicherheit und Privatheit English title: Computer Security and Privacy 5 C 4 SWS

Lernziele/Kompetenzen: Nach erfolgreichem Abschluss des Modules können Studenten: • Grundbegriffe der Computersicherheit und Privatheit definieren. • Grundlegende kryptographische Verfahren benennen und beschreiben. • Methoden zur Authentisierung und Zugriffskontrolle erklären. • Angriffe und Schwachstellen in den Bereichen der Softwaresicherheit, Networksicherheit und Websicherheit erkennen und beschreiben. • geeignete Methoden und Lösungen benennen, vergleichen und auswählen, um Angriffe und Schwachstellen zu adressieren. • Grundkonzepte des Sicherheitsmanagements präsentieren.

Lehrveranstaltung: Einführung in Computersicherheit und Privatheit (Vorlesung, Übung)	4 SWS
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Grundbegriffe der Computersicherheit und Privatheit, kryptographische Verfahren,	
Authentisierung und Zugriffskontrolle, Softwaresicherheit, Networksicherheit,	
Websicherheit, Grundkonzepte des Sicherheitsmanagements.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Delphine Reinhardt
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen	6 C
Module B.Inf.1236: Machine Learning	4 WLH

Module B.III. 1236. Machine Learning	
Learning outcome, core skills: Students • learn concepts and techniques of machine learning and understand their advantages and disadvantages compared with alternative approaches • learn techniques of supervised learning for classification and regression • learn techniques of unsupervised learning for density estimation, dimensionality	Workload: Attendance time: 56 h Self-study time: 124 h
 reduction and clustering implement machine learning algorithms like linear regression, logistic regression, kernel methods, tree-based methods, neural networks, principal component analysis, k-means and Gaussian mixture models solve practical data science problems using machine learning methods 	
Course: Machine Learning (Lecture)	2 WLH
Bishop: Pattern recognition and machine learning. https://cs.ugoe.de/prml	
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1236.Ex: At least 50% of homework exercises solved. Examination requirements: Knowledge of the working principles, advantages and disadvantages of the machine learning methods covered in the lecture	6 C
Course: Machine Learning - Exercise (Exercise)	2 WLH

Admission requirements:	Recommended previous knowledge: Knowledge of basic linear algebra and probability
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4
Maximum number of students: 100	

Georg-August-Universität Göttingen Module B.Inf.1237: Deep Learning	6 C 4 WLH
Learning outcome, core skills:	Workload:
Students	Attendance time:

learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches
 learn to solve practical data science problems using deep learning
 implement deep learning techniques like multi-layer perceptrons, convolutional neural nerworks, recurrent neural networks, deep reinforcement learning

Course: Deep Learning (Lecture)

Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org

Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml

Examination: Written examination (90 minutes)

Examination prerequisites:

B.Inf.1237.Ex: At least 50% of homework exercises solved.

Examination requirements:

Knowledge of basic deep learning techniques, their advantages and disadvantages and

• learn techniques for optimization and regularization of deep neural networks

approaches to optimization and regularization. Ability to implement these techniques.

Course: Deep Learning - Exercise (Exercise) 2 WLH

Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 5
Maximum number of students: 100	

Georg-August-Universität Göttingen	5 C
Module B.Inf.1240: Visualization	3 WLH

Learning outcome, core skills: Workload: Knowledge of Attendance time: 42 h • the potentials and limitations of data visualization Self-study time: • the fundamentals of visual perception and cognition and their implications for data 108 h visualization. Students can apply these to the design of visualizations and detect manipulative design choices • a broad variety of techniques for visual representation of data, including abstract and high-dimensional data. Students can select appropriate methods on new problems • integration of visualization into the data analysis process, algorithmic generation and interactive methods

Course: Visualization (Lecture, Exercise)	3 WLH
Examination: Written exam (90 minutes) or oral exam (approx. 20 minutes)	5 C
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of potentials and limitations of data visualization, fundamentals of visual	
perception and their implications for good design choices, techniques for visual	
representation and how to use them.	

Admission requirements:	Recommended previous knowledge: Basic linear algebra and programming skills
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 3 - 6
Maximum number of students: 50	

Soor g / tagast Sint Stonat Sottings:	6 C
Module B.Inf.1241: Computational Optimal Transport	4 WLH

Learning outcome, core skills: Knowledge of	Workload: Attendance time:
 the fundamental notions of optimal transport, and its strengths and limitations as a data analysis tool the discrete Kantorovich formulation, its convex duality, and Wasserstein distances classical numerical algorithms, entropic regularization, and their scopes of applicability examples for data analysis applications. Students can transfer these to new potential applications 	56 h Self-study time: 124 h

Course: Computational Optimal Transport (Lecture, Exercise)	4 WLH
Examination: Written exam (90 minutes) or oral exam (approx. 20 minutes)	6 C
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of Kantorovich duality, Wasserstein distances, standard algorithms and implications for data analysis applications.	

Admission requirements: none	Recommended previous knowledge: B.Mat.2310: Optimierung, analysis, linear algebra, programming skills
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: 50	

5 C Georg-August-Universität Göttingen 3 SWS Modul B.Inf.1801: Programmierkurs English title: Programming

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen eine aktuelle Programmiersprache, sie Präsenzzeit: 42 Stunden • beherrschen den Einsatz von Editor, Compiler und weiteren Selbststudium: Programmierwerkzeugen (z.B. Build-Management-Tools). 108 Stunden • kennen grundlegende Techniken des Programmentwurfs und können diese anwenden. • kennen Standarddatentypen (z.B. für ganze Zahlen und Zeichen) und spezielle Datentypen (z.B. Felder und Strukturen). • kennen die Operatoren der Sprache und können damit gültige Ausdrücke bilden und verwenden. • kennen die Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) und können diese anwenden. • kennen die Möglichkeiten zur Strukturierung von Programmen (z.B. Funktionen und Module) und können diese einsetzen. kennen die Techniken zur Speicherverwaltung und können diese verwenden. • kennen die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und Gleitkommarithmetik) und können diese beim Programmentwurf berücksichtigen.

Lehrveranstaltung: Grundlagen der C-Programmierung (Blockveranstaltung)	3 SWS
Prüfung: Klausur (90 Minuten), unbenotet	5 C
Prüfungsanforderungen:	
Standarddatentypen, Konstanten, Variablen, Operatoren, Ausdrücke, Anweisungen,	
Kontrollstrukturen zur Steuerung des Programmablaufs, Strings, Felder, Strukturen,	
Zeiger, Funktionen, Speicherverwaltung, Rechnerarithmetik, Ein-/Ausgabe, Module,	
Standardbibliothek, Präprozessor, Compiler, Linker	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 120	

• kennen die Programmbibliotheken und können diese einsetzen.

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.0011: Analysis I English title: Analysis I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit analytischem Selbststudium: mathematischem Grundwissen vertraut. Sie 186 Stunden • wenden ihr Wissen über Mengen und Logik in verschiedenen Beweistechniken an; • gehen sicher mit Ungleichungen reeller Zahlen sowie mit Folgen und Reihen reeller und komplexer Zahlen um; • untersuchen reelle und komplexe Funktionen in einer Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit; • berechnen Integrale und Ableitungen von reellen und komplexen Funktionen in einer Veränderlichen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie • formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt; • lösen Probleme anhand von Fragestellungen der reellen, eindimensionalen Analysis; • analysieren klassische Funktionen und ihre Eigenschaften mit Hilfe von funktionalem Denken; • erfassen grundlegende Eigenschaften von Zahlenfolgen und Funktionen; • sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Lehrveranstaltung: Differenzial- und Integralrechnung I		4 SWS
Prüfung: Klausur (120 Minuten)	Prüfung: Klausur (120 Minuten)	
Prüfungsvorleistungen:		
B.Mat.0011.Ue: Erreichen von mindestens 50%	der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen		
Lehrveranstaltung: Differenzial- und Integralrechnung I - Übung		2 SWS
Lehrveranstaltung: Differenzial- und Integralrechnung I - Praktikum		
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.		
Prüfungsanforderungen:		
Prüfungsanforderungen: Grundkenntnisse der Analysis, Verständnis des	Grenzwertbegriffs, Beherrschen von	
	Grenzwertbegriffs, Beherrschen von	
Grundkenntnisse der Analysis, Verständnis des	Grenzwertbegriffs, Beherrschen von Empfohlene Vorkenntnisse:	

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: gemäß Bemerkung	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematik
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0012 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Wiederholungsregelungen

- Nicht bestandene Prüfungen zu diesem Modul können dreimal wiederholt werden.
- Ein vor Beginn der Vorlesungszeit des ersten Fachsemesters, z.B. im Rahmen des mathematischen Sommerstudiums, absolvierter Prüfungsversuch im Modul B.Mat.0011 "Analysis I" gilt im Falle des Nichtbestehens als nicht unternommen (Freiversuch); eine im Freiversuch bestandene Modulprüfung kann einmal zur Notenverbesserung wiederholt werden; durch die Wiederholung kann keine Verschlechterung der Note eintreten. Eine Wiederholung von bestandenen Prüfungen zum Zwecke der Notenverbesserung ist im Übrigen nicht möglich; die Bestimmung des §16 a Abs. 3 Satz 2 APO bleibt unberührt.

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.0012: Analytische Geometrie und Lineare Algebra I English title: Analytic geometry and linear algebra I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Selbststudium: Grundwissen vertraut. Sie 186 Stunden definieren Vektorräume und lineare Abbildungen; · beschreiben lineare Abbildungen durch Matrizen; • lösen lineare Gleichungssysteme und Eigenwertprobleme und berechnen Determinanten: • erkennen Vektorräume mit geometrischer Struktur und ihre strukturerhaltenden Homomorphismen, insbesondere im Fall euklidischer Vektorräume. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in den Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie • formulieren mathematische Sachverhalte aus dem Bereich der linearen Algebra in schriftlicher und mündlicher Form korrekt; • lösen Probleme anhand von Fragestellungen der linearen Algebra; • erfassen das Konzept der Linearität bei unterschiedlichen mathematischen Objekten; • nutzen lineare Strukturen, insbesondere den Isomorphiebegriff, für die Formulierung mathematischer Beziehungen; · erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume: • sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut. 4 SWS Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I Prüfung: Klausur (120 Minuten) 9 C Prüfungsvorleistungen: B.Mat.0012.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen 2 SWS Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Übung Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens. Prüfungsanforderungen:

linearer Gleichungsysteme

Grundkenntnisse der linearen Algebra, insbesondere über Lösbarkeit und Lösungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematk
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0011 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0021: Analysis II English title: Analysis II

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weitreichendem analytischen mathematischen Grundwissen vertraut. Sie

- · beschreiben topologische Grundbegriffe mathematisch korrekt;
- untersuchen Funktionen in mehreren Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von Funktionen in mehreren Veränderlichen;
- nutzen Konzepte der Ma
 ß- und Integrationstheorie zur Berechnung von Integralen;
- benennen Aussagen zur Existenz und Eindeutigkeit von Lösungen gewöhnlicher Differenzialgleichungen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, mehrdimensionalen Analysis;
- analysieren klassische Funktionen in mehreren Variablen und ihre Eigenschaften mit Hilfe von funktionalem Denkens;
- erfassen grundlegende topologische Eigenschaften;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Differenzial- und Integralrechnung II	4 SWS
Prüfung: Klausur (120 Minuten)	
Prüfungsvorleistungen:	
B.Mat.0021.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen	
Lehrveranstaltung: Differenzial- und Integralrechnung II - Übung	2 SWS
Lehrveranstaltung: Differenzial- und Integralrechnung II - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfungsanforderungen:	
Grundkenntnisse der Differenzial- und Integralrechnung in mehreren Veränderlichen	
sowie der Maß- und Integrationstheorie, Fähigkeit des Problemlösens	

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

B.Mat.0011, B.Mat.0012

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0025 "Methoden der Analysis II" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.0022: Analytische Geometrie und Lineare Algebra II English title: Analytic geometry and linear algebra II Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Selbststudium: Grundwissen vertraut. Sie 186 Stunden bestimmen Normalformen von Matrizen; · erkennen Bilinearformen und Kegelschnitte; • sind mit den Konzepten der affinen und projektiven Geometrie vertraut; • erkennen Strukturen bei Gruppen, Ringen und Moduln. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie • formulieren mathematische Sachverhalte aus dem Bereich der Geometrie in schriftlicher und mündlicher Form korrekt; • lösen Probleme anhand von Fragestellungen der analytischen Geometrie; • wenden Konzepte der linearen Algebra auf geometrische Fragestellungen an; · erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume: • sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut. Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II 4 SWS 9 C Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.0022.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Übung 2 SWS Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens. Prüfungsanforderungen: Grundkenntnisse geometrischer Begriffe und in linearer Algebra **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine B.Mat.0011, B.Mat.0012 Sprache: Modulverantwortliche[r]: Deutsch Studiendekan/in Mathematik

Dauer:

Angebotshäufigkeit:

jedes Sommersemester	1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0026 "Geometrie" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls haben die Studierenden Selbststudium: · die Grundprinzipien der Programmierung erfasst; 62 Stunden • die Befähigung zum sicheren Umgang mit einer Programmiersprache im mathematische Kontext erworben; · Erfahrungen mit elementaren Algorithmen und deren Anwendungen gesammelt. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kenntnisse über eine Programmiersprache im mathematischen Kontext erworben. Sie · haben die Fähigkeit erworben, Algorithmen in einer Programmiersprache umzusetzen: • haben gelernt die Programmiersprache zum Lösen von Algebraischen Problemen zu nutzen (Computeralgebra CAS). 2 SWS Lehrveranstaltung: Blockkurs Inhalte: Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Einführung in Python und Computeralgebra".

Prüfung: Klausur (90 Minuten)	3 C
Prüfungsanforderungen:	
Grundkenntnisse in einer Programmiersprache mit Fokus auf mathematisch orientierte	
Anwendung und Hintergrund.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik.

• Ausschluss: Studierende, die das Modul B.Mat.0721 bereits erfolgreich absolviert haben, dürfen das Modul B.Mat.0720 nicht absolvieren.

Georg-August-Universität Göttingen 6 C 3 SWS Modul B.Mat.0721: Mathematisch orientiertes Programmieren English title: Mathematics related programming Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 42 Stunden Das erfolgreiche Absolvieren des Moduls ermöglicht den Studierenden den sicheren Selbststudium: Umgang mit mathematischen Anwendersystemen. Die Studierenden 138 Stunden • erwerben die Befähigung zum sicheren Umgang mit mathematischen Anwendersystemen, • erfassen die Grundprinzipien der Programmierung, • sammeln Erfahrungen mit elementaren Algorithmen und deren Anwendungen, · verstehen die Grundlagen der Programmierung in einer high-level Programmiersprache, · lernen Kontroll- und Datenstrukturen kennen, • erlernen die Grundzüge des imperativen und funktionalen Programmierens,

Kompetenzen:

Arbeiten im Team).

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Techniken für das Lösen mathematisch/physikalischer Problemstellungen mit der Hilfe einer high-level Programmiersprache erlernt.

• setzen Bibliotheken zur Lösung naturwissenschaftlicher Fragestellungen ein,

• beherrschen die Grundtechniken der Projektverwaltung (Versionskontrolle,

· erlernen verschiedene Methoden der Visualisierung,

einer high-level Programmiersprache erlernt.	
Lehrveranstaltung: Blockkurs	2 SWS
Inhalte:	
Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Mathematisch orientiertes Programmieren"	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 min)	6 C
Prüfungsanforderungen:	
Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten. Die Teilnehmer/ innen weisen grundlegende Techniken für das Lösen mathematisch/physikalischer Problemstellungen mit der Hilfe einer Programmiersprache nach.	
	•

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: 120	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik	

Georg-August-Universität Göttingen Modul B.Mat.0730: Praktikum Wissenschaftliches Rechnen English title: Practical course in scientific computing

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden praktische Selbststudium: Erfahrungen im wissenschaftlichen Rechnen. Sie 214 Stunden · erstellen größere Programmierprojekte in Einzel- oder Gruppenarbeit; • erwerben und festigen Programmierkenntnisse; • haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • mathematische Algorithmen und Verfahren in einer Programmiersprache oder einem Anwendersystem zu implementieren; · spezielle numerische Bibliotheken zu nutzen; • komplexe Programmieraufgaben so zu strukturieren, dass sie effizient in Gruppenarbeit bewältigt werden können. 4 SWS Lehrveranstaltung: Praktikum Wissenschaftliches Rechnen

Prüfung: Präsentation (ca. 30 Minuten) oder Hausarbeit (max. 50 Seiten ohne	9 C
Anhänge) Prüfungsvorleistungen:	
Regelmäßige Teilnahme im Praktikum	
Prüfungsanforderungen:	
Grundkenntnisse der numerischen Mathematik	
gute Programmierkenntnisse	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0721, B.Mat.1300 Kenntnis des objektorientierten Programmierens
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte(r)
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Präsenzzeit: 84 Stunden

Selbststudium:

186 Stunden

Georg-August-Universität Göttingen	9 C
Modul B.Mat.0740: Stochastisches Praktikum	6 SWS
English title: Practical course in stochastics	

Lernziele/Kompetenzen: Arbeitsaufwand:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den grundlegenden Eigenschaften und Methoden einer stochastischen Simulationsund Analyse-Software (z.B. "R" oder Matlab) vertraut. Sie haben in Projektarbeit Spezialkenntnisse in Stochastik erworben. Sie

- · implementieren und interpretieren selbstständig einfache stochastische Problemstellungen in einer entsprechenden Software;
- schreiben selbständig einfache Progamme in der entsprechenden Software;
- beherrschen einige grundlegende Techniken der statistischen Datenanalyse und stochastischen Simulation, wie etwa der deskriptiven Statistik, der linearen, nichtlinearen und logistischen Regression, der Maximum-Likelihood-Schätzmethode, sowie von verschiedenen Testverfahren und Monte-Carlo-Simulationsmethoden.

Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · eine stochastische Simulations- und Analyse-Software auf konkrete stochastische Problemstellungen anzuwenden und die erhaltenen Resultate fachgerecht zu präsentieren;
- statistische Daten und ihre wichtige Eigenschaften adäquat zu visualisieren und interpretieren.

Lehrveranstaltung: Stochastisches Praktikum	6 SWS
,	9 C
Seiten ohne Anhänge)	

Prüfungsanforderungen: Weiterführende Kenntnisse in Stochastik

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.2410
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.0801: Mathematik für Studierende der Informatik I English title: Mathematics for computer science I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit der Selbststudium: mathematischen Denk- und Argumentationsweise vertraut und können mit den 186 Stunden Grundbegriffen der linearen Algebra und Analysis umgehen. Sie • sind mit Grundbegriffen der Logik, Relationen und den grundlegenden Zahlensystemen vertraut; • gehen sicher mit den grundlegenden Eigenschaften von Vektorräumen, linearen Abbildungen und Matrizen um; • lösen lineare Gleichungssysteme mit dem Gaußschen Eliminationsverfahren; • erfassen grundlegende Eigenschaften von Eigenwerten und -vektoren von Matrizen; • gehen sicher mit Eigenschaften von Metriken und Normen sowie dem Grenzwertbegriff um und untersuchen die Konvergenz von Zahlenfolgen und reihen; · sind mit Definition und Eigenschaften von trigonometrischen, Exponential- und Logarithmusfunktionen vertraut. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • mit mathematischer Sprache umzugehen und einfache mathematische Sachverhalte in mündlicher und schriftlicher Form darzustellen: • grundlegende Eigenschaften von Zahlenfolgen und -reihen zu erfassen; · das Konzept der Linearität zu erfassen; mathematische Probleme anhand von Fragestellung der linearen Algebra und der eindimensionalen reellen Analysis zu lösen. 4 SWS Lehrveranstaltung: Mathematik für Informatik-Anfänger/innen I (Vorlesung) Prüfung: Klausur (120 Minuten) 9 C Prüfungsvorleistungen: B.mat.801.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen 2 SWS Lehrveranstaltung: Mathematik für Informatik-Anfänger/innen I - Übung (Übung) Prüfungsanforderungen: Grundkenntnisse der Analysis und der linearen Algebra, Beweistechniken, Fähigkeit des Problemlösens Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Exportmodul für den Bachelor-Studiengang "Angewandte Informatik"
- Die Module B.Mat.0801 und B.Mat.0802 zusammen können durch B.Mat.0011 und B.Mat.0012 ersetzt werden.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen		9 C 6 SWS	
Modul B.Mat.0802: Mathematik für Studie English title: Mathematics for computer science II			
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:	
Nach erfolgreichem Absolvieren des Moduls können weiterführenden Begriffen aus der Analysis und linea		84 Stunden Selbststudium: 186 Stunden	
 sind mit grundlegenden Begriffen und Eigensch Differenzierbarkeit ein- und mehrdimensionaler gehen sicher mit Funktionenfolgen und -reihen, erfassen den Begriff des Riemann-Integrals und Eigenschaften. 	Too Standen		
Kompetenzen:			
Nach erfolgreichem Absolvieren des Moduls sind die			
 sicher mit mathematischer Sprache umzugeher Sachverhalte in mündlicher und schriftlicher Foi grundlegende Eigenschaften mehrdimensionale mathematische Probleme anhand von Frageste mehrdimensionalen reellen Analysis zu lösen. 			
Lehrveranstaltung: Mathematik für Informatik-Anfänger/innen II (Vorlesung)		4 SWS	
Prüfung: Klausur (120 Minuten)		9 C	
Prüfungsvorleistungen: B.Mat.0802.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges			
Vorstellen von Lösungen in den Übungen			
Lehrveranstaltung: Mathematik für Informatik-Anfänger/innen II - Übung (Übung)		2 SWS	
Prüfungsanforderungen: Mathematische Grundlagen der Informatik, mathematische Strukturen und deren Nützlichkeit für die Informatik, Grundkenntnisse in Logik, Mengenlehre, Zahlsystemen, linearer Algebra und Analysis I			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0801		
Sprache:	Modulverantwortliche[r]:		
Deutsch	Studiendekan/in Mathematik		
Angebotshäufigkeit:	Dauer:		
jedes Sommersemester	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:		
zweimalig	2 - 4		
Maximale Studierendenzahl:			

nicht begrenzt

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Exportmodul für den Bachelor-Studiengang "Angewandte Informatik"
- Die Module B.Mat.0801 und B.Mat.0802 zusammen können durch B.Mat.0011 und B.Mat.0012 ersetzt werden.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0803: Diskrete Mathematik für Studierende der Informatik English title: Discrete mathematics for computer science

Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit grundlegenden Begriffen und Ergebnissen aus der diskreten Mathematik vertraut. Sie • kennen einführende Begriffe und Ergebnisse aus den Bereichen Kombinatorik und

- sind mit den Grundzügen der Graphentheorie vertraut;
- haben algorithmische Methoden an Beispielen erlernt.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden grundlegende Kompetenzen im Umgang mit diskreter Mathematik. Sie

- wissen Ergebnisse aus Kombinatorik und elementarer Zahlentheorie anzuwenden;
- · erkennen Strukturen;

elementare Zahlentheorie;

- kennen algorithmische Methoden und wissen diese anzuwenden;
- sind mit den Fragestellungen aus der diskreten Mathematik vertraut.

Lehrveranstaltung: Diskrete Mathematik (Vorlesung)	4 SWS
Lehrveranstaltung: Diskrete Mathematik - Übungen (Übung)	2 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen: B.Mat.0803.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen	

Prüfungsanforderungen: Nachweis über Grundwissen in der Diskreten Mathematik, insbesondere in algorithmischen Methoden, Graphentheorie, Kombinatorik und elementarer Zahlentheorie.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematische Instituts
- Export-Modul für den Bachelor-Studiengang "Angewandte Informatik"
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0804: Diskrete Stochastik für Studierende der Informatik English title: Discrete stochastics for computer science

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden die Grundkenntnisse in informatikbezogener Stochastik und sind mit den Grundbegriffen der Wahrscheinlichkeitstheorie und Statistik vertraut. Sie

- stellen Daten mittels graphischer Methoden und Kenngrößen dar;
- sind mit Grundbegriffen der Wahrscheinlichkeitstheorie vertraut;
- wissen die wichtigsten Verteilungen und Wahrscheinlichkeitsgesetze anzuwenden;
- · verstehen Grundprinzipien von Datenkodierung und Zufallszahlengenerierung;
- · gehen sicher mit Markov-Ketten Modellen um;
- kennen verschiedene randomisierte Algorithmen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierende in der Lage

- sicher mit den zentralen Begriffen der Stochastik umzugehen und diese im Kontext von informatikbezogenen praktischen Beispielen anzuwenden;
- Kenntnisse verschiedener randomisierter Algorithmen, sowie Ansätze zur Datenkodierung und Zufallszahlengenerierung und deren Eigenschaften vorzuweisen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

 Lehrveranstaltung: Diskrete Stochastik (Vorlesung)
 4 SWS

 Lehrveranstaltung: Diskrete Stochastik - Übung (Übung)
 2 SWS

Prüfung: Klausur (120 Minuten) 9 C Prüfungsvorleistungen: B.Mat.0804.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen

Prüfungsanforderungen:

Nachweis des Grundlagenwissens in der Wahrscheinlichkeitstheorie und Statistik, Kenntnis praktischer Anwendungsbeispiele in der Informatik sowie Grundkenntnisse in informatikbezogener Stochastik

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0801
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiendekan/in Mathematik
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
- Export-Modul für den Bachelor-Studiengang "Angewandte Informatik"
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen		6 C
Modul B.Mat.0811: Mathematische Grundlagen in der Biologie English title: Mathematical foundations of biology		4 SWS
Lernziele/Kompetenzen: Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, mit mathematischen Grundbegriffen umzugehen und kennen mathematische Denk- und Sprechweisen. Sie besitzen ein Formelverständnis sowie Grundkenntnisse über Zahlen, Abbildungen, Differenzial- und Integralrechnung, Differenzialgleichungen und lineare Gleichungssysteme.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Mathematik für Studierende de	er Biologie (Vorlesung)	2 SWS
Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: B.Mat.0811.Ue; Erreichen von mindestens 50 % der Übungspunkte und mindestens einmaliges Vortragen zu Übungsaufgaben		6 C
Lehrveranstaltung: Mathematik für Studierende der Biologie - Übung (Übung)		2 SWS
Prüfungsanforderungen: Formelverständnis, Grundkenntnisse über Zahlen und Grenzwerte, Differenzialrechnung, Integralbestimmung, Lösen von Differenzialgleichungen und linearen Gleichungssystemen		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: • Dozent/in: Lehrpersonen des Mathematischen Ir	nstituts	

• Export-Modul für den Bachelor-Studiengang "Biologie"

Georg-August-Universität Göttingen		6 C
		4 SWS
Modul B.Mat.0821: Mathematische Grundlagen in den Geowissenschaften		
English title: Mathematical foundations of geosciences		
Lernziele/Kompetenzen:	well-renden in deal one mit	Arbeitsaufwand:
Nach erfolgreichem Abschluss des Moduls sind die St		Präsenzzeit: 56 Stunden
mathematischen Grundbegriffen umzugehen und ken		
Sprechweisen. Sie besitzen ein Formelverständnis so		Selbststudium:
Abbildungen, Differenzial- und Integralrechnung, Diffe Gleichungssysteme.	renzialgieichungen und ilneare	124 Stunden
Gleichungssysteme.		
Lehrveranstaltung: Mathematik für Studierende de	er Geowissenschaften	2 SWS
(Vorlesung)		
Lehrveranstaltung: Mathematik für Studierende der Geowissenschaften - Übung		2 SWS
(Übung)		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsvorleistungen:		
B.Mat.0821.Ue: Erreichen von mindestens 50% der Ü	bungspunkte und mindestens	
einmaliges Vortragen zu Übungsaufgaben		
Prüfungsanforderungen:		
Formelverständnis, Grundkenntnisse über Zahlen und	l Grenzwerte,	
Differenzialrechnung, Integralbestimmung, Lösen von		
linearen Gleichungssystemen		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Studiendekan/in Mathematik	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig	1 - 3	
Maximale Studierendenzahl:		
nicht begrenzt		
Bemerkungen:		

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Export-Modul für den Bachelor-Studiengang Geowissenschaften

Georg-August-Universität Göttingen Modul B.Mat.0822: Statistik für Studierende der Geowissenschaften English title: Statistics in geosciences

Lernziele/Kompetenzen: Lernziele: Das erfolgreiche Absolvieren des Moduls ermöglicht den Studierenden grundlegende Begriffe und Methoden der angewandten Statistik kennenzulernen insbesondere im Hinblick auf Anwendungen in den Geowissenschaften. Die Studierenden • sind mit den Grundbegriffen der deskriptiven Statistik und mit grundlegenden

- Hilfsmitteln der Wahrscheinlichkeitstheorie vertraut;
 kennen einfache Verteilungsmodelle;
- wenden Methoden zur Schätzung grundlegender Parameter von Verteilungen an;
- können statistische Hypothesentests formulieren und für zugehörige Datensätze auswerten;
- beherrschen die einfache lineare Regression.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- sicher mit den elementaren Grundbegriffen der deskriptiven Statistik, der Wahrscheinlichkeitstheorie und der schließenden Statistik umzugehen;
- einfache statistische Fragestellungen aus den Anwendungen (Schätzungen, Tests, lineare Regression) mit Hilfe von Zufallsvariablen und Verteilungsannahmen zu formulieren, das jeweils passende Verfahren auszuwählen und durchzuführen.

Lehrveranstaltung: Statistik für Studierende der Geowissenschaften (Vorlesung)	2 SWS
Lehrveranstaltung: Statistik für Studierende der Geowissenschaften - Übung (Übung)	2 SWS
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsvorleistungen:	
B.Mat.0822.Ue: Erreichen von mindestens 50% der Übungspunkte	

Prüfungsanforderungen:	
Anwendung der in der Vorlesung erlernten Methoden aus der	
Wahrscheinlichkeitstheorie und Statistik, bei den statistischen Fragestellungen ist das	
jeweils passende Verfahren auszuwählen und durchzuführen.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0821
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
- Export-Modul für den Bachelor-Studiengang Geowissenschaften

Georg-August-Universität Göttingen 12 C 10 SWS Modul B.Mat.0831: Mathematik für Studierende der Physik I English title: Mathematics for physics students I

Lernziele/Kompetenzen: Lernziele:

Präsenzzeit:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit analytischem mathematischen Grundwissen vertraut. Sie

140 Stunden Selbststudium: 220 Stunden

Arbeitsaufwand:

- wenden ihr Wissen über Mengen und Logik in verschiedenen Beweistechniken an;
- gehen sicher mit Ungleichungen reeller Zahlen sowie mit Folgen und Reihen reeller und komplexer Zahlen um;
- untersuchen reelle und komplexe Funktionen in einer Veränderlichen auf Stetigkeit;
- · kennen Differenzierbarkeit und Integrierbarkeit reeller Funktionen in einer Veränderlichen:
- berechnen Integrale und Ableitungen von reellen Funktionen in einer Veränderlichen:
- kennen algebraische Strukturen wie reelle und komplexe Vektorräume, Skalarprodukte und Orthonormalbasen;
- · sind mit linearen Abbildungen vertraut;
- · kennen Gruppen, insbesondere Matrixgruppen, und beherrschen das Rechnen mit Matrizen und Determinanten;
- · beherrschen Methoden der Diagonalisierung;
- lösen lineare Gleichungssystemen und Systeme linearer Differenzialgleichungen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis sowie der analytische Geometrie und der linearen Algebra erworben. Sie

- formulieren mathematische Sachverhalte aus Bereichen der Analysis und der linearen Algebra in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, eindimensionalen Analysis und der linearen Algebra;
- analysieren klassische Funktionen und ihre Eigenschaften mit Hilfe von funktionalem Denken;
- erfassen grundlegende Eigenschaften von Zahlenfolgen und Funktionen;
- erfassen lineare Strukturen und grundlegende strukturelle Eigenschaften linearer Vektorräume:
- sind mit mathematischer Abstraktion, insbesondere vom drei-dimensionalem Erfahrungsraum zu endlich-dimensionalen Vektorräumen, vertraut.

Lehrveranstaltung: Mathematik für Studierende der Physik I (Vorlesung)	6 SWS
Prüfung: Klausur (180 Minuten)	12 C
Prüfungsvorleistungen:	

B.Mat.0831.Ue; Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen	
Lehrveranstaltung: Mathematik für Studierende der Physik I - Übung (Übung)	2 SWS
Lehrveranstaltung: Mathematik für Studierende der Physik I - Saalübung (Die Saalübung ist ein optionales Angebot zum Wiederholen des Vorlesungsstoffes und zum Kennenlernen von Anwendungsmöglichkeiten.)	2 SWS
 Prüfungsanforderungen: Grundkenntnisse der Analysis, insbesondere Verständnis des Grenzwertbegriffs, Beherrschen von Beweistechniken; Grundkenntnisse der linearen Algebra, insbesondere über Lösbarkeit und Lösungen von Gleichungssystemen; Befähigung zur Anwendung der Grundkenntnisse in einfachen Beispielen. 	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozenten/in: Lehrpersonen des Mathematischen Instituts
- Exportmodul für den Bachelorstudiengang Physik (B.Sc.)
- Die Module B.Mat.0831 und B.Mat.0832 können durch B.Mat.0011, B.Mat.0012 und B.Mat.0021 ersetzt werden.

Georg-August-Universität Göttingen	12 C
Modul B.Mat.0832: Mathematik für Studierende der Physik II	8 SWS
English title: Mathematics for physics students II	

Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden ihr mathematisches Grundwissen vertieft. Sie • beherrschen topologische Grundbegriffe in metrischen Räumen; • verstehen die Konzepte von Stetigkeit und Konvergenz in metrischen Räumen; • kennen den Banachschen Fixpunktsatz;

insbesondere den Satz über implizite Funktionen;
• lösen Extremwertaufgaben unter Nebenbedingungen;

• lösen gewöhnliche Differenzialgleichungen;

• kennen Grundtechniken der Integralrechnung in mehreren Veränderlichen;

• kennen Grundtechniken der Differenzialrechnung in mehreren Veränderlichen,

- berechnen Volumen-, Oberflächen- und Linienintegrale;
- kennen Elemente der Vektoranalysis, insbesondere die Sätze von Gauß und Stokes sowie Kugelkoordinaten;
- gehen sicher mit Bilinearformen um und kennen Invariantengruppen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden ihre Kompetenzen im Bereich der Analysis vertieft. Sie beherrschen die mathematische Sprache, insbesondere die Darstellung von mathematischen Sachverhalten in der mehrdimensionalen Analysis.

Lehrveranstaltung: Mathematik für Studierende der Physik II (Vorlesung)	6 SWS
Prüfung: Klausur (180 Minuten)	12 C
Prüfungsvorleistungen: B.Mat.0832.Ue; Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen	
Lehrveranstaltung: Mathematik für Studierende der Physik II - Übung (Übung)	2 SWS

Prüfungsanforderungen:	
Grundkenntnisse der Analysis in mehreren Variablen;	
Beherrschung der mathematischen Sprache;	
Darstellung von mathematischen Sachverhalten in der mehrdimensionalen	
Analysis.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0831: Mathematik für Studierende der Physik I
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiendekan/in Mathematik

Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozenten/in: Lehrpersonen des Mathematischen Instituts
- Exportmodul für den Bachelorstudiengang PhysikDie Module
- B.Mat.0831 und B.Mat.0832 können durch B.Mat.0011, B.Mat.0012 und B.Mat.0021 ersetzt werden.

Georg-August-Universität Göttingen Modul B.Mat.0833: Mathematik für Studierende der Physik III English title: Mathematics for physics students III

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls haben die Studierenden Grundwissen in Selbststudium: Funktionentheorie und in Funktionalanalysis erworben. Sie 96 Stunden · gehen sicher mit Potenzreihen um; · kennen die Cauchy-Integralformel und den Residuensatz; • kennen den Schwarzraum und (temperierte) Distributionen; • lösen spezielle partielle Differenzialgleichungen, insbes. Wellen-, Wärme- und Laplace-Gleichung, auch unter Randbedingungen; • wenden die Methode der Greenschen Funktion an: • beherrschen grundlegende Eigenschaften von Banachräumen und kompakten Operatoren; · kennen den Spektralsatz am Beispiel der Sturm-Liouville-Operatoren; • gehen sicher mit Fourier-Reihen und Fourier-Integralen um. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls beherrschen die Studierenden die mathematische Sprache, insbesondere die Darstellung von mathematischen Sachverhalten der höheren Analysis. Sie können Konzepte aus der Funktionentheorie und aus der Funktionalanalysis in konkreten Problemen anwenden. Lehrveranstaltung: Mathematik für Studierende der Physik III (Vorlesung) 4 SWS 6 C Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.0833.Ue; Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen Lehrveranstaltung: Mathematik für Studierende der Physik III - Übung (Übung) 2 SWS Prüfungsanforderungen: Grundkenntnisse der h\u00f6heren Analysis; Darstellung von mathematischen Sachverhalten in der Funktionentheorie und in der Funktionalanalysis; Anwendung des Grundwissens aus Funktionentheorie und aus Funktionalanalysis auf konkrete Probleme.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0832: Mathematik für Studierende der Physik II
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik

Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozenten/in: Lehrpersonen des Mathematischen Instituts
- Exportmodul für den Bachelorstudiengang Physik
- Das Modul B.Mat.0833 kann durch das Modul B.Mat.2110 ersetzt werden.

Georg-August-Universität Göttingen 4 C (Anteil SK: 4		
Georg-August-Universität Göttingen Modul B.Mat.0900: Mathematisches Propädeutikum		C) 5 SWS
English title: Propaedeutic course in mathematics		
Lernziele/Kompetenzen: • Lernziele: Verständnis theoretischer Grundlagen und sicheres Anwenden		Arbeitsaufwand: Präsenzzeit:
grundlegender Methoden aus verschiedenen Bereichen der Mathematik. • Kompetenzen: Logisches Denken, Methodenkompetenz im mathematischen Bereich.		70 Stunden Selbststudium: 50 Stunden
Lehrveranstaltung: Blockveranstaltung Inhalte: Vorlesung mit Übungs/Praktikumsanteil		
Prüfung: Klausur (90 Minuten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung		4 C
Prüfungsanforderungen: Nachweis des Erreichens der Lernziele durch Anwendung auf ausgewählte Problemstellungen		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Freiwillige Zusatzqualifikation im Bereich "Mathematisch-Naturwissenschaftliche Allgemeinbildung" für Studierende in Bachelor-Studiengängen.
- Nicht verwendbar als Schlüsselkompetenz in Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik, Bachelor/Master-Studiengang Physik, Bachelor/Master-Studiengang Angewandte Informatik und allen Promotionsstudiengängen

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0910: Linux effektiv nutzen	2 SWS
English title: Effective use of Linux	

Lernziele/Kompetenzen:

Lernziele:

Das UNIX-Derivat Linux ist mit Abstand das meistgenutzte Betriebssystem, allerdings nicht auf dem Desktop, sondern in Mobiltelefonen, auf Heimgeräten und auf Servern. Auch MAC-Systeme beruhen auf einem UNIX-System. Diese Modul biete eine Einführung in Grundlagen des Systems und der Netzwerkanbindung von Linux. Der Schwerpunkt liegt in der Nutzung von Linux und der Automation von Aufgaben auf der Commandline. Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über fundierte Grundlagenkenntnisse in folgenden Bereichen:

- Linux als Einzelsystem;
- · Linux im Netzwerk;
- · Automatisierung von Aufgaben mit Shellskripten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · wesentlichen Abläufe im Linuxsystem zu verstehen;
- mit einem Mehrbenutzerbetriebssystem auf der Ebene einfacher Systemverwaltung im Einzel- und im Netzwerkbetrieb umzugehen;
- Skripte zur effektiven Aufgabenbewältigung zu erstellen.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Vorlesung mit integrierten Übungen	2 SWS
Prüfung: Klausur (90 Minuten), unbenotet	3 C
Prüfungsvorleistungen:	
B.Mat.0910.Ue: Erreichen von mindestens 50% der Übungspunkte	

Prüfungsanforderungen:

Grundkenntnisse in der Erstellung von Skripten im Einzel- und Netzwerkbetrieb, sicherer Umgang mit und Zuordnung von Begriffen aus einem Mehrbenutzerbetriebssystem im Einzel- und Netzwerkbetrieb.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Sicherer Umgang mit einem Computersystem
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Schlüsselkompetenz im Bereich "EDV/IKT-Kompetenz (IKT=Informations- und Kommunikationstechnologie)", auch für Studierende anderer Fakultäten.

Georg-August-Universität Göttingen Modul B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen English title: Introduction to TeX/LaTeX with applications

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit dem Einsatz von Selbststudium: TeX oder LaTeX zur Erstellung von wissenschaftlichen Texten und Vorträgen vertraut. 62 Stunden Sie · sind vertraut mit ordentlicher Dokumentengliederung; • erstellen Literaturangaben und Querverweise; · erzeugen mathematische Formeln; • erzeugen Grafiken und binden sie ein. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • einfache Dokumente mit LaTeX zu erstellen; • ansprechende Vortragsfolien mit LaTeX zu erzeugen. Lehrveranstaltung: Blockkurs Inhalte: Einwöchige Blockveranstaltung mit Praktikum Prüfung: Hausarbeit (max. 10 Seiten), unbenotet 3 C Prüfungsvorleistungen: Regelmäßige Teilnahme an der Veranstaltung Prüfungsanforderungen: Erstellung eines wissenschaftlichen Portfolios mit TeX/LaTeX und der Folien für eine

Präsentation mit Beamer-TeX. Prüfungsanforderungen: Sicherer Umgang mit den grundlegenden Funktionen von LaTeX und Bearmer-TeX

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse im Umgang mit einem Computer.
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen

Module B.Mat.0922: Mathematics information services and electronic publishing

3 C (incl. key comp.: 3 C) 2 WLH

Learning outcome, core skills:

Learning outcome:

After having successfully completed the module, students are familiar with the basics of mathematics information services and electronic publishing. They

- work with popular information services in mathematics and with conventional, nonelectronic as well as electronic media;
- know a broad spectrum of mathematical information sources including classification principles and the role of meta data;
- are familiar with current development in the area of electronic publishing in the subject mathematics.

Core skills:

After successfull completion of the module students have acquired subject-specific information competencies. They

- · have suitable research skills;
- are familiar with different information and specific publication services.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	
Contents:	
Lecture course with project report	
Examination: Written examination (90 minutes), not graded	3 C
Examination: Written examination (90 minutes), not graded Examination prerequisites:	3 C

Examination requirements:

Application of the acquired skills in individual projects in the area of mathematical information services and electronic publishing

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Programme coordinator
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximum number of students: not limited	

Additional notes and regulations:

Instructors: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen		4 C (Anteil SK: 4
Modul B.Mat.0931: Tutorentraining English title: Coaching of teaching assistants		C) 2 SWS
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:
Nach erfolgreichem Absolvieren des Moduls sind die sund praktischen Fragestellungen der Vermittlung mathwerden befähigt,	28 Stunden Selbststudium: 92 Stunden	
 mathematische Inhalte an Studierende im erster eine heterogene Übungsgruppe zu leiten. verschiedene Lehrmethoden und Visualisierungs souverän aufzutreten. 		
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die	Studierenden in der Lage,	
 Rhetorik- und Präsentationstechniken einzusetzen Teamkompetenzen (insb. Motivationsfähigkeit und Konfliktsituationen) einzusetzen; Methoden des Zeitmanagements zu verwenden; interkulturelle Kompetenzen, insbesondere interleinzusetzen. 	nd sicherer Umgang mit	
Lehrveranstaltung: Integratives Projekt Inhalte: Neben dem Leiten einer Übungsgruppe während des einer Blockveranstaltung beinhaltet das Projekt ein Vo Abschlussseminar sowie begleitende Kurzveranstaltu	orbereitungsseminar und ein	
Prüfung: Präsentation [Übungsstunde] (ca. 45 Min Ausarbeitung (max. 5 Seiten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung	uten) und schriftliche	4 C
Prüfungsanforderungen: Nachweis des Erreichens der Lernziele und Erwerbs d Umsetzung in einer Übungsstunde	der Kompetenzen durch	
Zugangsvoraussetzungen: Übertragung der Leitung einer Übungsgruppe zu einer Lehrveranstaltung der Fakultät für Mathematik und Informatik im gleichen Semester	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch		
Angebotshäufigkeit:	Dauer:	

jedes Wintersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen:	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen 3 C (Anteil SK: 3 C) Modul B.Mat.0932: Vermittlung mathematischer Inhalte an ein 2 SWS **Fachpublikum** English title: Communicating mathematical topics to a professional audience Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit theoretischen Selbststudium: und praktischen Grundlagen der Vermittlung mathematischen Wissens vertraut. Sie 62 Stunden • schätzen das Niveaus der Zielgruppe einer mathematischen Darbietung ein; · strukturieren Präsentationen gut; • beherrschen sicher stilistische und technische Aspekte der Darbietung; • wählen adäquate Hilfsmittel (z.B. zur Visualisierung); steuern die Diskussion mit dem Publikum. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über je nach Veranstaltung verschiedene Kommunikations- und Vermittlungskompetenzen sowie ggf. Fremdsprachenkompetenzen. Lehrveranstaltung: Veranstaltung mit theoretischem und praktischem Anteil, kann ggf. als Blockveranstaltung angeboten werden oder als Teil eines mathematischen Seminars. (Seminar) 3 C Prüfung: Präsentation (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung Prüfungsanforderungen: Nachweis des Erreichens der Lernziele durch Anfertigen einer Darbietung zur Vermittlung mathematischer Inhalte (Format der Darbietung je nach Veranstaltung) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Modulverantwortliche[r]: Sprache: Deutsch, Englisch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: keine Angabe 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt Bemerkungen:

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

2 SWS

Georg-August-Universität Göttingen

Modul B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und die Nutzung wissenschaftlicher Modellsammlungen

English title: Historical, museum-related, and technical aspects of the building-up, the maintenance and the use of scientific collections

4 C (Anteil SK: 4 C)

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse des Planens und Gestaltens von Mathematikunterricht und mathematikdidaktischen Forschungsprojekten

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls nutzen die Studierenden Kenntnisse der mathematischen Wissensvermittlung. Sie

- ordnen wissenschaftliche Modellsammlungen in ihren historischen Kontext ein,
- nutzen museumspädagogische Ansätze für die Vermittlung mit Hilfe von Objekten,
- kennen Beispiele für Techniken, die für den Aufbau und Erhalt von Objekten in Modellsammlungen erforderlich sind.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

92 Stunden

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen:

Erarbeitung historischer, museumspädagogischer und technischer Aspekte eines Modells oder mehrerer Modelle in Kontexten von Sammlungen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen English title: Media education for mathematical objects and problems 4 C (Anteil SK: 4 C) 2 SWS

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse Selbststudium: des Medienunterstützen Lehrens und Lernens zu mathematischen Objekten und 92 Stunden Problemen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls ordnen die Studierenden wissenschaftliche Modellsammlungen in ihren historischen Kontext ein. Sie • nutzen Kenntnisse der Medienbildung zur mathematischen Wissensvermittlung, · vergleichen unterschiedliche Designs für die Illustration mathematischer Objekte und Probleme, • implementieren beispielhaft unterschiedliche medientechnische Realisierungen mathematischer · Objekte.

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen: Erarbeitung medienbezogener Aspekte eines Modells oder mehrerer Modelle in Kontexten von Sammlungen.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
keine Angabe	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	Master: 1 - 4
Maximale Studierendenzahl:	
nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0940: Mathematik in der Welt, in der wir leben	2 SWS
English title: The mathematical nature of the world we are living in	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit der Rolle der Mathematik in unserer Gesellschaft vertraut, wobei die Schwerpunktsetzung je nach Veranstaltung ausgestaltet wird. Die Studierenden

- entwickeln ein stärkeres Bewusstsein für die Rolle der Mathematik in anderen Fachdisziplinen;
- erwerben ein tieferes Verständnis für die Bedeutung der Mathematik für den (technologischen) Fortschritt;
- erkennen die Bedeutung der Mathematik für das Verständnis von Vorgängen und Erscheinungen in der Natur;
- verstehen die Rolle der Mathematik in der Gesellschaft.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über verschiedene Kompetenzen, je nach Ausgestaltung der Lehrveranstaltung haben sie

- · ihre Befähigung zum Logischen Denken ausgebaut;
- das mathematische Interpretieren von Observationen und Daten in einem außermathematischem Kontext erlernt:
- die Transferfähigkeit von abstraktem Wissen auf reelle Situationen erworben;
- ihre Methodenkompetenz im mathematischen Bereich gestärkt.

Lehrveranstaltung: Vorlesung oder Seminar Prüfung: Klausur (90 Minuten) oder Hausarbeit (max. 10 Seiten), unbenotet 3 C

Prüfungsanforderungen:

Nachweis des Erreichens der Lernziele durch Anwendung auf ausgewählte Problemstellungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

_				_						
R	_	m	0	rl	/ 1	ın		_	n	
ப	┖	ш	ᆫ	ır	۱L	411	ч	ᆫ	11	

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen		3 C (Anteil SK: 3
Modul B.Mat.0950: Mitgliedschaft in der s akademischen Selbstverwaltung English title: Membership in the student or academic	C) 1 SWS	
Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen de Präsentation sowie Grundkenntnisse in der Projektplain Rhetorik, in Selbstpräsentation und in freier Rede. Studierenden vertiefte Kenntnisse in den Bereichen Mesprächsführung sowie Entscheidungs- und Konflik	Arbeitsaufwand: Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden	
Lehrveranstaltung: Gremienveranstaltung		
Prüfung: Hausarbeit (max. 5 Seiten), unbenotet		3 C
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähi der Praxis mit theoretischen Wissen verknüpfen und können.	• •	
Zugangsvoraussetzungen: Mitgliedschaft in mindestens einem der folgenden Gremien: 1. Fakultätsrat der Fakultät für Mathematik und Informatik oder eine seiner Kommissionen	Empfohlene Vorkenntnisse: keine	
Senat der Universität oder einer seiner		
 Senat der Universität oder einer seiner Kommissionen Vorstand des Studentenwerks 		
Kommissionen	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Kommissionen 3. Vorstand des Studentenwerks Sprache:		
Kommissionen 3. Vorstand des Studentenwerks Sprache: Deutsch, Englisch Angebotshäufigkeit:	Studiengangsbeauftragte/r Dauer:	notion: 1 - 6

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

Georg-August-Universität Göttingen		3 C (Anteil SK: 3
Modul B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld English title: Civic engagement in a mathematical environment		C) 1 SWS
		Arbeitsaufwand
Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen der Planung, Organisation, Präsentation sowie Grundkenntnisse in der Projektplanung. Sie erwerben Kompetenzen in Rhetorik, in Selbstpräsentation und in freier Rede. Im Praxisteil erlangen die Studierenden vertiefte Kenntnisse in mathematischer Wissensvermittlung sowie in mindestens einem der folgenden Bereichen: • Moderationstechniken, • Gesprächsführung • Entscheidungs- und Konfliktlösungsverhalten in Gruppen.		Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden
Lehrveranstaltung: Projektarbeit		
Prüfung: Portfolio (max. 5 Seiten), unbenotet		3 C
Prüfungsanforderungen:		
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befälder Praxis mit theoretischen Wissen verknüpfen und können.	• •	
Die Studierenden erbringen den Nachweis der Befälder Praxis mit theoretischen Wissen verknüpfen und	• •	
Die Studierenden erbringen den Nachweis der Befälder Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder	Methoden der Reflektion anwenden Empfohlene Vorkenntnisse:	
Die Studierenden erbringen den Nachweis der Befäl der Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik-Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel	Methoden der Reflektion anwenden Empfohlene Vorkenntnisse:	
Die Studierenden erbringen den Nachweis der Befäl der Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik-Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel 4. MatheCamp Sprache:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]:	
Die Studierenden erbringen den Nachweis der Befäl der Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik-Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel 4. MatheCamp Sprache: Deutsch, Englisch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer:	

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

	A uls alta a set sua a al-
English title: Event management in mathematics	
Veranstaltung	
Modul B.Mat.0952: Organisation einer mathematischen	2 SWS
Georg-August-Universität Göttingen	3 C (Anteil SK: 3

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Problemen, die Selbststudium: bei der Organisation einer mathematischen Veranstaltung entstehen, vertraut. Dabei 62 Stunden wird die Schwerpunktsetzung je nach dem zu organisierenden Veranstaltungsprojekt ausgestaltet, zu dem die Studierenden einen abgegrenzten, aktiven Beitrag leisten. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über verschiedene Kompetenzen, je nach Ausgestaltung des Veranstaltungsprojekts erwerben sie · Organisations- und Managementkompetenzen; · Kompetenzen im Informations- und Zeitmanagement; · Teamkompetenz. Lehrveranstaltung: Integratives Projekt Inhalte: Angebotshäufigkeit: jährlich 3 C Prüfung: Projektpräsentation (ca. 20 Minuten) oder Hausarbeit (max. 5 Seiten), unbenotet Prüfungsanforderungen:

Nachweis der Kompetenzen und Fähigkeiten durch einen abgegrenzten, aktiven Beitrag zu einem Veranstaltungsprojekt.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen: Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Götting Modul B.Mat.0970: Betriebsprakti English title: Internship		8 C (Anteil SK: 8 C)	
Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden Kompetenzen in projektbezogener und forschungsorientierter Teamarbeit sowie im Projektmanagement. Sie sind mit Verfahren, Werkzeugen und Prozessen der Mathematik sowie dem organisatorischen und sozialen Umfeld der Praxis vertraut.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 240 Stunden	
Prüfung: Präsentation (ca. 20 Minuten) i Seiten), unbenotet Prüfungsvorleistungen: Bescheinigung über die erfolgreiche Erfüllu Praktikumsplan	• .	8 C	
Prüfungsanforderungen: Erfolgreiche Bearbeitung der gestellten Au Studierenden, der Lehrperson und dem Be			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4; Pro	motion: 1 - 6	
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen:	<u> </u>		

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.1100: Analysis auf Mannigfaltigkeiten English title: Analysis on manifolds

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Methoden der Analysis auf Mannigfaltigkeiten vertraut. Sie

- · kennen wichtige Beispiele von Mannigfaltigkeiten;
- sind mit zusätzlichen Strukturen auf Mannigfaltigkeiten vertraut;
- wenden grundlegende Sätze des Gebiets an;
- sind mit Tensoren und Differenzialformen und weiterführenden Konzepten vertraut;
- kennen den Zusammenhang zu topologischen Fragestellungen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Umgang mit Analysis auf Mannigfaltigkeiten und globalen Fragen der Analysis erworben, und sind auf weiterführende Veranstaltungen vorbereitet. Sie sind in der Lage,

- geometrische Fragestellungen in der Sprache der Analysis zu formulieren;
- Probleme anhand von Ergebnissen der Analysis auf Mannigfaltigkeiten zu lösen;
- sowohl in lokalen Koordinaten als auch koordinatenfrei zu argumentieren;
- mit den Fragestellungen und Anwendungen der Analysis auf Mannigfaltigkleiten umzugehen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Differenzial- und Integralrechnung III (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.1100.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Lehrveranstaltung: Differenzial- und Integralrechnung III - Übung (Übung)	2 SWS

Prüfungsanforderungen:

Nachweis der Grundkenntnisse der höheren Analysis

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5

Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen		9 C
Modul B.Mat.1200: Algebra English title: Algebra		6 SWS
_ernziele/Kompetenzen: _ernziele:		Arbeitsaufwand: Präsenzzeit:
-	Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden mit grundlegenden Begriffen und Ergebnissen aus der Algebra vertraut. Sie	
 kennen wichtige Begriffe und Ergebnisse über G Polynome; sind mit der Galoistheorie vertraut; kennen grundlegende algebraische Strukturen. 	 kennen wichtige Begriffe und Ergebnisse über Gruppen, Ringe, Körper und Polynome; sind mit der Galoistheorie vertraut; 	
Kompetenzen:		
Nach erfolgreichem Absolvieren dieses Moduls haben die Studierenden grundlegende Kompetenzen in der Algebra erworben und sind auf weiterführende Veranstaltungen vorbereitet. Sie sind in der Lage,		
 mathematische Sachverhalte aus dem Bereich Algebra korrekt zu formulieren; Probleme anhand von Ergebnissen der Algebra zu lösen; Probleme in anderen Gebieten, etwa der Geometrie, im Rahmen der Algebra zu formulieren und zu bearbeiten; Fragestellungen und Anwendungen der Algebra zu bearbeiten. 		
Lehrveranstaltung: Algebra (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.1200.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Algebra - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis der Grundkenntnisse in Algebra		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022	

Dauer:

3 - 5

1 Semester

Empfohlenes Fachsemester:

Angebotshäufigkeit:

jedes Wintersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

zweimalig

nicht begrenzt

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1200 "Algebra"
 - B.Mat.2210 "Zahlen und Zahlentheorie"
 - B.Mat.2220 "Diskrete Mathematik"

Georg-August-Universität Göttingen	9 C
Modul B.Mat.1300: Numerische lineare Algebra	6 SWS
English title: Numerical linear algebra	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden im Schwerpunkt "Numerische und Angewandte Mathematik" vertraut. Sie

- · gehen sicher mit Matrix- und Vektornormen um;
- formulieren für verschiedenartige Fixpunktgleichungen einen geeigneten Rahmen, der die Anwendung des Banachschen Fixpunktsatzes erlaubt;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraumverfahren, und analysieren die Konvergenz iterativer Verfahren;
- lösen nichtlineare Gleichungssysteme mit dem Newtonverfahren und analysieren dessen Konvergenz;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen numerisch Eigenwerte und -vektoren von Matrizen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage,

- grundlegende Verfahren zur numerischen Lösung von mathematischen Problemen anzuwenden;
- numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem zu implementieren;
- Grundprinzipien der Konvergenzanalysis numerischer Algorithmen zu nutzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Numerische Mathematik I (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		9 C
Prüfungsvorleistungen:	_	
B.Mat.1300.Ue: Erreichen von mindestens 5	0% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Numerische Mathema	ı tik I - Übung (Übung)	2 SWS
Prüfungsanforderungen:		
Nachweis der Grundkenntnisse der numerisch	chen und angewandten Mathematik	
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.0021, B.Mat.0022	
Sprache:	Modulverantwortliche[r]:	

Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

92 Stunden

Georg-August-Universität Göttingen Modul B.Mat.1310: Methoden zur Numerischen Mathematik English title: Methods for numerical mathematics 4 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden numerischen Methoden zum Modul "Grundlagen der Numerischen Mathematik" vertraut. Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogenen Kompetenzen angestrebt. Die Studierenden

- gehen sicher mit numerischen Algorithmen zu linearen und nichtlinearen Gleichungssystemen um;
- formulieren für verschiedenartige Probleme aus der angewandten Mathematik
 Darstellungen und Modelle, die mit Hilfe eines numerischen Verfahrens aus dem Modul "Grundlagen der Numerischen Mathematik" gelöst werden können;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraum-Verfahren;
- analysieren und bewerten fortgeschrittene Newton-artige Verfahren hinsichtlich Konvergenzgeschwindigkeit und Komplexität und wenden sie auf nichtlineare Gleichungssysteme aus der Praxis an;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen Eigenwerte und -vektoren von Matrizen mit forgeschrittenen Verfahren wie effizienten Implementationen des QR-Verfahrens oder Krylovraum-Verfahren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden vertiefte Erfahrungen in der praktischen Umsetzung numerischer Algorithmen erworben. Sie

- haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen;
- implementieren numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem;
- sind mit Grundprinzipien der Konvergenzanalysis numerischer Algorithmen vertraut und unterscheiden die Stärken der verschiedenen Verfahren.

Lehrveranstaltung: Vorlesung "Methoden zur Numerischen Mathematik" mit Übungen Blockveranstaltung, alternativ parallel zur Vorlesung "Numerische Mathematik I" (B.Mat.1300)

Prüfung: Klausur (45 Minuten) oder mündliche Prüfung (ca. 15 Minuten) 4 C

Prüfungsanforderungen:

Nachweis grundlegender Kenntnisse der behandelten Methoden

Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:

keine	B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragter
Angebotshäufigkeit: jährlich nach Bedarf WiSe oder SoSe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Modul B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie

English title: Measure and probability theory

9 C 6 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und Methoden der Maßtheorie sowie auch der Wahrscheinlichkeitstheorie vertraut, die die Grundlage des Schwerpunkts "Mathematische Stochastik" bilden. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen;
- verstehen grundlegende Eigenschaften sowie Existenz und Eindeutigkeitsaussagen von Maßen;
- gehen sicher mit allgemeinen Maß-Integralen um, insbesondere mit dem Lebesque-Integral;
- · kennen sich mit Lp-Räumen und Produkträumen aus;
- formulieren wahrscheinlichkeitstheoretische Aussagen mit Wahrscheinlichkeitsräumen, Wahrscheinlichkeitsmaßen und Zufallsvariablen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- beschreiben Wahrscheinlichkeitsmaße mit Hilfe von Verteilungsfunktionen bzw.
 Dichten;
- · verstehen und nutzen das Konzept der Unabhängigkeit;
- berechenen Erwartungswerte von Funktionen von Zufallsvariablen;
- verstehen die verschiedenen stochastischen Konvergenzbegriffe und ihre Beziehungen;
- · kennen charakteristische Funktionen und deren Anwendungen;
- besitzen Grundkenntnisse über bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte;
- verwenden das schwache Gesetz der großen Zahlen und den zentralen Grenzwertsatz:
- kennen einfache stochastische Prozesse wie z.B. Markov-Ketten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Mathematische Stochastik" erworben. Sie sind in der Lage,

- Maßräume und Maß-Integrale anzuwenden;
- stochastische Denkweisen einzusetzen und einfache stochastische Modelle zu formulieren:
- · stochastische Modelle mathematisch zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

durchzuführen;		
grundlegende Grenzwertsätze der Wahrscheinlichkeitstheorie zu verwenden.		
Lehrveranstaltung: Maß- und Wahrscheinlichkeitstheorie (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		9 C
Prüfungsvorleistungen:		
B.Mat.1400.Ue: Erreichen von mindestens 50%	der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Maß- und Wahrscheinlichkeitstheorie - Übung (Übung)		2 SWS
Prüfungsanforderungen:		
Nachweis von Grundkenntnissen in diskreter Sto	ochastik sowie Maß- und	
Wahrscheinlichkeitstheorie		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.0021, B.Mat.0022	
keine Sprache:	B.Mat.0021, B.Mat.0022 Modulverantwortliche[r]:	
Sprache:	Modulverantwortliche[r]:	
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Sprache: Deutsch Angebotshäufigkeit:	Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer:	
Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester	Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer: 1 Semester	
Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester Wiederholbarkeit:	Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer: 1 Semester Empfohlenes Fachsemester:	
Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester Wiederholbarkeit: zweimalig	Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer: 1 Semester Empfohlenes Fachsemester:	
Sprache: Deutsch Angebotshäufigkeit: jedes Wintersemester Wiederholbarkeit: zweimalig Maximale Studierendenzahl:	Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer: 1 Semester Empfohlenes Fachsemester:	

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2100: Partielle Differenzialgleichungen	6 SWS
English title: Partial differential equations	

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit grundlegenden

Typen von Differenzialgleichungen und Eigenschaften ihrer Lösungen vertraut. Sie

- · beschreiben grundlegende Eigenschaften von Lösungen der Laplace-, Wärmeleitungs- und Wellengleichung und zugehöriger Rand- bzw. Anfangs-Randwertprobleme;
- sind mit grundlegenden Eigenschaften von Fourier-Transformation und Sobolev-Räumen auf beschränkten und unbeschränkten Gebieten vertraut;
- analysieren die Lösbarkeit von Randwertproblemen für elliptische Differenzialgleichungen mit variablen Koeffizienten;
- analysieren die Regularität von Lösungen elliptischer Randwertprobleme im Inneren und am Rand.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- den Typ einer partiellen Differenzialgleichung zu erkennen und auf qualitative Eigenschaften ihrer Lösungen zu schließen;
- mathematisch relevante Fragestellungen zu partiellen Differenzialgleichungen zu erkennen:
- den Einfluss von Randbedingungen und Funktionenräumen auf Existenz, Eindeutigkeit und Stabilität von Lösungen zu beurteilen.

Selbststudium: 186 Stunden

Lehrveranstaltung: Partielle Differenzialgleichungen (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2100.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	

Lehrveranstaltung: Partielle Differenzialgleichungen - Ubung (Ubung)	2 SWS
Prüfungsanforderungen:	
Nachweis der Grundkenntnisse über partielle Differenzialgleichungen	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: zweijährig jeweils im Wintersemester	Dauer: 1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	4 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts f\u00fcr Numerische und Angewandte Mathematik
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen Modul B.Mat.2110: Funktionalanalysis English title: Functional analysis

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit funktionalanalytischer Denkweise und den zentralen Resultaten aus diesem Gebiet vertraut. Sie

- gehen sicher mit den gängigsten Beispielen von Funktionen- und Folgenräumen wie Lp, lp und Räumen stetiger Funktionen um und analysieren deren funktionalanalytische Eigenschaften;
- wenden die grundlegenden Sätze über lineare Operatoren in Banach-Räumen an, insbesondere die Sätze von Banach-Steinhaus, Hahn-Banach und den Satz über die offene Abbildung;
- argumentieren mit schwachen Konvergenzbegriffen und den grundlegenden Eigenschaften von Dual- und Bidualräumen;
- erkennen Kompaktheit von Operatoren und analysieren die Lösbarkeit linearer Operatorgleichungen mit Hilfe der Riesz-Fredholm-Theorie;
- sind mit grundlegenden Begriffen der Spektraltheorie und dem Spektralsatz für beschränkte, selbstadjungierte Operatoren vertraut.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- in unendlich-dimensionalen Räumen geometrisch zu argumentieren;
- Aufgabenstellungen in funktionalanalytischer Sprache zu formulieren und zu analysieren;
- die Relevanz funktionalanalytischer Eigenschaften wie der Wahl eines passenden Funktionenraums, Vollständigkeit, Beschränktheit oder Kompaktheit zu erkennen und zu beschreiben.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Funktionalanalysis (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		9 C
Prüfungsvorleistungen:		
B.Mat.2110.Ue: Erreichen von mindestens 50% der Ü		
Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Funktionalanalysis - Übung (Übung)		2 SWS
Prüfungsanforderungen:		
Nachweis der Grundkenntnisse über Funktionalanalysis		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.0021, B.Mat.0022	
Sprache:	Modulverantwortliche[r]:	

Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen Modul B.Mat.2120: Funktionentheorie English title: Complex analysis

Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der komplexen Analysis vertraut. Sie

- gehen sicher mit dem Holomorphiebegriff um und kennen gängige Beispiele von holomorphen Funktionen;
- beherrschen insbesondere die verschiedenen Definitionen für Holomorphie und erkennen deren Äquivalenz;
- verstehen den Cauchyschen Intergralsatz und den Residuensatz und wenden diese Sätze innerhalb der Funktionentheorie an:
- erarbeiten weitere ausgewählte Themen der Funktionentheorie;
- erlernen und vertiefen funktionentheoretische Herangehensweisen an mathematische Problemstellungen an Hand ausgewählter Beispiele.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sicher mit grundlegenden Methoden und Grundbegriffen aus der Funktionentheorie umzugehen;
- auf Basis funktionentheoretischer Denkweisen und Beweistechniken zu argumentieren;
- sich in verschiedene Fragestellungen im Bereich "Funktionentheorie" einzuarbeiten:
- funktionentheoretische Methoden auf weiterführende Themen aus der Funktionentheorie und verwandten Gebieten anzuwenden.

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

	•
Lehrveranstaltung: Funktionentheorie (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2120.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Lehrveranstaltung: Funktionentheorie - Übung (Übung)	2 SWS
Prüfungsanforderungen:	
Nachweis der Grundkenntnisse in Funktionentheorie	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0021, B.Mat.0022
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:

jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2200: Moderne Geometrie	0 3 8 8 8
English title: Modern geometry	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Methoden und Konzepten der modernen Geometrie vertraut. Abhängig vom weiterführenden Angebot stehen Methoden der elementaren Differenzialgeometrie oder grundlegende Konzepte der algebraischen Geometrie im Mittelpunkt. Die Studierenden

- kennen die Grundlagen der Differenzialgeometrie von Kurven und Flächen;
- sind mit den inneren Eigenschaften von Flächen vertraut;
- · lernen einfache globale Ergebnisse kennen;

oder sie

- kennen grundlegende Konzepte der algebraischen Geometrie in wichtigen Beispielen;
- sind mit der Formulierung geometrischer Fragen in der Sprache der Algebra vertraut:
- arbeiten mit zentralen Begriffen und Ergebnissen der kommutativen Algebra.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren dieses Moduls verfügen die Studierenden über grundlegende Kompetenzen in der modernen Geometrie und sind auf weiterführende Veranstaltungen in der Differenzialgeometrie oder in der algebraischen Geometrie vorbereitet. Sie sind in der Lage,

- geometrische Fragestellungen mit Konzepten der Differenzialgeometrie oder der algebraischen Geometrie zu präzisieren;
- Probleme anhand von Ergebnissen der Differenzialgeometrie oder der algebraischen Geometrie zu lösen;
- mit Fragestellungen und Anwendungen des jeweiligen Gebiets umzugehen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Vorlesung (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		9 C
Prüfungsvorleistungen:		
B.Mat.2200.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges		
Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Übung		2 SWS
Angebotshäufigkeit: jedes Wintersemester		
Prüfungsanforderungen:		
Nachweis der Grundkenntnisse über Geometrie		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	1

B.Mat.0021, B.Mat.0022

Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.2210: Zahlen und Zahlenthee English title: Numbers and number theory	orie	9 C 6 SWS
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:
und Methoden der elementaren Zahlentheorie vertraut. Sie		84 Stunden Selbststudium:
 erwerben grundlegende Kenntnisse über Zahlentheorie; sind insbesondere mit Teilbarkeit, Kongruenzen, arithmetischen Funktionen, Reziprozitätsgesetz, elementaren diophantischen Gleichungen vertraut; kennen die elementare Theorie p-adischer Zahlen; sind mit weiteren ausgewählten Themen der Zahlentheorie vertraut. 		186 Stunden
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,		
 elementare zahlentheoretische Denkweisen und Beweistechniken zu beherrschen; mit Grundbegriffen und grundlegenden Methoden der Zahlentheorie zu argumentieren; mit Begriffen und Methoden aus weiterführenden Themen der Zahlentheorie zu arbeiten. 		
Lehrveranstaltung: Zahlen und Zahlentheorie (Vol	rlesung)	4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.2210.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Zahlen und Zahlentheorie - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis der Grundkenntnisse der Zahlentheorie		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022	
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6	
Maximale Studierendenzahl:		

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1200 "Algebra"
 - B.Mat.2210 "Zahlen und Zahlentheorie"
 - B.Mat.2220 "Diskrete Mathematik"

Georg-August-Universität Göttingen Modul B.Mat.2220: Diskrete Mathematik English title: Discrete mathematics

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der diskrete Mathematik vertraut. Sie

- erwerben grundlegende Kenntnisse über diskrete Mathematik, insbesondere über enumerative Kombinatorik, erzeugende Funktionen, Rekursionen und asymptotische Analyse;
- erlernen algebraische Grundlagen der diskreten Mathematik, insbesondere üben sie den Umgang mit endlichen Gruppen und Körpern;
- sind mit Graphen, Bäumen, Netzwerken und Suchtheorien vertraut;
- kennen grundlegende Aspekte der spektralen Graphentheorie, z.B. Laplace-Matrix, Fiedler-Vektoren, Laplacian-Einbettung, spectral clustering und Cheeger-Schnitte.

Je nach Bedarf und konkreter Ausgestaltung der Vorlesung erwerben die Studierenden vertiefte Kenntnisse der diskreten Mathematik, z.B.

- im Bereich Zahlentheorie über Kryptographie, Gitter, Codes, Kugelpackungen;
- im Bereich algebraische Strukturen über Boolesche Algebra, Matroide, schnelle Matrixmultiplikation:
- im Bereich Geometrie über diskrete Geometrie und Polytope.

Kompetenzen:

Zugangsvoraussetzungen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- elementare Denkweisen und Beweistechniken der diskreten Mathematik zu beherrschen;
- mit Grundbegriffen und grundlegenden Methoden der diskreten Mathematik zu argumentieren;
- mit Begriffen und Methoden aus weiterführenden Themen der diskreten Mathematik zu arbeiten.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Diskrete Mathematik (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2220.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Lehrveranstaltung: Diskrete Mathematik - Übung (Übung)	2 SWS
Prüfungsanforderungen:	
Nachweis der Grundkenntnisse der diskreten Mathematik	

Empfohlene Vorkenntnisse:

keine	B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1200 "Algebra"
 - B.Mat.2210 "Zahlen und Zahlentheorie"
 - B.Mat.2220 "Diskrete Mathematik"

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2300: Numerische Analysis	6 SWS
English title: Numerical analysis	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden Begriffen und Methoden im Schwerpunkt "Numerische und angewandte Mathematik" vertraut. Sie

- interpolieren vorgegebene Stützpunkte mit Hilfe von Polynomen, trigonometrischen Polynomen und Splines;
- integrieren Funktionen numerisch mit Hilfe von Newton-Cotes Formeln, Gauß-Quadratur und Romberg-Quadratur;
- modellieren Evolutionsprobleme mit Anfangswertaufgaben für Systeme von gewöhnlichen Differenzialgleichungen, lösen diese numerisch mit Runge-Kutta-Verfahren und analysieren deren Konvergenz;
- erkennen die Steifheit von gewöhnlichen Differenzialgleichungen und lösen entsprechende Anfangswertprobleme mit impliziten Runge-Kutta-Verfahren;
- lösen je nach Ausrichtung der Veranstaltung Randwertprobleme oder sind mit Computer Aided Graphic Design (CAGD), Grundlagen der Approximationstheorie oder anderen Gebieten der Numerischen Mathematik vertraut.

Kompetenzen:

Prüfungsanforderungen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · Algorithmen zur Lösung mathematischer Probleme zu entwickeln und
- deren Stabilität, Fehlerverhalten und Komplexität abzuschätzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Numerische Mathematik II - Übung	2 SWS
Lehrveranstaltung: Numerische Mathematik II	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2300.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	

Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine B.Mat.1300 Sprache: Modulverantwortliche[r]: Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: Empfohlenes Fachsemester:

Nachweis weiterführender Kenntnisse in numerischer Mathematik

zweimalig	4 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische	und Angewandte Mathematik

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2310: Optimierung	0 3003
English title: Optimisation	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der Optimierung vertraut. Sie

- lösen lineare Optimierungsprobleme mit dem Simplex-Verfahren und sind mit der Dualitätstheorie der linearen Optimierung vertraut;
- beurteilen Konvergenzeigenschaften und Rechenaufwand von grundlegenden Verfahren für unrestringierte Optimierungsprobleme wie Gradienten- und (Quasi-)Newton-Verfahren;
- kennen Lösungsverfahren für nichtlineare, restringierte Optimierungsprobleme und gehen sicher mit den KKT-Bedingungen um;
- modellieren Netzwerkflussprobleme und andere Aufgaben als ganzzahlige Optimierungsprobleme und erkennen totale Unimodularität.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- Optimierungsaufgaben in der Praxis zu erkennen und als mathematische Programme zu modellieren sowie
- geeignete Lösungsverfahren zu erkennen und zu entwickeln.

Nachweis der Grundkenntnisse der Optimierung

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Übungen	2 SWS
Angebotshäufigkeit: jedes Wintersemester	
Lehrveranstaltung: Vorlesung (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2310.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Prüfungsanforderungen:	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0021, B.Mat.0022
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	4 - 6

Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2410: Stochastik	0 3003
English title: Stochastics	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit fortgeschrittenen Begriffen und Denkweisen der mathematischen Stochastik vertraut. Sie

- beherrschen weiterführende Konzepte der Maßtheorie;
- beherrschen bedingte Erwartungswerte;
- · verstehen gleichgradige Integrierbarkeit;
- lösen stochastische Probleme mittels Wahrscheinlichkeitsungleichungen und dem (multivariaten) zentralen Grenzwertsatz;
- verstehen das starke Gesetz der großen Zahlen (für Martingale);
- kennen verschiedene Modellklassen stochastischer Prozesse wie z.B.
 Markovketten und die Brownsche Bewegung und verstehen deren wichtigste Eigenschaften;
- simulieren Zufallsvariablen elementar und mit Markov-Ketten;
- beherrschen die Grundlagen moderner mathematischer Statistik:
- kennen wichtige statistische Test- und Schätzverfahren.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- fortgeschrittene stochastische Denkweisen und Beweistechniken anzuwenden;
- stochastische Problemstellungen über Wahrscheinlichskeitsräume und Zufallsvariablen zu modellieren und zu analysieren;
- Grenzwertsätze der fortgeschrittenen Wahrscheinlichkeitstheorie zu verwenden;
- stochastische Problemstellungen mit Hilfe von stochastischen Prozessen zu modelliere und analysieren;
- statistische Denkweisen und Methoden der mathematischen Statistik anzuwenden.

Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

Lehrveranstaltung: Stochastik (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen:		9 C
B.Mat.1430.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Stochastik - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis fortgeschrittener Kenntnisse in Wahrschein mathematischer Statistik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

B.Mat.1400

Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

• Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.2420: Statistical Data Science	0 3003
English title: Statistical Data Science	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Methoden und Denkweisen der Statistical Data Science vertraut. Sie

- gehen sicher mit den Grundbegriffen der deskriptiven Methoden der Statistical Data Science um wie etwa Histogrammen, Quantilen und anderen Kenngrößen von Verteilungen;
- kennen für die Statistical Data Science relevante Verteilungen von diskreten und stetigen Zufallsvariablen;
- erlernen grundlegende Algorithmen zur Erzeugung von Zufallszahlen und Computersimulationen;
- verstehen grundlegende stochastische Konvergenzbegriffe und Konvergenzsätze, elementare Beweistechniken und ihre Verwendung in der Statistical Data Science;
- konstruieren Schätzer wie etwa Maximum Likelihood-Schätzer,
 Momentenschätzer, Bayes-Schätzer und Kerndichteschätzer und kennen ihre elementaren Eigenschaften wie mittlerer quadratischer Fehler und Konsistenz;
- sind mit den zentralen Begrifflichkeiten zur Bewertung des Risikos dieser Schätzer vertraut:
- erlernen algorithmische Verfahren der Statistical Data Science zur Berechnung dieser Schätzer;
- · entwickeln Konfidenzbereiche zur Parameterschätzung;
- formulieren Hypothesentests und kennen ihre Grundlagen und Eigenschaften;
- sind mit Methoden von besonderer Wichtigkeit in verschiedenen Gebieten der Statistical Data Science vertraut wie etwa Varianz-, Cluster-, Diskriminanz-, Hauptkomponenten- und Regressionsanalyse.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich Statistical Data Science erworben. Sie sind in der Lage,

- statistische Denkweisen und deskriptive Methoden der Statistical Data Science anzuwenden:
- elementare Modelle der Statistical Data Science zu formulieren;
- grundlegende Schätzmethoden zu verwenden sowie Hypothesentests und einfache cluster- und diskriminanzanalytische Verfahren durchzuführen;
- konkrete Datensätze zu analysieren und entsprechende Verfahren der Statistical Data Science einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Statistical Data Science (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	

B.Mat.2420.Ue: Erreichen von mindestens Vorrechnen von Lösungen in den Übunge		
Lehrveranstaltung: Statistical Data Science - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis weiterführender Kenntnisse in S	Statistical Data Science	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0034, B.Mat.1400	
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester 4 - 6	:
Maximale Studierendenzahl: nicht begrenzt		

- Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
- Universitätsweites Schlüsselkompetenzangebot

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.Mat.3000: Ausgewählte Themen der reinen Mathematik English title: Selected topics in pure mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls haben die Studierenden Selbststudium: • Grundwissen in einem ausgewählten aktuellen Gebiet der reinen Mathematik 124 Stunden erworben: • beispielbezogene Erfahrungen zur Anwendung dieses Grundwissens in dem ausgewählten aktuellen Gebiet der reinen Mathematik gesammelt. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden weitergehende Kompetenzen in dem Schwerpunkt SP1 "Analysis, Geometrie, Topologie" oder SP2 "Algebra, Geometrie, Zahlentheorie" erworben. Sie sind in der Lage, das erworbene Grundwissen in akademische Diskussionen in dem ausgewählten aktuellen Gebiet der reinen Mathematik einzubringen; • unter Anleitung in einem ausgewählten Gebiet der reinen Mathematik wissenschaftlich zu arbeiten. Lehrveranstaltung: Weiterführende Vorlesung mit Übung oder Seminar zu einem 4 SWS aktuellen Gebiet in der reinen Mathematik Prüfung: Mündlich (ca. 20 Minuten) 6 C Prüfungsvorleistungen: B.Mat.3000.Ue: Teilnahme an Übungen oder mündlicher Vortrag Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Mat.1100. B.Mat.1200 Sprache: Modulverantwortliche[r]: Deutsch Studiengangsbeauftragte/r Dauer: Angebotshäufigkeit: keine Angabe 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig 4 - 6 Maximale Studierendenzahl: nicht begrenzt Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Mat.3031: Wissenschaftliches Rechnen English title: Scientific computing

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls haben die Studierenden Selbststudium: • Grundwissen zu numerischen Verfahren in einem ausgewählten aktuellen Gebiet 124 Stunden des wissenschaftlichen Rechnens erworben; • beispielbezogene Erfahrungen zur Anwendung dieser numerischen Verfahren in dem ausgewählten aktuellen Gebiet des wissenschaftlichen Rechnens und ihren theoretischen Hintergründen gesammelt. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden weitergehende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage, • numerische Verfahren des ausgewählten aktuellen Gebietes des wissenschaftlichen Rechnens einzusetzen; · diese numerischen Algorithmen in einem Anwendersystem oder in einer geeigneten Programmiersprache zu implementieren; • elementare Aussagen zu Konvergenz und Komplexität der ausgewählten numerischen Algorithmen herzuleiten; • die ausgewählten numerischen Verfahren des Gebietes exemplarisch anzuwenden.

Lehrveranstaltung: Weiterführende Vorlesung zu einem aktuellen Gebiet im Bereich der Verfahren des wissenschaftlichen Rechnens mit Übungen und/oder Praktikum	
Prüfung: Mündlich (ca. 20 Minuten) Prüfungsvorleistungen: B.Mat.3031.Ue: Teilnahme an Übungen/Praktikum und mündlicher Vortrag	6 C
Prüfungsanforderungen: Die Beherrschung der in der Veranstaltung behandelten Verfahren des wissenschaftlichen Rechnens, ihre Anwendbarkeit und Eigenschaften	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.1300
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
keine Angabe	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	4 - 6	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik		

Georg-August-Universität Göttingen Modul B.Mat.3041: Overview on non-life insurance mathematics English title: Overview on non-life insurance mathematics

Lernziele/Kompetenzen:

Learning outcome:

After completion of the module students are familiar with basic notions and methods of non-life insurance mathematics. They

- are familiar with basic definitions and terms within non-life insurance mathematics;
- · understand central aspects of risk theory;
- · know substantial pricing and reserving methods;
- · estimate ruin probabilities.

Core skills:

After successful completion of the module students have acquired basic competencies within non-life insurance. They are able to

- · apply a basic inventory of solving approaches;
- · analyse and develop pricing models which mathematically are state of the art;
- · evaluate and quantify fundamental risks.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Lecture course (Vorlesung)	2 SWS
Prüfung: Klausur (120 Minuten)	3 C

Prüfungsanforderungen:

Basic knowledge on non-life insurance mathematics

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1400
Sprache: Englisch	Modulverantwortliche[r]: Programme coordinator
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Modul B.Mat.3042: Overview on life insurance mathematics English title: Overview on life insurance mathematics

Lernziele/Kompetenzen:

Learning outcome:

After successfully completing this module students are familiar with basic notions and methods of life insurance mathematics. In particular they

- master fundamental terms and notions of life insurance mathematics;
- · know about risk theory and risk management;
- know substantial pricing and reserving methods, in particular in health insurance;
- know about legal requirements of life, health and pension insurance in Germany.

Core skills:

After successful completion of the module students have acquired basic competencies within life insurance mathematics. The student should be able to

- · apply a basic inventory of solving approaches;
- · calculate premiums and provisions in life, health and pension insurance;
- · evaluate and quantify fundamental risks.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Lecture course (Vorlesung)	2 SWS
Prüfung: Klausur (120 Minuten)	3 C

Prüfungsanforderungen:

Basic knowledge on life insurance mathematics

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1400
Sprache: Englisch	Modulverantwortliche[r]: Programme coordinator
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Instructor: Lecturers of the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module B.Mat.3043: Non-life insurance mathematics

6 C 4 WLH

124 h

Learning outcome, core skills:

Non-life insurance mathematics deals with models and methods of quantifying risks with both, the occurrence of the loss and its amount showing random patterns. In particular the following problems are to be solved:

- · determing appropriate insurance premiums;
- · calculate adequate loss reserves;
- determine how to allocate risk between policyholder and insurer resp. insurer and reinsurers.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

The aim of the module is to equip students with knowledge in four areas:

- 1. risk models;
- 2. pricing;
- 3. reserving;
- 4. risk sharing.

After having successfully completed the module, students are familiar with fundamental terms and methods of non-life insurance mathematics. They

- are familiar with and able to handle essential definitions and terms within non-life insurance mathematics:
- have an overview of the most valuable problem statements of non-life insurance;
- · understand central aspects of risk theory;
- · know substantial pricing and reserving methods;
- · estimate ruin probabilities;
- are acquainted with most important reinsurance forms and reinsurance pricing methods.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within non-life insurance. They are able to

- · evaluate and quantify fundamental risks;
- model the aggregate loss with individual or collective model;
- apply a basic inventory of solving approaches;
- analyse and develop pricing models which mathematically are state of the art;
- · apply different reserving methods and calculate outstanding losses;
- · assess reinsurance contracts.

Workload:

Attendance time: 56 h Self-study time:

Course: Lecture course with exercise session

4 WLH

Examination: Written examination (120 minutes)	6 C
Examination requirements:	
Fundamental knowledge of non-life insurance mathematics	

	·
Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until winter

semester 2017/18

Georg-August-Universität Göttingen Module B.Mat.3044: Life insurance mathematics

6 C 4 WLH

Learning outcome, core skills:

This module deals with the basics of different branches in life insurance mathematics. In particular, students get to know both the classical deterministic model and the stochastic model as well as how to apply them to problems relevant in the respective branch. On this base the students describe

Workload:

Attendance time: 56 h Self-study time: 124 h

- · essential notions of present values;
- · premiums and their present values;
- · the actuarial reserve.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

After having successfully completed the module, students are familiar with fundamental terms

and methods of life insurance mathematics. In particular they

- · assess cashflows in terms of financial and insurance mathematics;
- apply methods of life insurance mathematics to problems from theory and practise;
- characterise financial securities and insurance contracts in terms of cashflows;
- have an overview of the most valuable problem statements of life insurance;
- understand the stochastic interest structure;
- master fundamental terms and notions of life insurance mathematics;
- get an overwiew of most important problems in life insurance mathematics;
- · understand mortality tables and leaving orders within pension insurance;
- · know substantial pricing and reserving methods;
- know the economic and legal requirements of private health insurance in Germany;
- are acquainted with per-head loss statistics, present value factor calculation and biometric accounting principles.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within life insurance. They are able to

- assess cashflows with respect to both collateral and risk under deterministic interest structure;
- calculate premiums and provisions in life-, health- and pension-insurance;
- understand the actuarial equivalence principle as base of actuarial valuation in life insurance;
- apply and understand the actuarial equivalence principle for calculating premiums, actuarial reserves and ageing provisions;
- calculate profit participation in life insurance;
- · master premium calculation in health insurance;

calculate present value and settlement value of pension obligations;	
find mathematical solutions to practical questions in life, health and pension	
insurance.	

Course: Lecture course with exercises	4 WLH
Examination: Written examination (120 minutes)	6 C

Examination requirements:	
Fundamental knowledge of life insurance mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until summer

semester 2019

Georg-August-Universität Göttingen Module B.Mat.3111: Introduction to analytic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Analytical number theory";
- explain basic ideas of proof in the area "Analytical number theory";
- illustrate typical applications in the area "Analytical number theory".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3111.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of knowledge and mastery of basic competencies in the area "Analytic number	
theory"	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module B.Mat.3112: Introduction to analysis of partial differential equations

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalized functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Analysis of partial different equations";
- explain basic ideas of proof in the area "Analysis of partial different equations";
- illustrate typical applications in the area "Analysis of partial different equations".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

	2 WLH
ies in the area "Analysis of partial	
Recommended previous knowled B.Mat.1100, B.Mat.1200	edge:
Person responsible for module: Programme coordinator	
Duration: 1 semester[s]	
Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
	Person responsible for module: Programme coordinator Duration: 1 semester[s] Recommended semester:

Georg-August-Universität Göttingen Module B.Mat.3113: Introduction to differential geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, areas and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Differential geometry";
- explain basic ideas of proof in the area "Differential geometry";
- illustrate typical applications in the area "Differential geometry".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3113.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
	1

Course: Exercise session (Exercise)

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Differential	
geometry"	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3114: Introduction to algebraic topology

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Algebraic topology";
- explain basic ideas of proof in the area "Algebraic topology";
- illustrate typical applications in the area "Algebraic topology".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture) 4 WLH

Examination: Written or oral examwritten exam examination (appr. 20 minutes)	ination (120 minutes) or oral	9 C
Examination prerequisites:		
B.Mat.3114.Ue: Achievement of at least 50% of the exercise points and presentation,		
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Algebraic topology"		
Admission requirements:	Recommended previous knowle	edge:
none	B.Mat.1100, B.Mat.1200	
Language:	Person responsible for module:	
English	Programme coordinator	
Course frequency:	Duration:	
not specified	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		
Instructor: Lecturers at the Mathematical Institute		

Module B.Mat.3115: Introduction to mathematical methods in physics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

Admission requirements:

none

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Mathematical methods of physics";
- · explain basic ideas of proof in the area "Mathematical methods of physics";
- · illustrate typical applications in the area "Mathematical methods of physics".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites: B.Mat.3115.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Mathematical methods in physics"	

Recommended previous knowledge:

B.Mat.1100, B.Mat.1200

Language:	Person responsible for module:
English	Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations:	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3121: Introduction to algebraic geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- · get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic geometry";
- explain basic ideas of proof in the area "Algebraic geometry";
- illustrate typical applications in the area "Algebraic geometry".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

B.Mat.3121.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions			
Course: Exercise session (Exercise)		2 WLH	
Examination requirements: Proof of knowledge and mastery of basic competencies			
Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200		
Language: English	Person responsible for module: Programme coordinator		
Course frequency: not specified	Duration: 1 semester[s]		

Recommended semester:Bachelor: 5 - 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

twice

not limited

Instructor: Lecturers at the Mathematical Institute

Number of repeat examinations permitted:

Module B.Mat.3122: Introduction to algebraic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic number theory";
- explain basic ideas of proof in the area "Algebraic number theory";
- illustrate typical applications in the area "Algebraic number theory".

Workload:

Attendance time: 84 h Self-study time:

186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3122.Ue:Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of knowledge and mastery of basic competencies in the area "Algebraic number		
theory"		
Admission requirements:	Recommended previous knowledge:	
none	B.Mat.1100, B.Mat.1200	
Language:	Person responsible for module) :
English	Programme coordinator	
Course frequency:	Duration:	
not specified	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		
Instructor: Lecturers at the Mathematical Institute		

Georg-August-Universität Göttingen Module B.Mat.3123: Introduction to algebraic structures

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Algebraic structures";
- · explain basic ideas of proof in the area "Algebraic structures";
- illustrate typical applications in the area "Algebraic structures".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3123.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH	
Examination requirements: Proof of knowledge and mastery of basic compete structures"	ncies in the area "Algebraic	
Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Module B.Mat.3124: Introduction to groups, geometry and dynamical systems

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- · know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Groups, geometry and dynamical systems";
- explain basic ideas of proof in the area "Groups, geometry and dynamical systems";
- illustrate typical applications in the area "Groups, geometry and dynamical systems".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	

Examination prerequisites: B.Mat.3124.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Groups, geometry and dynamical systems"

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module B.Mat.3125: Introduction to non-commutative geometry

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 84 h Self-study time:

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Non-commutative geometry";
- explain basic ideas of proof in the area "Non-commutative geometry";
- · illustrate typical applications in the area "Non-commutative geometry".

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3125.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of knowledge and mastery of basic competencies in the area "Non-commutative	
geometry"	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3131: Introduction to inverse problems

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computed tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Inverse problems";
- explain basic ideas of proof in the area "Inverse problems";
- · illustrate typical applications in the area "Inverse problems".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20	9 C
minutes)	

Examination prerequisites: B.Mat.3131.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Inverse problems"

Admission requirements:	Recommended previous knowledge: B.Mat.1300
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3132: Introduction to approximation methods

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Approximation methods";
- explain basic ideas of proof in the area "Approximation methods" for one- and multidimensional data;
- illustrate typical applications in the area of data approximation and data analysis.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture) 4 WLH

Examination: Written or oral examwritten exam examination (appr. 20 minutes) Examination prerequisites: B.Mat.3132.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	9 C	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competer methods"	ncies in the area "Approximation	
Admission requirements:	Recommended previous know B.Mat.1300	ledge:
Language: English	Person responsible for module Programme coordinator	e:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3133: Introduction to numerics of partial differential equations

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Numerics of partial differential equations";
- explain basic ideas of proof in the area "Numerics of partial differential equations";
- illustrate typical applications in the area "Numerics of partial differential equations".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites:		9 C
B.Mat.3133.Ue: Achievement of at least 50% of	the exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Proof of knowledge and mastery of basic compedifferential equations" Admission requirements:	Recommended previous know	
differential equations"		
Admission requirements: none Language:	Recommended previous known B.Mat.1300 Person responsible for modul	vledge:
Admission requirements: none	Recommended previous known B.Mat.1300	vledge:
Admission requirements: none Language:	Recommended previous known B.Mat.1300 Person responsible for modul	vledge:
Admission requirements: none Language: English	Recommended previous known B.Mat.1300 Person responsible for moduling Programme coordinator	vledge:
Admission requirements: none Language: English Course frequency:	Recommended previous known B.Mat.1300 Person responsible for module Programme coordinator Duration:	vledge:
Admission requirements: none Language: English Course frequency: not specified	Recommended previous known B.Mat.1300 Person responsible for module Programme coordinator Duration: 1 semester[s]	vledge:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3134: Introduction to optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Optimisation";
- explain basic ideas of proof in the area "Optimisation";
- illustrate typical applications in the area "Optimisation".

Workload:

Attendance time: 84 h
Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examexamination (appr. 20 minutes) Examination prerequisites: B.Mat.3134.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	,	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Optimisation"		
Admission requirements:	Recommended previous knowledge: B.Mat.1300	
Language: English	Person responsible for module Programme coordinator	le:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical and Applied Mathematics		

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Georg-August-Universität Göttingen Module B.Mat.3137: Introduction to variational analysis

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

Attendance time: 84 h Self-study time: After having successfully completed the module, students will be able to discuss basic concepts of the area "Variational analysis"; • explain basic ideas of proof in the area "Variational analysis"; • illustrate typical applications in the area "Variational analysis". Course: Lecture course (Lecture) 4 WLH Examination: Written or oral examwritten examination (120 minutes) or oral 9 C examination (appr. 20 minutes) (120 minutes) **Examination prerequisites:** B.Mat.3137.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions 2 WLH Course: Exercise session (Exercise) **Examination requirements:** Proof of knowledge and mastery of basic competencies in the area "Variational analysis" Recommended previous knowledge: Admission requirements: none B.Mat.1300 Language: Person responsible for module: Programme coordinator English Course frequency: **Duration:** not specified 1 semester[s] Number of repeat examinations permitted: Recommended semester: Bachelor: 5 - 6; Master: 1 - 4 twice Maximum number of students: not limited Additional notes and regulations:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3138: Introduction to image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Image and geometry processing";
- explain basic ideas of proof in the area "Image and geometry processing";
- illustrate typical applications in the area "Image and geometry processing".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3138.Ue: Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of knowledge and mastery of basic competer	ncies in the area "Image and	
geometry processing"		
Admission requirements:	Recommended previous know	rledge:
none	B.Mat.1300	
Language:	Person responsible for module	e:
English	Programme coordinator	
Course frequency:	Duration:	
not specified	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		
Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Module B.Mat.3139: Introduction to scientific computing / applied mathematics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Scientific computing / applied mathematics";
- explain basic ideas of proof in the area "Scientific computing / applied mathematics";
- illustrate typical applications in the area "Scientific computing / applied mathematics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3139.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Scientific	
computing / applied mathematics"	

Admission requirements:	Recommended previous knowledge: B.Mat.1300
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3141: Introduction to applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Applied and mathematical stochastics";
- explain basic ideas of proof in the area "Applied and mathematical stochastics";
- illustrate typical applications in the area "Applied and mathematical stochastics".

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

Workload:

Attendance time: 84 h

Self-study time: 186 h

B.Mat.3141.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions			
Course: Exercise session (Exercise)		2 WLH	
Examination requirements: Proof of knowledge and mastery of basic compete mathematical stochastics"	encies in the area "Applied and		
Admission requirements:	Recommended previous knowled B.Mat.1400	Recommended previous knowledge: B.Mat.1400	
Language: English	Person responsible for module Programme coordinator	Person responsible for module: Programme coordinator	
Course frequency: not specified	Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4		
Maximum number of students: not limited			
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics			

Georg-August-Universität Göttingen Module B.Mat.3142: Introduction to stochastic processes

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

• discuss basic concepts of the area "Stochastic processes";

Workload:

Attendance time: 84 h Self-study time: 186 h

explain basic ideas of proof in the area "Stoch. "" "" "" "" "" "" "" "" "" ""	•	
illustrate typical applications in the area "Stoch		
Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3142.Ue: Achievement of at least 50% of the exercise points and presentation,		
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Stochastic processes"		
Admission requirements:	Recommended previous knowl B.Mat.1400	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency:	Duration:	
not specified	1 semester[s]	
not specified Number of repeat examinations permitted:	1 semester[s] Recommended semester:	
<u> </u>		
Number of repeat examinations permitted:	Recommended semester:	
Number of repeat examinations permitted: twice	Recommended semester:	
Number of repeat examinations permitted: twice Maximum number of students:	Recommended semester:	

Georg-August-Universität Göttingen Module B.Mat.3143: Introduction to stochastic methods of economathematics 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Stochastic methods of economathematics";
- explain basic ideas of proof in the area "Stochastic methods of economathematics";
- illustrate typical applications in the area "Stochastic methods of economathematics".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3143.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise) Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Stochastic methods of economathematics"

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations:	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3144: Introduction to mathematical statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families:
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Mathematical statistics";
- explain basic ideas of proof in the area "Mathematical statistics";
- illustrate typical applications in the area "Mathematical statistics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	

Examination prerequisites: B.Mat.3144.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Mathematical
statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3145: Introduction to statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical modelling and inference";
- explain basic ideas of proof in the area "Statistical modelling and inference";
- illustrate typical applications in the area "Statistical modelling and inference".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examoral examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites: B.Mat.3145.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Z WEIT

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Statistical modelling and inference"

-	
Admission requirements:	Recommended previous knowledge:

none	B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3146: Introduction to multivariate statistics

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Multivariate statistics";
- explain basic ideas of proof in the area "Multivariate statistics";
- illustrate typical applications in the area "Multivariate statistics".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)

4 WLH

Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites: B.Mat.3146.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Multivariate statistics"		
Admission requirements:	Recommended previous knowl B.Mat.1400	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3147: Introduction to statistical foundations of data science

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in the area of "Statistical foundations of data science". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;

- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical foundations of data science";
- explain basic ideas of proof in the area "Statistical foundations of data science";
- illustrate typical applications in the area "Statistical foundations of data science".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3147.Ue: Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of knowledge and mastery of basic competer	ncies in the area "Statistical	
foundations of data science"		
Admission requirements:	Recommended previous knowledge:	
none	B.Mat.1400	
Language:	Person responsible for module) :
English	Programme coordinator	
Course frequency:	Duration:	
not specified	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		
Instructor: Lecturers at the Institute of Mathematic	cal Stochastics	

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3210: Proseminar im Schwerpunkt SP 1 "Analysis, Geometrie, Topologie" English title: Proseminar on analysis, geometry and topology Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus dem Schwerpunkt SP 1 "Analysis, Geometrie, Topologie" vor einem Fachpublikum 62 Stunden adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet aus dem Schwerpunkt SP 1 "Analysis, Geometrie, Topologie"; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage • sich in ein Thema aus einem Gebiet in dem Schwerpunkt SP 1 "Analysis, Geometrie, Topologie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: B.Mat.3210.Sem: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Schwerpunkt SP 1 "Analysis, Geometrie, Topologie". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** B.Mat.0011, B.Mat.0012, B.Mat.0021, B.Mat.0022 keine Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 3 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Georg-August-Universität Göttingen Modul B.Mat.3211: Proseminar im Zyklus "Analytische Zahlentheorie" English title: Proseminar on Analytic Number Theory

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Analytische Zahlentheorie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Analytische Zahlentheorie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- lösen arithmetische Probleme mit elementaren, komplex-analytischen und Fourieranalytischen Methoden;
- kennen Eigenschaften der Riemannschen Zetafunktion und allgemeinerer L-Funktionen und wenden sie auf Probleme in der Zahlentheorie an:
- sind mit Resultaten und Methoden aus der Primzahltheorie vertraut:
- erwerben Kenntnisse in der arithmetischen und analytischen Theorie automorpher Formen und deren Anwendung in der Zahlentheorie;
- kennen grundlegende Siebmethoden und wenden sie auf Fragestellungen der Zahlentheorie an;
- kennen Techniken zur Abschätzung von Charaktersummen und Exponentialsummen;
- analysieren die Verteilung rationaler Punkte auf geeigneten algebraischen Varietäten unter Benutzung analytischer Techniken;
- beherrschen den Umgang mit asymptotischen Formeln, asymptotischer Analysis und asymptotischen Gleichverteilungsfragen in der Zahlentheorie.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Analytische Zahlentheorie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen:
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

n

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen:	
------------------------	--

Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich	
"Analytische Zahlentheorie"	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3212: Proseminar im Zyklus "Analysis Partieller Differenzialgleichungen"

English title: Proseminar on analysis of partial differential equations

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen des Zyklus "Analysis Partieller Differenzialgleichungen" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Analysis Partieller Differenzialgleichungen" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Typen partieller Differenzialgleichungen vertraut und kennen deren Lösungstheorie;
- beherrschen die Fouriertransformation und andere Techniken der harmonischen Analysis, um partielle Differenzialgleichungen zu analysieren;
- sind mit der Theorie der verallgemeinerten Funktionen und der Theorie der Funktionenräume vertraut und setzen diese zur Lösung von partiellen Differenzialgleichungen ein;
- wenden die Grundprinzipien der Funktionalanalysis auf die Lösung partieller Differenzialgleichungen an;
- setzen verschiedene Sätze der Funktionentheorie zur Lösung partieller Differenzialgleichungen ein;
- beherrschen verschiedene asymptotische Techniken, um Eigenschaften der Lösungen partieller Differenzialgleichungen zu studieren;
- sind beispielhaft mit größeren Themenkreisen aus der linearen Theorie partieller Differenzialgleichungen vertraut;
- sind beispielhaft mit größeren Themenkreisen aus der nichtlinearen Theorie partieller Differenzialgleichungen vertraut;
- kennen die Bedeutung partieller Differenzialgleichungen in der Modellierung in den Natur- und den Ingenieurwissenschaften;
- beherrschen einige weiterführende Themenkreise wie etwa Teile der mikrolokalen Analysis oder Teile der algebraischen Analysis.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Analysis Partieller Differenzialgleichungen", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Proseminar (2 SWS)	_ehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar		3 C
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung "Analysis Partieller Differenzialgleichungen"	mathematischer Sachverhalte im Bereich	ı
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: 5 - 6		
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Mathematischen Instituts		

Modul B.Mat.3213: Proseminar im Zyklus "Differenzialgeometrie"

English title: Proseminar on differential geometry

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Differenzialgeometrie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Differenzialgeometrie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- beherrschen die Grundlagen der Differenzialgeometrie, entwickeln ein räumliches Vorstellungsvermögen am Beispiel der Theorie von Kurven, Flächen und Hyperflächen;
- entwickeln ein Verständnis der Basis-Konzepte der Differenzialgeometrie wie "Raum" und "Mannigfaltigkeit", "Symmetrie" und "Liesche Gruppe", "lokale Struktur" und "Krümmung", "globale Struktur" und "Invarianten" sowie "Integrabilität";
- beherrschen (je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet) die Theorie der Transformationsgruppen und Symmetrien sowie der Analysis auf Mannigfaltigkeiten, die Theorie der Mannigfaltigkeiten mit geometrischen Strukturen, der komplexen Differenzialgeometrie, der Eichfeldtheorie und ihrer Anwendungen sowie der elliptischen Fidderenzialgleichungen aus Geometrie und Eichfeldtheorie;
- entwickeln ein Verständnis für geometrische Konstruktionen, räumliche Strukturen und das Zusammenspiel von algebraischen, geometrischen, analytischen und topologischen Methoden;
- erwerben die Fähigkeit Methoden aus der Analysis, Algebra und Topologie für die Behandlung geometrischer Probleme einzusetzen;
- vermögen geometrische Probleme in einem breiteren mathematischen und physikalischen Kontext einzubringen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Differenzialgeometrie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Differenzialgeometrie"

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.1100, B.Mat.1200
Sprache:	Modulverantwortliche[r]:
Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
unregelmäßig	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	5 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

Bemerkungen:

Modul B.Mat.3214: Proseminar im Zyklus "Algebraische Topologie"

English title: Proseminar on algebraic topology

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Topologie" lernen die Studierenden die wichtigsten Klassen topologischer Räume kennen sowie die algebraischen und analytischen Werkzeuge für das Studium dieser Räume und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Werkzeuge in Geometrie, mathematischer Physik, Algebra und Gruppentheorie an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die algebraische Topologie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte der algebraischen Topologie behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- kennen die grundlegenden Konzepte der mengentheoretischen Topologie und der stetigen Abbildungen;
- konstruieren aus gegebenen Topologien neue Topologien;
- kennen spezielle Klassen topologischer Räume und deren spezielle Eigenschaften wie CW-Komplexe, Simplizialkomplexe und Mannigfaltigkeiten;
- wenden grundlegende Konzepte der Kategorientheorie auf topologische Räume an:
- nutzen Konzepte der Funktoren um algebraische Invarianten von topologischen Räumen und Abbildungen zu erhalten:
- kennen die Fundamentalgruppe und die Überlagerungstheorie sowie die grundlegenden Methoden zur Berechnung von Fundamentalgruppen und Abbildungen zwischen ihnen;
- kennen Homologie und Kohomologie, berechnen diese für wichtige Beispiele und leiten mit ihrer Hilfe Nicht-Existenz von Abbildungen sowie Fixpunktsätze her;
- berechnen Homologie und Kohomologie mit Hilfe von Kettenkomplexen;
- leiten mit Hilfe der homologischen Algebra algebraische Eigenschaften von Homologie und Kohomologie her;
- lernen Verbindungen zwischen Analysis und Topologie kennen;
- wenden algebraische Strukturen an, um aus der lokalen Struktur von Mannigfaltigkeiten spezielle globale Eigenschaften ihrer Kohomologie herzuleiten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

sich in ein Thema aus dem Bereich "Algebraische Topologie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Algebraische Topologie"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3215: Proseminar im Zyklus "Mathematische Methoden der Physik"

English title: Proseminar on mathematical methods in physics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen des Zyklus "Mathematische Methoden der Physik" lernen die Studierenden verschiedene mathematische Methoden und Techniken kennen, die in der modernen Physik eine Rolle spielen. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die Themen des Zyklus lassen sich in vier Blöcke einteilen, ein Zyklus enthält in der Regel Bausteine aus verschiedenen Blöcken, die sich thematisch ergänzen, kann aber auch innerhalb eines Blocks gelesen werden. Die einführenden Teile des Zyklus bilden dabei die Grundlage für den fortgeschrittenen Spezialisierungsbereich.

Die Themenblöcke sind:

- Harmonische Analysis, algebraische Strukturen und Darstellungstheorie, (Gruppen-)Wirkungen;
- Operatoralgebren, C*-Algebren und von-Neumann Algebren;
- Operatortheorie, Störungs- und Streutheorie, spezielle PDEs, mikrolokale Analysis, Distributionen;
- (Semi-)Riemannsche Geometrie, symplektische und Poisson Geometrie, Quantisierung.

Ein Ziel ist, dass ein Zusammenhang zu physikalischen Fragestellungen erkennbar ist, zumindest in der Motivation der behandelten Themen. Möglichst sollen die Studierenden auch konkrete Anwendungen kennen und im fortgeschrittenen Teil des Zyklus auch selbst solche Anwendungen vornehmen können.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Mathematische Methoden der Physik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen:

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich	
"Mathematische Methoden der Physik"	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3220: Proseminar im Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie" English title: Proseminar on algebra, geometry and number theory Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage. Selbststudium: Inhalte aus dem Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie" vor einem 62 Stunden Fachpublikum adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet aus dem Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie"; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage • sich in ein Thema aus einem Gebiet in dem Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) 3 C Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten) Prüfungsvorleistungen: B.Mat.3220.Sem: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Schwerpunkt SP 2 "Algebra, Geometrie, Zahlentheorie". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** B.Mat.0011, B.Mat.0012, B.Mat.0021, B.Mat.0022 keine Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 3 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Modul B.Mat.3221: Proseminar im Zyklus "Algebraische Geometrie"

English title: Proseminar on algebraic geometry

3 C 2 SWS

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Geometrie" lernen die Studierenden die wichtigsten Klassen algebraischer Varietäten und Schemata kennen sowie die Werkzeuge für das Studium dieser Objekte und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Kenntnisse auf Probleme der Arithmetik oder der komplexen Analysis an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste Beiträge zur Forschung zu leisten, etwa im Rahmen einer Masterarbeit.

Die algebraische Geometrie benutzt und verbindet Ideen aus Algebra und Geometrie und kann vielseitig angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung werden in der Regel verschiedene Aspekte der algebraischen Geometrie behandeln und sich komplementär ergänzen. Folgende inhaltbezogene Kompetenzen werden angestrebt. Die Studierenden

- sind mit der kommutativen Algebra auch in tiefer liegenden Details vertraut;
- kennen den Begriffsapparat der algebraischen Geometrie, insbesondere Varietäten, Schemata, Garben, Bündel;
- untersuchen wichtige Beispiele wie elliptische Kurven, abelsche Varietäten oder algebraische Gruppen;
- · verwenden Divisoren für Klassifikationsfragen;
- studieren algebraische Kurven;
- beweisen den Satz von Riemann-Roch beweisen und wenden ihn an;
- benutzen kohomologische Konzepte und kennen die Grundlagen der Hodge-Theorie:
- wenden Methoden der algebraischen Geometrie auf arithmetische Fragen an und gewinnen z.B. Endlichkeitssätze für rationale Punkte;
- klassifizieren Singularitäten und kennen die wesentlichen Aspekte der Dimensionstheorie der kommutativen Algebra und der algebraischen Geometrie;
- Iernen Verbindungen zur komplexen Analysis und komplexen Geometrie kennen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Algebraische Geometrie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen:

Teilnahme am Proseminar

3 C

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Algebraische Geometrie"

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3222: Proseminar im Zyklus "Algebraische Zahlentheorie"

English title: Proseminar on algebraic number theory

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Algebraische Zahlentheorie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen in den Bereichen "Algebraische Zahlentheorie" und "Algorithmische Zahlentheorie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen theoretischer und/oder angewandter Natur herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden in algebraischer Hinsicht folgende inhaltsbezogene Lernziele angestrebt. Die Studierenden

- · kennen Noethersche und Dedekind'sche Ringe und die Klassengruppen;
- sind mit Diskriminanten, Differenten und der Verzweigungstheorie von Hilbert vertraut:
- kennen geometrische Zahlentheorie mit Anwendung auf den Einheitensatz und die Endlichkeit von Klassengruppen wie auch die algorithmischen Aspekte von Gittertheorie (LLL);
- sind mit L-Reihen und Zeta-Funktionen vertraut und diskutieren die algebraische Bedeutung ihrer Residuen;
- kennen Dichten, den Satz von Tchebotarew und Anwendungen;
- arbeiten mit Ordnungen, S-ganzen Zahlen und S-Einheiten;
- kennen die Klassenkörpertheorie von Hilbert, Takagi und Idèle-theoretische Klassenkörpertheorie;
- sind mit Zp-Erweiterungen und ihrer Iwasawa-Theorie vertraut;
- diskutieren die wichtigsten Vermutungen der Iwasawa-Theorie und deren Konsequenzen.

Hinsichtlich algorithmischer Aspekte der Zahlentheorie werden folgende Kompetenzen angestrebt. Die Studierenden

- arbeiten mit Algorithmen zur Bestimmung von kurzen Gitterbasen, nächsten Punkten in Gittern und kürzesten Vektoren;
- sind mit Grundalgorithmen der Zahlentheorie in langer Arithmetik wie GCD, schneller Zahl- und Polynomarithmetik, Interpolation und Evaluation und Primheitstests vertraut:
- verwenden die Siebmethode zur Faktorisierung und Berechnung von diskreten Logarithmen in endlichen K\u00f6rpern gro\u00dfer Charakteristik;
- diskutieren Algorithmen zur Berechnung der Zeta-Funktion von elliptischen Kurven und abelschen Varietäten über endlichen Körpern;
- berechnen Klassengruppen und Fundamentaleinheiten;
- · berechnen Galoisgruppen absoluter Zahlkörper.

Kompetenzen:

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Algebraische Zahlentheorie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Algebraische Zahlentheorie"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3223: Proseminar im Zyklus "Algebraische Strukturen"

English title: Proseminar on algebraic structures

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen des Zyklus "Algebraische Strukturen" lernen die Studierenden verschiedene algebraische Strukturen kennen, u.a. Lie-Algebren, Lie-Gruppen, analytische Gruppen, assoziative Algebren, sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und kategorientheoretischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Algebraische Strukturen benutzen Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und können auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte algebraischer Strukturen behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- kennen grundlegende Konzepte wie Ringe, Moduln, Algebren und Lie-Algebren;
- kennen wichtige Beispiele von Lie-Algebren und Algebren;
- kennen spezielle Klassen von Lie-Gruppen und ihre speziellen Eigenschaften;
- kennen Klassifikationsaussagen für endlich-dimensionale Algebren;
- wenden grundlegende Konzepte der Kategorientheorie auf Algebren und Moduln an:
- kennen Gruppenaktionen und deren grundlegenden Klassifikationen;
- wenden die einhüllende Algebra von Lie-Algebren an;
- wenden Ring- und Modul-Theorie auf grundlegende Konstruktionen algebraischer Geometrie an;
- wenden kombinatorische Werkzeuge auf die Untersuchung assoziativer Algebren und Lie-Algebren an;
- erwerben solide Kenntnisse der Darstellungstheorie von Lie-Algebren, endlichen Gruppen und kompakten Lie-Gruppen sowie der Darstellungstheorie halbeinfacher Lie-Gruppen;
- kennen Hopf-Algebren sowie deren Deformations- und Darstellungstheorie.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Algebraische Strukturen", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Proseminar (2 SWS)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar	3 C		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Algebraische Strukturen"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6	-	
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Mathematischen Instituts			

Modul B.Mat.3224: Proseminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme"

English title: Proseminar on groups, geometry and dynamical systems

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen des Zyklus "Gruppen, Geometrie und Dynamische Systeme" lernen die Studierenden wichtige Klassen von Gruppen kennen sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und analytischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Gruppentheorie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte aus dem Bereich "Gruppen, Geometrie und Dynamische Systeme" behandeln, die sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden,

- kennen grundlegende Konzepte von Gruppen und Gruppenhomomorphismen;
- · kennen wichtige Beispiele von Gruppen;
- kennen spezielle Klassen von Gruppen und deren spezielle Eigenschaften;
- wenden grundlegende Konzepte der Kategorientheorie auf Gruppen an und definieren Räume durch universelle Eigenschaften;
- · wenden die Konzepte von Funktoren an um algebraische Invarianten zu gewinnen;
- · kennen Gruppenaktionen und deren grundlegenden Klassifikationsresultate;
- kennen die Grundlagen der Gruppenkohomologie und berechnen diese für wichtige Beispiele;
- kennen die Grundlagen der geometrischen Gruppentheorie wie Wachstumseigenschaften;
- kennen selbstähnliche Gruppen, deren grundlegende Konstruktion sowie Beispiele mit interessanten Eigenschaften;
- nutzen geometrische und kombinatorische Werkzeuge für die Untersuchung von Gruppen;
- kennen die Grundlagen der Darstellungstheorie kompakter Lie-Gruppen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Gruppen, Geometrie und Dynamische Systeme", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Proseminar (2 SWS)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar	3 C		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Gruppen, Geometrie und Dynamische Systeme"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6		
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Mathematischen Instituts			

Modul B.Mat.3225: Proseminar im Zyklus "Nichtkommutative Geometrie"

English title: Proseminar on non-commutative geometry

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Nichtkommutative Geometrie" lernen die Studierenden, den Raumbegriff der nichtkommutativen Geometrie und einige seiner Anwendungen in Geometrie, Topologie, mathematischer Physik, der Theorie dynamischer Systeme und der Zahlentheorie kennen. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die nichtkommutative Geometrie benutzt Ideen aus Analysis, Algebra, Geometrie und mathematischer Physik und kann auf alle diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte der nichtkommutativen Geometrie behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- sind mit den grundlegenden Eigenschaften von Operatoralgebren vertraut, insbesondere mit ihrer Darstellungs- und Idealtheorie;
- konstruieren aus verschiedenen geometrischen Objekten Gruppoide und Operatoralgebren und wenden die nichtkommutative Geometrie auf diese Gebiete an:
- kennen die Spektraltheorie kommutativer C*-Algebren und analysieren damit normale Operatoren auf Hilberträumen;
- kennen wichtige Beispiele einfacher C*-Algebren und leiten deren Grundeigenschaften her;
- wenden Grundbegriffe der Kategorientheorie auf C*-Algebren an;
- modellieren die Symmetrien nichtkommutativer Räume;
- · wenden Hilbertmoduln über C*-Algebren an;
- kennen die Definition der K-Theorie von C*-Algebren und ihre formalen Eigenschaften und berechnen damit die K-Theorie von C*-Algebren für wichtige Beispiele;
- wenden Operatoralgebren zur Formulierung und Analyse von Indexproblemen in der Geometrie und zur Analyse der Geometrie großer Längenskalen an;
- vergleichen verschiedene analytische und geometrische Modelle zur Konstruktion von Abbildungen zwischen K-Theoriegruppen und wenden sie an;
- klassifizieren und analysieren Quantisierungen von Mannigfaltigkeiten mittels Poisson-Strukturen und kennen einige wichtige Methoden zur Konstruktion von Quantisierungen;
- klassifizieren W*-Algebren und kennen die intrinsische Dynamik von Faktoren;

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

- wenden von Neumann-Algebren auf die axiomatische Formulierung der Quantenfeldtheorie an;
- benutzen von Neumann-Algebren zur Konstruktion von L²-Invarianten für Mannigfaltigkeiten und Gruppen;
- verstehen die Beziehung zwischen der Analysis in den C*- und W*-Algebren von Gruppen und geometrischen Eigenschaften von Gruppen;
- definieren mit Kettenkomplexen und deren Homologie die Invarianten von Algebren und Moduln und berechnen diese;
- interpretieren diese homologischen Invarianten geometrisch und setzen sie miteinander in Beziehung;
- abstrahieren aus den wesentlichen Eigenschaften der K-Theorie und anderer Homologietheorien neue Begriffe, z.B. triangulierte Kategorien.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein Thema aus dem Bereich "Nichtkommutative Geometrie", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen;
- Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen.

Lehrveranstaltung: Proseminar (2 SWS)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Proseminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Nichtkommutative Geometrie"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1100, B.Mat.1200
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 5 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

3 C Georg-August-Universität Göttingen 2 SWS Modul B.Mat.3230: Proseminar "Numerische und Angewandte Mathematik" English title: Proseminar on numerical and applied mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus dem Bereich "Numerische und Angewandte Mathematik" vor einem Fachpublikum 62 Stunden adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet der numerischen Mathematik oder der Optimierung; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • sich in ein Thema aus dem Gebiet "Numerische und Angewandte Mathematik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Fachgebiet "Numerische und Angewandte Mathematik". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Mat.1300 Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

3 C Georg-August-Universität Göttingen 2 SWS Modul B.Mat.3239: Proseminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" English title: Proseminar on scientific computing / applied mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus dem Bereich des wissenschaftlichen Rechnens oder der angewandten Mathematik 62 Stunden vor einem Fachpublikum adäquat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet des wissenschaftlichen Rechnens oder der angewandten Mathematik; · strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage sich in ein Thema aus einem der Gebiete "Wissenschaftliches Rechnen" oder "Angewandte Mathematik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; • Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Bereich "Wissenschaftliches Rechnen / Angewandte Mathematik". Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** B.Mat.1300 keine Sprache: Modulverantwortliche[r]: Englisch, Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Mat.3240: Proseminar "Mathematische Stochastik" English title: Proseminar on mathematical stochastics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, Inhalte Selbststudium: aus einem Bereich der mathematischen Statistik oder der mathematischen Stochastik 62 Stunden vor einem Fachpublikum adäguat darzustellen. Sie • erwerben selbständig vertiefte Kenntnisse in einem ausgewählten Gebiet der mathematischen Statistik oder der mathematischen Stochastik; • strukturieren den Stoff und bereiten ihn für einen Vortrag auf. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage • sich in ein Thema aus einem der Gebiete "Mathematischen Statistik" oder "Mathematische Stochastik", typischerweise aus einem Lehrbuch, selbständig einzuarbeiten und es in einem Vortrag vorzustellen; · Medien wie Folien, Tafel, Smartboard u.a. zur Präsentation eines mathematischen Themas adäquat einzusetzen. Lehrveranstaltung: Proseminar (2 SWS) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Proseminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung mathematischer Sachverhalte im Fachgebiet "Mathematische StochastiK".

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1400
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen Module B.Mat.3311: Advances in analytic number theory

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

Admission requirements:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analytic number theory" confidently;
- explain complex issues of the area "Analytic number theory";
- apply methods of the area "Analytic number theory" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3311.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Analytic number theory"	

Recommended previous knowledge:

none	B.Mat.3111
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3111 "Introduction to analytic number theory"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Georg-August-Universität Göttingen

Module B.Mat.3312: Advances in analysis of partial differential equations

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analysis of partial differential equations" confidently;
- explain complex issues of the area "Analysis of partial differential equations";
- apply methods of the area "Analysis of partial differential equations" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3312.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Analysis of partial differential equations"		
Admission requirements:	Recommended previous knowledge: B.Mat.3112	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3112 "Introduction to analysis of partial differential equations"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		

Georg-August-Universität Göttingen Module B.Mat.3313: Advances in differential geometry

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Differential geometry" confidently;
- explain complex issues of the area "Differential geometry";
- apply methods of the area "Differential geometry" to new problems in this area

Workload:

186 h

Attendance time: 84 h Self-study time:

apply methods of the area. Differential geometry to new problems in this area.	
Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3313.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Differential geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3113
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3113 "Introduction to differential geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3314: Advances in algebraic topology

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- · handle methods and concepts of the area "Algebraic topology" confidently;
- explain complex issues of the area "Algebraic topology";
- apply methods of the area "Algebraic topology" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C

Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Algebraic topology"	

Admission requirements:	Recommended previous knowledge: B.Mat.3114
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3114 "Introduction to algebraic topology"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Georg-August-Universität Göttingen

Module B.Mat.3315: Advances in mathematical methods in physics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical methods in physics" confidently;
- explain complex issues of the area "Mathematical methods in physics";
- apply methods of the area "Mathematical methods in physics" to new problems in this area.

Workload:

Attendance time: 84 h

0+11

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3315.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Mathematical methods in physics"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3115

Language:	Person responsible for module:
English	Programme coordinator
Course frequency: on an irregular basis	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	
Additional nates and regulations.	

Georg-August-Universität Göttingen Module B.Mat.3321: Advances in algebraic geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles:
- examine important examples like elliptic curves, Abelian varieties or algebraic
- · use divisors for classification questions;
- · study algebraic curves;
- · prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- · classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- · get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic geometry" confidently;
- explain complex issues of the area "Algebraic geometry";
- apply methods of the area "Algebraic geometry" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3321.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competen module of the area "Algebraic geometry"	cies acquired in the introductory
Admission requirements:	Recommended previous knowledge: B.Mat.3121
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3121 "Introduction to algebraic geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen

Module B.Mat.3322: Advances in algebraic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests:
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic number theory" confidently;
- explain complex issues of the area "Algebraic number theory";
- apply methods of the area "Algebraic number theory" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3322.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessionsungen		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic number theory"		
Admission requirements:	Recommended previous know B.Mat.3122	ledge:
Language: English	Person responsible for module Programme coordinator	9 :
Course frequency: Usually subsequent to the module B.Mat.3122 "Introduction to algebraic number theory"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Georg-August-Universität Göttingen Module B.Mat.3323: Advances in algebraic structures

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic structures" confidently;
- explain complex issues of the area "Algebraic structures";
- apply methods of the area "Algebraic structures" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3323.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic structures"

Admission requirements:	Recommended previous knowledge: B.Mat.3123
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3123 "Introduction to algebraic structures"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen

Module B.Mat.3324: Advances in groups, geometry and dynamical systems

9 C 6 WLH

Learning outcome, core skills:

Learning outcome: In the modules of the cycle "Groups, geometry and dynamical system

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- · know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Groups, geometry and dynamical systems" confidently;
- explain complex issues of the area "Groups, geometry and dynamical systems";
- apply methods of the area "Groups, geometry and dynamical systems" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Instructor: Lecturers at the Mathematical Institute

B.Mat.3324.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Groups, geometry and dynamical systems"		
Admission requirements:	Recommended previous knowledge: B.Mat.3124	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3124 "Introduction to groups, geometry and dynamical systems"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Georg-August-Universität Göttingen Module B.Mat.3325: Advances in non-commutative geometry

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out

independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 84 h Self-study time: 186 h

- interpret these homological invariants geometrically and correlate them with each other:
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Non-commutative geometry" confidently;
- explain complex issues of the area "Non-commutative geometry";
- apply methods of the area "Non-commutative geometry" to new problems in this
 area.

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3325.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
	<u>, </u>

Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3125
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3125 "Introduction to non-commutative geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3331: Advances in inverse problems

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Inverse problems" confidently;
- explain complex issues of the area "Inverse problems";
- apply methods of the area "Inverse problems" to new problems in this area.

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Workload:

Attendance time: 84 h

Self-study time: 186 h

Admission requirements: Recommended previous knowledge:		wledge:
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Inverse problems"		
Course: Exercise session (Exercise)		2 WLH
B.Mat.3331.Ue: Achievement of at least 50% of twice, of solutions in the exercise sessions	of the exercise points and presentation,	

Admission requirements:	Recommended previous knowledge: B.Mat.3131
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3131 "Introduction to inverse problems"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3332: Advances in approximation methods

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Approximation methods" confidently;
- · explain complex issues of the area "Approximation methods";
- apply methods of the area "Approximation methods" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3332.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Approximation methods"	

Admission requirements:	Recommended previous knowledge: B.Mat.3132
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3132 "Introduction to approximation methods"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module B.Mat.3333: Advances in numerics of partial differential equations

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Numerics of partial differential equations" confidently;
- explain complex issues of the area "Numerics of partial differential equations";

Workload:

Attendance time: 84 h Self-study time:

apply methods of the area "Numerics of parti	al differential equations" to new	
problems in this area.		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min	utes)	9 C
Examination prerequisites:		
B.Mat.3333.Ue: Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of advancement of knowledge and competer	ncies acquired in the introductory	
module of the area "Numerics of partial differential	equations"	
Admission requirements:	Recommended previous knowledge:	
none	B.Mat.3133	
Language:	Person responsible for module) :
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3133	1 semester[s]	
"Introduction to numerics of partial differential		
equations"		
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		·

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3334: Advances in optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Optimisation" confidently;
- · explain complex issues of the area "Optimisation";
- apply methods of the area "Optimisation" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3334.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Optimisation"		
Admission requirements:	Recommended previous knowledge: B.Mat.3134	
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: Usually subsequent to the module B.Mat.3134 "Introduction to optimisation"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical and Applied Mathematics		

Georg-August-Universität Göttingen Module B.Mat.3337: Advances in variational analysis

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in the area of "Variational analysis" and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

Attendance time: 84 h

Self-study time: 186 h

After having successfully completed the module, students will be able to

• handle methods and concepts of the area "Variational analysis" confidently;

• explain complex issues of the area "Variational analysis";

• apply methods of the area "Variational analysis" to new problems in this area.

Course: Lecture course (Lecture)

Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:

B.Mat.3337.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Course: Exercise session (Exercise)	2 WLH
-------------------------------------	-------

Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Variational analysis"	

Admission requirements:	Recommended previous knowledge: B.Mat.3137
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3137 "Introduction in variational analysis"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module B.Mat.3338: Advances in image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Image and geometry processing" confidently;
- · explain complex issues of the area "Image and geometry processing";

Workload:

Attendance time: 84 h Self-study time:

apply methods of the area "Image and geometre this area.	ry processing" to new problems in	
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minute Examination prerequisites: B.Mat.3338.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	9 C	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Image and geometry processing"		
Admission requirements:	Recommended previous knowledge: B.Mat.3138	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3138 "Introduction to image and geometry processing"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3339: Advances in scientific computing / applied mathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Scientific computing / Applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Scientific computing / applied mathematics" confidently;
- explain complex issues of the area "Scientific computing / applied mathematics";
- apply methods of the area "Scientific computing / applied mathematics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3339.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Scientific computing / applied mathematics"	

Admission requirements:	Recommended previous knowledge: B.Mat.3139
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3139 "Introduction to scientific computing / applied mathematics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice Maximum number of students: not limited	Recommended semester: Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3341: Advances in applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- · are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- · know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- · analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Applied and mathematical stochastics" confidently:
- explain complex issues of the area "Applied and mathematical stochastics";
- · apply methods of the area "Applied and mathematical stochastics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3341.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competer module of the area "Applied and mathematical stoo	,	
Admission requirements:	Recommended previous knowledge: B.Mat.3141	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3141 "Introduction to applied and mathematical	Duration: 1 semester[s]	

Recommended semester:Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

Number of repeat examinations permitted:

stochastics"

not limited

Georg-August-Universität Göttingen Module B.Mat.3342: Advances in stochastic processes

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

handle methods and concepts of the area "Stochastic processes" confidently;

Workload:

Attendance time: 84 h Self-study time: 186 h

		1
 explain complex issues of the area "Stochastic processes"; apply methods of the area "Stochastic processes" to new problems in this area. 		
apply methods of the area. Stochastic processes to new problems in this area.		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min	utes)	9 C
Examination prerequisites:	·	
B.Mat.3342.Ue: Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Stochastic processes"		
Admission requirements: Recommended previous knowledge:		ledge:
none	B.Mat.3142	
Language:	Person responsible for module):
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3142	1 semester[s]	
"Introduction to stochastic processes"		
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3343: Advances in stochastic methods of economathematics 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections:
- understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Stochastic methods of economathematics" confidently;
- explain complex issues of the area "Stochastic methods of economathematics";
- apply methods of the area "Stochastic methods of economathematics" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3343.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
	· 1

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Stochastic methods of economathematics"	

Admission requirements: none	Recommended previous knowledge: B.Mat.3143
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration: 1 semester[s]

Usually subsequent to the module B.Mat.3143 "Introduction to stochastic methods of economathematics"	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3344: Advances in mathematical statistics 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical statistics" confidently;
- explain complex issues of the area "Mathematical statistics";
- apply methods of the area "Mathematical statistics" to new problems in this area

Workload:

Attendance time: 84 h Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3344.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Mathematical statistics"	

Admission requirements:	Recommended previous knowledge: B.Mat.3144
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3144 "Introduction to mathematical statistics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3345: Advances in statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation:
- are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Statistical modelling and inference" confidently;
- explain complex issues of the area "Statistical modelling and inference";
- apply methods of the area "Statistical modelling and inference" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3345.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Statistical modelling and inference"	

Admission requirements:

Recommended previous knowledge:

none	B.Mat.3145
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3111 "Introduction to statistical modelling and inference"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3346: Advances in multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Multivariate statistics" confidently;
- explain complex issues of the area "Multivariate statistics";
- apply methods of the area "Multivariate statistics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C

Examination prerequisites:

B.Mat.3346.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Course: Exercise session (Exercise) 2 WLH

Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Multivariate statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.3146
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3146 "Introduction to multivariate statistics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3347: Advances in statistical foundations of data science

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle ""Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area ""Statistical foundations of data science" confidently;
- explain complex issues of the area ""Statistical foundations of data sciencee";
- apply methods of the area ""Statistical foundations of data science" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time: 186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min Examination prerequisites: B.Mat.3347.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	,	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and compete module of the area "Statistical foundations of data"	·	
Admission requirements: none	Recommended previous kn B.Mat.3147	owledge:
Language: English	Person responsible for mode Programme coordinator	lule:
Course frequency: Usually subsequent to the module B.Mat.3147 "Introduction to statistical foundations of data science"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Georg-August-Universität Göttingen Modul B.Mat.3411: Seminar im Zyklus "Analytische Zahlentheorie" English title: Seminar on analytic number theory

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Analytische Zahlentheorie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Analytische Zahlentheorie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- lösen arithmetische Probleme mit elementaren, komplex-analytischen und Fourieranalytischen Methoden;
- kennen Eigenschaften der Riemannschen Zetafunktion und allgemeinerer L-Funktionen und wenden sie auf Probleme in der Zahlentheorie an;
- sind mit Resultaten und Methoden aus der Primzahltheorie vertraut;
- erwerben Kenntnisse in der arithmetischen und analytischen Theorie automorpher Formen und deren Anwendung in der Zahlentheorie;
- kennen grundlegende Siebmethoden und wenden sie auf Fragestellungen der Zahlentheorie an;
- kennen Techniken zur Abschätzung von Charaktersummen und Exponentialsummen;
- analysieren die Verteilung rationaler Punkte auf geeigneten algebraischen Varietäten unter Benutzung analytischer Techniken;
- beherrschen den Umgang mit asymptotischen Formeln, asymptotischer Analysis und asymptotischen Gleichverteilungsfragen in der Zahlentheorie.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Analytische Zahlentheorie" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar) Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Analytische Zahlentheorie"

Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

keine	B.Mat.3111
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Modul B.Mat.3412: Seminar im Zyklus "Analysis Partieller Differenzialgleichungen"

English title: Seminar on analysis of partial differential equations

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen des Zyklus "Analysis Partieller Differenzialgleichungen" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Analysis Partieller Differenzialgleichungen" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Typen partieller Differenzialgleichungen vertraut und kennen deren Lösungstheorie;
- beherrschen die Fouriertransformation und andere Techniken der harmonischen Analysis, um partielle Differenzialgleichungen zu analysieren;
- sind mit der Theorie der verallgemeinerten Funktionen und der Theorie der Funktionenräume vertraut und setzen diese zur Lösung von partiellen Differenzialgleichungen ein;
- wenden die Grundprinzipien der Funktionalanalysis auf die Lösung partieller Differenzialgleichungen an;
- setzen verschiedene Sätze der Funktionentheorie zur Lösung partieller Differenzialgleichungen ein;
- beherrschen verschiedene asymptotische Techniken, um Eigenschaften der Lösungen partieller Differenzialgleichungen zu studieren;
- sind beispielhaft mit größeren Themenkreisen aus der linearen Theorie partieller Differenzialgleichungen vertraut;
- sind beispielhaft mit größeren Themenkreisen aus der nichtlinearen Theorie partieller Differenzialgleichungen vertraut;
- kennen die Bedeutung partieller Differenzialgleichungen in der Modellierung in den Natur- und den Ingenieurwissenschaften;
- beherrschen einige weiterführende Themenkreise wie etwa Teile der mikrolokalen Analysis oder Teile der algebraischen Analysis.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Analysis Partieller Differenzialgleichungen" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	3 C
Prüfungsanforderungen: Selbständige Durchdringung und Darstellu im Bereich "Analysis Partieller Differenzial	ing komplexer mathematischer Sachverhalte gleichungen"
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3112
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Mathematisc	chen Instituts

Modul B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie"

English title: Seminar on differential geometry

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Differenzialgeometrie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Differenzialgeometrie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- beherrschen die Grundlagen der Differenzialgeometrie, entwickeln ein räumliches Vorstellungsvermögen am Beispiel der Theorie von Kurven, Flächen und Hyperflächen;
- entwickeln ein Verständnis der Basis-Konzepte der Differenzialgeometrie wie "Raum" und "Mannigfaltigkeit", "Symmetrie" und "Liesche Gruppe", "lokale Struktur" und "Krümmung", "globale Struktur" und "Invarianten" sowie "Integrabilität";
- beherrschen (je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet) die Theorie der Transformationsgruppen und Symmetrien sowie der Analysis auf Mannigfaltigkeiten, die Theorie der Mannigfaltigkeiten mit geometrischen Strukturen, der komplexen Differenzialgeometrie, der Eichfeldtheorie und ihrer Anwendungen sowie der elliptischen Fidderenzialgleichungen aus Geometrie und Eichfeldtheorie;
- entwickeln ein Verständnis für geometrische Konstruktionen, räumliche Strukturen und das Zusammenspiel von algebraischen, geometrischen, analytischen und topologischen Methoden;
- erwerben die Fähigkeit Methoden aus der Analysis, Algebra und Topologie für die Behandlung geometrischer Probleme einzusetzen;
- vermögen geometrische Probleme in einem breiteren mathematischen und physikalischen Kontext einzubringen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Differenzialgeometrie" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar) Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Differenzialgeometrie"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3113
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Modul B.Mat.3414: Seminar im Zyklus "Algebraische Topologie"

English title: Seminar on algebraic topology

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Topologie" lernen die Studierenden die wichtigsten Klassen topologischer Räume kennen sowie die algebraischen und analytischen Werkzeuge für das Studium dieser Räume und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Werkzeuge in Geometrie, mathematischer Physik, Algebra und Gruppentheorie an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die algebraische Topologie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte der algebraischen Topologie behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- kennen die grundlegenden Konzepte der mengentheoretischen Topologie und der stetigen Abbildungen;
- · konstruieren aus gegebenen Topologien neue Topologien;
- kennen spezielle Klassen topologischer Räume und deren spezielle Eigenschaften wie CW-Komplexe, Simplizialkomplexe und Mannigfaltigkeiten;
- wenden grundlegende Konzepte der Kategorientheorie auf topologische Räume an:
- nutzen Konzepte der Funktoren um algebraische Invarianten von topologischen Räumen und Abbildungen zu erhalten:
- kennen die Fundamentalgruppe und die Überlagerungstheorie sowie die grundlegenden Methoden zur Berechnung von Fundamentalgruppen und Abbildungen zwischen ihnen;
- kennen Homologie und Kohomologie, berechnen diese für wichtige Beispiele und leiten mit ihrer Hilfe Nicht-Existenz von Abbildungen sowie Fixpunktsätze her;
- berechnen Homologie und Kohomologie mit Hilfe von Kettenkomplexen;
- leiten mit Hilfe der homologischen Algebra algebraische Eigenschaften von Homologie und Kohomologie her;
- Iernen Verbindungen zwischen Analysis und Topologie kennen;
- wenden algebraische Strukturen an, um aus der lokalen Struktur von Mannigfaltigkeiten spezielle globale Eigenschaften ihrer Kohomologie herzuleiten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

einzuarbeiten und in einem Vortrag vor • wissenschaftliche Diskussionen in eine	·	
Lehrveranstaltung: Seminar (2 SWS) (Sen	ninar)	
Prüfung: Präsentation (ca. 75 Minuten)		3 C
Prüfungsvorleistungen: Teilnahme am Seminar		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung im Bereich "Algebraische Topologie"	y komplexer mathematischer Sachverhalte	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3114	
Sprache:	Modulverantwortliche[r]:	
Englisch, Deutsch	Studiengangsbeauftragte/r	
•	Studiengangsbeauftragte/r Dauer: 1 Semester	
Englisch, Deutsch Angebotshäufigkeit:	Dauer:	

Georg-August-Universität Göttingen Modul B.Mat.3415: Seminar im Zyklus "Mathematische Methoden

3 C 2 SWS

English title: Seminar on mathematical methods in physics

Lernziele/Kompetenzen:

Lernziele:

der Physik"

In den Modulen des Zyklus "Mathematische Methoden der Physik" lernen die Studierenden verschiedene mathematische Methoden und Techniken kennen, die in der modernen Physik eine Rolle spielen. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die Themen des Zyklus lassen sich in vier Blöcke einteilen, ein Zyklus enthält in der Regel Bausteine aus verschiedenen Blöcken, die sich thematisch ergänzen, kann aber auch innerhalb eines Blocks gelesen werden. Die einführenden Teile des Zyklus bilden dabei die Grundlage für den fortgeschrittenen Spezialisierungsbereich.

Die Themenblöcke sind:

- Harmonische Analysis, algebraische Strukturen und Darstellungstheorie, (Gruppen-)Wirkungen;
- Operatoralgebren, C*-Algebren und von-Neumann Algebren;
- Operatortheorie, Störungs- und Streutheorie, spezielle PDEs, mikrolokale Analysis, Distributionen;
- (Semi-)Riemannsche Geometrie, symplektische und Poisson Geometrie, Quantisierung.

Ein Ziel ist, dass ein Zusammenhang zu physikalischen Fragestellungen erkennbar ist, zumindest in der Motivation der behandelten Themen. Möglichst sollen die Studierenden auch konkrete Anwendungen kennen und im fortgeschrittenen Teil des Zyklus auch selbst solche Anwendungen vornehmen können.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Mathematische Methoden der Physik" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen:

13 C

Teilnahme am Seminar

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Mathematische Methoden der Physik"

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

keine	B.Mat.3115
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Modul B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie"

English title: Seminar on algebraic geometry

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Geometrie" lernen die Studierenden die wichtigsten Klassen algebraischer Varietäten und Schemata kennen sowie die Werkzeuge für das Studium dieser Objekte und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Kenntnisse auf Probleme der Arithmetik oder der komplexen Analysis an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste Beiträge zur Forschung zu leisten, etwa im Rahmen einer Masterarbeit.

Die algebraische Geometrie benutzt und verbindet Ideen aus Algebra und Geometrie und kann vielseitig angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung werden in der Regel verschiedene Aspekte der algebraischen Geometrie behandeln und sich komplementär ergänzen. Folgende inhaltbezogene Kompetenzen werden angestrebt. Die Studierenden

- sind mit der kommutativen Algebra auch in tiefer liegenden Details vertraut;
- kennen den Begriffsapparat der algebraischen Geometrie, insbesondere Varietäten, Schemata, Garben, Bündel;
- untersuchen wichtige Beispiele wie elliptische Kurven, abelsche Varietäten oder algebraische Gruppen;
- · verwenden Divisoren für Klassifikationsfragen;
- studieren algebraische Kurven;
- beweisen den Satz von Riemann-Roch beweisen und wenden ihn an;
- benutzen kohomologische Konzepte und kennen die Grundlagen der Hodge-Theorie:
- wenden Methoden der algebraischen Geometrie auf arithmetische Fragen an und gewinnen z.B. Endlichkeitssätze für rationale Punkte;
- klassifizieren Singularitäten und kennen die wesentlichen Aspekte der Dimensionstheorie der kommutativen Algebra und der algebraischen Geometrie;
- Iernen Verbindungen zur komplexen Analysis und komplexen Geometrie kennen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Algebraische Geometrie" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	

Teilnahme am Seminar	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komple im Bereich "Algebraische Geometrie"	exer mathematischer Sachverhalte
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3121
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen:	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Modul B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie"

English title: Seminar on algebraic number theory

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Algebraische Zahlentheorie" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen in den Bereichen "Algebraische Zahlentheorie" und "Algorithmische Zahlentheorie" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen theoretischer und/oder angewandter Natur herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden in algebraischer Hinsicht folgende inhaltsbezogene Lernziele angestrebt. Die Studierenden

- kennen Noethersche und Dedekind'sche Ringe und die Klassengruppen;
- sind mit Diskriminanten, Differenten und der Verzweigungstheorie von Hilbert vertraut;
- kennen geometrische Zahlentheorie mit Anwendung auf den Einheitensatz und die Endlichkeit von Klassengruppen wie auch die algorithmischen Aspekte von Gittertheorie (LLL);
- sind mit L-Reihen und Zeta-Funktionen vertraut und diskutieren die algebraische Bedeutung ihrer Residuen;
- kennen Dichten, den Satz von Tchebotarew und Anwendungen;
- arbeiten mit Ordnungen, S-ganzen Zahlen und S-Einheiten;
- kennen die Klassenkörpertheorie von Hilbert, Takagi und Idèle-theoretische Klassenkörpertheorie;
- sind mit Zp-Erweiterungen und ihrer Iwasawa-Theorie vertraut;
- diskutieren die wichtigsten Vermutungen der Iwasawa-Theorie und deren Konsequenzen.

Hinsichtlich algorithmischer Aspekte der Zahlentheorie werden folgende Kompetenzen angestrebt. Die Studierenden

- arbeiten mit Algorithmen zur Bestimmung von kurzen Gitterbasen, nächsten Punkten in Gittern und kürzesten Vektoren:
- sind mit Grundalgorithmen der Zahlentheorie in langer Arithmetik wie GCD, schneller Zahl- und Polynomarithmetik, Interpolation und Evaluation und Primheitstests vertraut;
- verwenden die Siebmethode zur Faktorisierung und Berechnung von diskreten Logarithmen in endlichen K\u00f6rpern gro\u00dfer Charakteristik;
- diskutieren Algorithmen zur Berechnung der Zeta-Funktion von elliptischen Kurven und abelschen Varietäten über endlichen Körpern;
- berechnen Klassengruppen und Fundamentaleinheiten;
- berechnen Galoisgruppen absoluter Zahlkörper.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

 einzuarbeiten und in einem Vortrag v wissenschaftliche Diskussionen in eine 	·
Lehrveranstaltung: Seminar (2 SWS) (S	Seminar)
Prüfung: Präsentation (ca. 75 Minuten)	
Prüfungsvorleistungen:	
Teilnahme am Seminar	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellu im Bereich "Algebraische Zahlentheorie"	ung komplexer mathematischer Sachverhalte
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3122
keine Sprache:	B.Mat.3122 Modulverantwortliche[r]:
keine Sprache: Englisch, Deutsch Angebotshäufigkeit:	B.Mat.3122 Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer:

Modul B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen"

English title: Seminar on algebraic structures

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen des Zyklus "Algebraische Strukturen" lernen die Studierenden verschiedene algebraische Strukturen kennen, u.a. Lie-Algebren, Lie-Gruppen, analytische Gruppen, assoziative Algebren, sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und kategorientheoretischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Algebraische Strukturen benutzen Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und können auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte algebraischer Strukturen behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- kennen grundlegende Konzepte wie Ringe, Moduln, Algebren und Lie-Algebren;
- kennen wichtige Beispiele von Lie-Algebren und Algebren;
- kennen spezielle Klassen von Lie-Gruppen und ihre speziellen Eigenschaften;
- kennen Klassifikationsaussagen für endlich-dimensionale Algebren;
- wenden grundlegende Konzepte der Kategorientheorie auf Algebren und Moduln an:
- kennen Gruppenaktionen und deren grundlegenden Klassifikationen;
- · wenden die einhüllende Algebra von Lie-Algebren an;
- wenden Ring- und Modul-Theorie auf grundlegende Konstruktionen algebraischer Geometrie an;
- wenden kombinatorische Werkzeuge auf die Untersuchung assoziativer Algebren und Lie-Algebren an;
- erwerben solide Kenntnisse der Darstellungstheorie von Lie-Algebren, endlichen Gruppen und kompakten Lie-Gruppen sowie der Darstellungstheorie halbeinfacher Lie-Gruppen;
- kennen Hopf-Algebren sowie deren Deformations- und Darstellungstheorie.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Algebraische Strukturen" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	3 C
Prüfungsanforderungen: Selbständige Durchdringung und Darstellur im Bereich "Algebraische Strukturen"	ng komplexer mathematischer Sachverhalte
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3123
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Mathematisch	hen Instituts

Modul B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme"

English title: Seminar on groups, geometry and dynamical systems

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen des Zyklus "Gruppen, Geometrie und Dynamische Systeme" lernen die Studierenden wichtige Klassen von Gruppen kennen sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und analytischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Gruppentheorie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte aus dem Bereich "Gruppen, Geometrie und Dynamische Systeme" behandelt, die sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden,

- kennen grundlegende Konzepte von Gruppen und Gruppenhomomorphismen;
- · kennen wichtige Beispiele von Gruppen;
- kennen spezielle Klassen von Gruppen und deren spezielle Eigenschaften;
- wenden grundlegende Konzepte der Kategorientheorie auf Gruppen an und definieren Räume durch universelle Eigenschaften;
- · wenden die Konzepte von Funktoren an um algebraische Invarianten zu gewinnen;
- kennen Gruppenaktionen und deren grundlegenden Klassifikationsresultate;
- kennen die Grundlagen der Gruppenkohomologie und berechnen diese für wichtige Beispiele;
- kennen die Grundlagen der geometrischen Gruppentheorie wie Wachstumseigenschaften;
- kennen selbstähnliche Gruppen, deren grundlegende Konstruktion sowie Beispiele mit interessanten Eigenschaften;
- nutzen geometrische und kombinatorische Werkzeuge für die Untersuchung von Gruppen;
- kennen die Grundlagen der Darstellungstheorie kompakter Lie-Gruppen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Gruppen, Geometrie und Dynamische Systeme" einzuarbeiten und in einem Vortrag vorzustellen:
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	3 C
Prüfungsanforderungen: Selbständige Durchdringung und Darstellu im Bereich "Gruppen, Geometrie und Dyna	ng komplexer mathematischer Sachverhalte amische Systeme"
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Mat.3124
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Mathematisc	hen Instituts

Modul B.Mat.3425: Seminar im Zyklus "Nichtkommutative Geometrie"

English title: Seminar on non-commutative geometry

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Nichtkommutative Geometrie" lernen die Studierenden, den Raumbegriff der nichtkommutativen Geometrie und einige seiner Anwendungen in Geometrie, Topologie, mathematischer Physik, der Theorie dynamischer Systeme und der Zahlentheorie kennen. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die nichtkommutative Geometrie benutzt Ideen aus Analysis, Algebra, Geometrie und mathematischer Physik und kann auf alle diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte der nichtkommutativen Geometrie behandeln und sich komplementär ergänzen. Folgende inhaltsbezogenen Kompetenzen werden angestrebt. Die Studierenden

- sind mit den grundlegenden Eigenschaften von Operatoralgebren vertraut, insbesondere mit ihrer Darstellungs- und Idealtheorie;
- konstruieren aus verschiedenen geometrischen Objekten Gruppoide und Operatoralgebren und wenden die nichtkommutative Geometrie auf diese Gebiete an:
- kennen die Spektraltheorie kommutativer C*-Algebren und analysieren damit normale Operatoren auf Hilberträumen;
- kennen wichtige Beispiele einfacher C*-Algebren und leiten deren Grundeigenschaften her;
- wenden Grundbegriffe der Kategorientheorie auf C*-Algebren an;
- modellieren die Symmetrien nichtkommutativer Räume;
- · wenden Hilbertmoduln über C*-Algebren an;
- kennen die Definition der K-Theorie von C*-Algebren und ihre formalen Eigenschaften und berechnen damit die K-Theorie von C*-Algebren für wichtige Beispiele;
- wenden Operatoralgebren zur Formulierung und Analyse von Indexproblemen in der Geometrie und zur Analyse der Geometrie großer Längenskalen an;
- vergleichen verschiedene analytische und geometrische Modelle zur Konstruktion von Abbildungen zwischen K-Theoriegruppen und wenden sie an;
- klassifizieren und analysieren Quantisierungen von Mannigfaltigkeiten mittels Poisson-Strukturen und kennen einige wichtige Methoden zur Konstruktion von Quantisierungen;
- klassifizieren W*-Algebren und kennen die intrinsische Dynamik von Faktoren;

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

- wenden von Neumann-Algebren auf die axiomatische Formulierung der Quantenfeldtheorie an;
- benutzen von Neumann-Algebren zur Konstruktion von L²-Invarianten für Mannigfaltigkeiten und Gruppen;
- verstehen die Beziehung zwischen der Analysis in den C*- und W*-Algebren von Gruppen und geometrischen Eigenschaften von Gruppen;
- definieren mit Kettenkomplexen und deren Homologie die Invarianten von Algebren und Moduln und berechnen diese;
- interpretieren diese homologischen Invarianten geometrisch und setzen sie miteinander in Beziehung;
- abstrahieren aus den wesentlichen Eigenschaften der K-Theorie und anderer Homologietheorien neue Begriffe, z.B. triangulierte Kategorien.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Nichtkommutative Geometrie" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Nichtkommutative Geometrie"

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.3125
Sprache:	Modulverantwortliche[r]:
Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
unregelmäßig	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	6
Maximale Studierendenzahl:	
nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Modul B.Mat.3431: Seminar im Zyklus "Inverse Probleme"

English title: Seminar on inverse problems

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Inverse Probleme" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Inverse Probleme" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit dem Phänomen der Schlechtgestelltheit vertraut und erkennen den Grad der Schlechtgestelltheit von typischen inversen Problemen;
- bewerten verschiedene Regularisierungsverfahren für schlecht gestellte inverse Probleme unter algorithmischen Aspekten und im Hinblick auf verschiedenartige apriori-Informationen und unterscheiden Konvergenzbegriffe für solche Verfahren bei deterministischen und stochastischen Datenfehlern;
- analysieren die Konvergenz von Regularisierungsverfahren mit Hilfe der Spektraltheorie beschränkter, selbstadjungierter Operatoren;
- analysieren die Konvergenz von Regularisierungsverfahren mit Methoden der konvexen Analysis;
- analysieren Regularisierungsverfahren unter stochastischen Fehlermodellen;
- wenden vollständig datengesteuerte Methoden zur Wahl von Regularisierungsparametern an und bewerten sie für konkrete Probleme;
- modellieren Identifikationsprobleme in Naturwissenschaften und Technik als inverse Probleme bei partiellen Differenzialgleichungen, bei denen die Unbekannte z.B. ein Koeffizient, eine Anfangs- oder Randbedingung oder die Form eines Gebiets ist:
- analysieren die Eindeutigkeit und konditionale Stabilität von inversen Problemen bei partiellen Differenzialgleichungen;
- leiten Sampling- und Probe-Methoden zur Lösung inverser Probleme bei partiellen Differenzialgleichungen her und analysieren die Konvergenz solcher Methoden;
- entwerfen mathematische Modelle von medizinischen Bildgebungsverfahren wie Computer-Tomographie (CT) oder Magnetresonanztomographie (MRT) und kennen grundlegende Eigenschaften entsprechender Operatoren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Inverse Probleme" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Inverse Probleme"		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3131	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik		

Modul B.Mat.3432: Seminar im Zyklus "Approximationsverfahren"

English title: Seminar on approximation methods

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Approximationsverfahren" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Approximationsverfahren", also der Approximation von ein- und mehrdimensionalen Funktionen sowie zur Analyse und Approximation von diskreten Signalen und Bildern kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt.

Die Studierenden

- sind mit der Modellierung von Approximationsproblemen in geeigneten endlich und unendlich-dimensionalen Vektorräumen vertraut:
- gehen sicher mit Modellen zur Approximation von ein- und mehrdimensionalen Funktionen in Banach- und Hilberträumen um;
- kennen und verwenden Elemente der klassischen Approximationstheorie, wie z.B. Jackson- und Bernstein-Sätze zur Approximationsgüte für trigonometrische Polynome, Approximation in translationsinvarianten Räumen, Polynomreproduktion und Strang-Fix-Bedingungen;
- erwerben Kenntnisse zu kontinuierlichen und zu diskreten Approximationsproblemen und den zugehörigen Lösungsstrategien im ein- und mehrdimensionalen Fall;
- wenden verfügbare Software zur Lösung der zugehörigen numerischen Verfahren an und bewerten die Ergebnisse kritisch;
- bewerten verschiedene numerische Verfahren zur effizienten Lösung der Approximationsprobleme anhand der Qualität der Lösungen, der Komplexität und ihrer Rechenzeit;
- erwerben vertiefte Kenntnisse zu linearen und nichtlinearen Approximationsverfahren für mehrdimensionale Daten;
- sind über aktuelle Entwicklungen in der effizienten Datenapproximation und Datenanalyse informiert;
- adaptieren Lösungsstrategien zur Datenapproximation unter Ausnutzung spezieller struktureller Eigenschaften des zu lösenden Approximationsproblems.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Approximationsverfahren" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

Lehrveranstaltung: Seminar (2 SWS) (Seminar)		
Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten) Prüfungsvorleistungen:		3 C
Teilnahme am Seminar		
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Approximationsverfahren"		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3132	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik		

Modul B.Mat.3433: Seminar im Zyklus "Numerik Partieller Differenzialgleichungen"

English title: Seminar on numerics of partial differential equations

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Numerik Partieller Differenzialgleichungen" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Numerik Partieller Differenzialgleichungen" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit der Theorie linearer partieller Differenzialgleichungen wie Fragen der Klassifizierung sowie der Existenz, Eindeutigkeit und Regularität der Lösung vertraut:
- kennen Grundlagen der Theorie linearer Integralgleichungen;
- sind mit grundlegenden Methoden zur numerischen Lösung linearer partieller Differenzialgleichungen mit Finite-Differenzen-Methoden (FDM), Finite-Elemente-Methoden (FEM) sowie Randelemente-Methoden (BEM) vertraut;
- analysieren Stabilität, Konsistenz und Konvergenz von FDM, FEM und BEM bei linearen Problemen;
- wenden Verfahren zur adaptiven Gitterverfeinerung auf Basis von aposteriori-Fehlerschätzern an;
- kennen Verfahren zur Lösung großer linearer Gleichungssysteme und deren Vorkonditionierung und Parallelisierung;
- wenden Verfahren zur Lösung großer Systeme linearer und steifer gewöhnlicher Differenzialgleichungen an und sind mit dem Problem differenzial-algebraischer Probleme vertraut;
- wenden verfügbare Software zur Lösung partieller Differenzialgleichungen an und bewerten die Ergebnisse kritisch;
- bewerten verschiedene numerische Verfahren anhand der Qualität der Lösungen, der Komplexität und ihrer Rechenzeit;
- erwerben vertiefte Kenntnisse in der Theorie sowie zur Entwicklung und Anwendung numerischer Lösungsverfahren in einem speziellen Bereich partieller Differenzialgleichungen, z.B. von Variationsproblemen mit Nebenbedingungen, singulär gestörter Probleme oder von Integralgleichungen;
- kennen Aussagen zur Theorie nichtlinearer partieller Differenzialgleichungen vom monotonen und maximal monotonen Typ sowie geeignete iterative Lösungsverfahren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

sich in ein mathematisches Thema im Bereich "Numerik Partieller Differenzialgleichungen" einzuarbeiten und in einem Vortrag vorzustellen;		
wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.		
Lehrveranstaltung: Seminar (2 SWS) (S	eminar)	
Prüfung: Präsentation (ca. 75 Minuten, Minuten)	bei Durchführung als Blockseminar ca. 45	3 C
Prüfungsvorleistungen:		
Teilnahme am Seminar		
Prüfungsanforderungen:		
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte		
im Bereich "Numerik Partieller Differenzial	gleichungen"	
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.3133	
Sprache:	Modulverantwortliche[r]:	
Englisch, Deutsch	Studiengangsbeauftragte/r	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig	6	
Maximale Studierendenzahl:		
nicht begrenzt		
Bemerkungen:		

Georg-August-Universität Göttingen Modul B.Mat.3434: Seminar im Zyklus "Optimierung" English title: Seminar on optimisation

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Optimierung" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Optimierung", also der diskreten und kontinuierlichen Optimierung, kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- erkennen Optimierungsprobleme in anwendungsorientierten Fragestellungen und formulieren sie als mathematische Programme;
- beurteilen Existenz und Eindeutigkeit der Lösung eines Optimierungsproblemes;
- erkennen strukturelle Eigenschaften eines Optimierungsproblemes, u.a. die Existenz einer endlichen Kandidatenmenge, die Struktur der zugrunde liegenden Niveaumengen;
- wissen, welche speziellen Eigenschaften der Zielfunktion und der Nebenbedingungen (wie (quasi-)Konvexität, dc-Funktionen) bei der Entwicklung von Lösungsverfahren ausgenutzt werden können;
- analysieren die Komplexität eines Optimierungsproblemes;
- ordnen ein mathematisches Programm in eine Klasse von Optimierungsproblemen ein und kennen dafür die gängigen Lösungsverfahren;
- entwickeln Optimierungsverfahren und passen allgemeine Verfahren auf spezielle Probleme an:
- leiten obere und untere Schranken an Optimierungsprobleme her und verstehen ihre Bedeutung:
- verstehen die geometrische Struktur eines Optimierungsproblemes und machen sie sich bei Lösungsverfahren zunutze;
- unterscheiden zwischen exakten Lösungsverfahren, Approximationsverfahren mit Gütegarantie und Heuristiken und bewerten verschiedene Verfahren anhand der Qualität der aufgefundenen Lösungen und ihrer Rechenzeit;
- erwerben vertiefte Kenntnisse in der Entwicklung von Lösungsverfahren anhand eines speziellen Bereiches der Optimierung, z.B. der ganzzahligen Optimierung, der Optimierung auf Netzwerken oder der konvexen Optimierung;
- erwerben vertiefte Kenntnisse bei der Lösung von speziellen
 Optimierungsproblemen aus einem anwendungsorientierten Bereich, z.B. der Verkehrsplanung oder der Standortplanung;
- gehen mit erweiterten Optimierungsproblemen um, wie z.B.
 Optimierungsproblemen unter Unsicherheit oder multikriteriellen Optimierungsproblemen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Optimierung" im Bereich "Optimierung" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45	3 C
Minuten)	
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Optimierung"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3134
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3437: Seminar im Zyklus "Variationelle Analysis"

English title: Seminar on variational analysis

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Variationelle Analysis" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen in variationeller Analysis und kontinuierlicher Optimierung kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- verstehen fundamentale Begriffe der konvexen und variationellen Analysis für endlich- und unendlich-dimensionale Probleme;
- beherrschen die Eigenschaften von Konvexität und anderen Begriffen der Regularität von Mengen und Funktionen, um Existenz und Regularität der Lösungen variationeller Probleme zu beurteilen;
- verstehen fundamentale Begriffe der Konvergenz von Mengen und Stetigkeit mengenwertiger Funktionen;
- verstehen fundamentale Begriffe der variationellen Geometrie;
- berechnen und verwenden verallgemeinerte Ableitungen (Subdifferenziale und Subgradienten) nicht-glatter Funktionen;
- verstehen die verschiedenen Konzepte von Regularität mengenwertiger Funktionen und ihre Auswirkungen auf die Rechenregeln für Subdifferenziale nichtkonvexer Funktionale;
- analysieren mit Hilfe der Dualitätstheorie restringierte und parametrische Optimierungsprobleme;
- berechnen und verwenden die Fenchel-Legendre Transformation und infimale Entfaltungen;
- formulieren Optimalitätskriterien für kontinuierliche Optimierungsprobleme mit Werkzeugen der konvexen und variationellen Analysis;
- wenden Werkzeuge der konvexen und variationellen Analysis an, um verallgemeinerte Inklusionen zu lösen, die zum Beispiel aus Optimalitätskriterien erster Ordnung entstanden sind;
- verstehen die Verbindung zwischen konvexen Funktionen und monotonen Operatoren;
- untersuchen die Konvergenz von Fixpunktiterationen mit Hilfe der Theorie monotoner Operatoren;
- leiten Verfahren zur Lösung glatter und nichtglatter kontinuierlicher, restringierter Optimierungsprobleme her und analysieren deren Konvergenz;
- wenden numerische Verfahren zur Lösung glatter und nichtglatter kontinuierlicher, restringierter Programme auf aktuelle Probleme an;

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

- modellieren Anwendungsprobleme durch Variationsungleichungen, analysieren deren Eigenschaften und sind mit numerischen Verfahren zur Lösung von Variationsungleichungen vertraut;
- kennen Anwendungen in der Kontrolltheorie und wenden Methoden der dynamischen Programmierung an;
- benutzen Werkzeuge der variationellen Analysis in der Bildverarbeitung und bei Inversen Problemen;
- · kennen Grundbegriffe und Methoden der stochastischen Optimierung.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Variationelle Analysis" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45	3 C
Minuten)	
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Variationelle Analysis"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3137
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Georg-August-Universität Göttingen Modul B.Mat.3438: Seminar im Zyklus "Bild- und Geometrieverarbeitung" English title: Seminar on image and geometry processing

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Bild- und Geometrieverarbeitung" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Bild- und Geometrieverarbeitung", also der digitalen Bild- und Geometrieverarbeitung, kennenzulernen und anzuwenden. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit).

Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit der Modellierung von Problemen der Bild- und Geometrieverarbeitung in geeigneten endlich- und unendlich-dimensionalen Vektorräumen vertraut;
- erlernen grundlegende Methoden zur Analyse von ein- und mehrdimensionalen Funktionen in Banach- und Hilberträumen;
- erlernen grundlegende mathematische Begriffe und Methoden, die in der Bildverarbeitung verwendet werden, wie Fourier- und Wavelettransformationen;
- erlernen grundlegende mathematische Begriffe und Methoden, die in der Geometrieverarbeitung eine zentrale Rolle spielen, wie Krümmung von Kurven und Flächen:
- erwerben Kenntnisse zu kontinuierlichen und zu diskreten Problemen der Bilddatenanalyse und den zugehörigen Lösungsstrategien;
- kennen grundlegende Begriffe und Methoden der Topologie;
- sind mit Visualisierungs-Software vertraut;
- wenden verfügbare Software zur Lösung der zugehörigen numerischen Verfahren an und bewerten die Ergebnisse kritisch;
- wissen, welche speziellen Eigenschaften eines Bildes oder einer Geometrie mit welchen Methoden extrahiert und bearbeitet werden können:
- bewerten verschiedene numerische Verfahren zur effizienten Analyse mehrdimensionaler Daten anhand der Qualität der Lösungen, der Komplexität und der Rechenzeit;
- erwerben vertiefte Kenntnisse zu linearen und nichtlinearen Verfahren zur geometrischen und topologischen Analyse mehrdimensionaler Daten;
- sind über aktuelle Entwicklungen zur effizienten geometrischen und topologischen Datenanalyse informiert;
- adaptieren Lösungsstrategien zur Datenanalyse unter Ausnutzung spezieller struktureller Eigenschaften der gegebenen mehrdimensionalen Daten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

Arbeitsaufwand:

 sich in ein mathematisches Thema im Bereich "Bild- und Geometrieverarbeitung" einzuarbeiten und in einem Vortrag vorzustellen; wissenschaftliche Diskussionen in einem bekannten Kontext zu führen. 		
Lehrveranstaltung: Seminar (2 SWS) (Seminar)		
Prüfung: Präsentation (ca. 75 Minuten, bei Durch Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	hführung als Blockseminar ca. 45	3 C
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplim Bereich "Bild- und Geometrieverarbeitung"	lexer mathematischer Sachverhalte	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3138	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6	
Maximale Studierendenzahl:		

Bemerkungen:

nicht begrenzt

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Georg-August-Universität Göttingen Modul B.Mat.3439: Seminar im Zyklus "Wissenschaftliches Rechnen / Angewandte Mathematik" English title: Seminar on scientific computing / applied mathematics

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Wissenschaftliches Rechnen/ Angewandte Mathematik" ermöglicht den Studierenden, Methoden, Begriffe, Theorien und Anwendungen im Bereich "Wissenschaftliches Rechnen/Angewandte Mathematik" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen eines Praktikums im wissenschaftlichen Rechnen oder einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit der Theorie der grundlegenden mathematischen Modelle des jeweiligen Lehrgebietes, insbesondere zu Existenz und Eindeutigkeit von Lösungen, vertraut;
- kennen grundlegende Methoden zur numerischen Lösung dieser Modelle;
- analysieren Stabilität, Konvergenz und Effizienz numerischer Lösungsverfahren;
- wenden verfügbare Software zur Lösung der betreffenden numerischen Verfahren an und bewerten die Ergebnisse kritisch;
- bewerten verschiedene numerische Verfahren anhand der Qualität der Lösungen, der Komplexität und ihrer Rechenzeit;
- sind über aktuelle Entwicklungen des wissenschaftlichen Rechnens, wie zum Beispiel GPU-Computing, informiert und wenden vorhandene Soft- und Hardware an;

• setzen Methoden des wissenschaftlichen Rechnens zum Lösen von Anwendungsproblemen, z.B. aus Natur- und Wirtschaftswissenschaften, ein. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, sich in ein mathematisches Thema im Bereich"Wissenschaftliches Rechnen / Angewandte Mathematik" einzuarbeiten und in einem Vortrag vorzustellen; wissenschaftliche Diskussionen in einem bekannten Kontext zu führen. Lehrveranstaltung: Seminar (2 SWS) (Seminar) Prüfung: Präsentation (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 3 C Minuten) Prüfungsvorleistungen: Teilnahme am Seminar Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich"Wissenschaftliches Rechnen / Angewandte Mathematik"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3139
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Modul B.Mat.3441: Seminar im Zyklus "Angewandte und Mathematische Stochastik"

English title: Seminar on applied and mathematical stochastics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Angewandte und Mathematische Stochastik" ermöglicht es den Studierenden, eine breite Auswahl von Fragestellungen, Theorien, Modellierungs- und Beweistechniken aus der Stochastik zu verstehen und anzuwenden. Von grundlegender Wichtigkeit sind dabei stochastische Prozesse in Zeit und Raum und deren Anwendungen in der Modellierung und Statistik. Im Laufe des Zyklus werden die Studierenden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Ziele angestrebt: Die Studierenden

- sind mit weiterführenden Konzepten der maßtheoretisch fundierten Wahrscheinlichkeitstheorie vertraut und wenden diese selbstständig an;
- sind mit wesentlichen Begriffen und Vorgehensweisen der Wahrscheinlichkeitsmodellierung und der schließenden Statistik vertraut;
- kennen grundlegende Eigenschaften stochastischer Prozesse, sowie Bedingungen für deren Existenz und Eindeutigkeit;
- verfügen über einen Fundus von verschiedenen stochastischen Prozessen in Zeit und Raum und charakterisieren diese, grenzen sie gegeneinander ab und führen Beispiele an;
- verstehen und erkennen grundlegende Invarianzeigenschaften stochastischer Prozesse, wie Stationarität und Isotropie;
- · analysieren das Konvergenzverhalten stochastischer Prozesse;
- analysieren Regularitätseigenschaften der Pfade stochastischer Prozesse;
- modellieren adäquat zeitliche und räumliche Phänomene in Natur- und Wirtschaftswissenschaften als stochastische Prozesse, gegebenenfalls mit unbekannten Parametern;
- analysieren probabilistische und statistische Modelle hinsichtlich ihres typischen Verhaltens, schätzen unbekannte Parameter und treffen Vorhersagen ihrer Pfade auf nicht beobachteten Gebieten / zu nicht beobachteten Zeiten;
- diskutieren und vergleichen verschiedene Modellierungsansätze und beurteilen die Verlässlichkeit von Parameterschätzungen und Vorhersagen kritisch.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Angewandte und Mathematische Stochastik" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Lehrveranstaltung: Seminar (2 SWS) (Seminar)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		3 C	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Angewandte und Mathematische Stochastik"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3141		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	Empfohlenes Fachsemester: 6	
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik			

Modul B.Mat.3442: Seminar im Zyklus "Stochastische Prozesse"

English title: Seminar on stochastic processes

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Stochastische Prozesse" ermöglicht es den Studierenden, Methoden, Begriffe, Theorien und Beweistechniken im Bereich "Stochastische Prozesse" kennenzulernen und auf die Modellierung von stochastischen Systemen anzuwenden. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit weiterführenden Konzepten der maßtheoretischen
 Wahrscheinlichkeitstheorie vertraut und wenden diese selbstständig an;
- kennen grundlegende Eigenschaften sowie Existenz- und Eindeutigkeitsresultate für stochastische Prozesse und formulieren geeignete Wahrscheinlichkeitsräume;
- verstehen die Relevanz der Konzepte der Filtration, der bedingten Erwartung und der Stoppzeit für die Theorie stochastischer Prozesse;
- kennen fundamentale Klassen von stochastischen Prozessen (wie etwa Poissonprozesse, Brownsche Bewegungen, Levyprozesse, stationäre Prozesse, multivariate und räumliche Prozesse sowie Verzweigungsprozesse) und konsturieren und charakterisieren diese Prozesse;
- analysieren Regularitätseigenschaften der Pfade stochastischer Prozesse;
- konstruieren Markovketten mit diskreten und allgemeinen Zustandsräumen in diskreter und kontinuierlicher Zeit, klassifizieren ihre Zustände und analysieren ihr Verhalten;
- sind mit der Theorie allgemeiner Markovprozesse vertraut und beschreiben und analysieren diese mit Hilfe von Generatoren, Halbgruppen, Martingalproblemen und Dirichletformen;
- analysieren Martingale in diskreter und kontinuierlicher Zeit mittels der entsprechenden Martingaltheorie, insbesondere mittels Martingalungleichungen, Martingalkonvergenzsätzen, Martingalstoppsätzen und Martingalrepräsentationssätzen;
- formulieren stochastische Integrale sowie stochastische Differenzialgleichungen mit Hilfe des Ito-Kalküls und analysieren deren Eigenschaften;
- sind mit stochastischen Konvergenzbegriffen in allgemeinen Zustandsräumen vertraut, sowie mit den für stochastische Prozesse relevanten Topologien, Metriken und Konvergenzsätzen;
- kennen fundamentale Konvergenzaussagen für stochastische Prozesse und generalisieren diese;
- modellieren stochastische Systeme aus verschiedenen Anwendungsbereichen in den Naturwissenschaften und der Technik mit Hilfe von geeigneten stochastischen Prozessen;

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

• analysieren Modelle in der Wirtschafts- und Finanzmathematik und verstehen Bewertungsverfahren für Finanzprodukte.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Stochastische Prozesse" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Stochastische Prozesse"

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3142
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Modul B.Mat.3443: Seminar im Zyklus "Stochastische Methoden der Wirtschaftsmathematik"

English title: Seminar on stochastic methods of economathematics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Stochastische Methoden der Wirtschaftsmathematik" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden nach und nach an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot, ggf. unterschiedlich geordnet und gewichtet, werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- beherrschen Fragestellungen, grundlegende Begriffe und stochastische Techniken der Wirtschaftsmathematik;
- · verstehen stochastische Zusammenhänge;
- durchdringen Bezüge zu anderen mathematischen Teilgebieten;
- lernen mögliche Anwendungen in Theorie und Praxis kennen;
- erhalten Einsichten in die Verzahnungen von Mathematik und Wirtschaftswissenschaften.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Stochastische Methoden der Wirtschaftsmathematik" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Seminar	

Prüfungsanforderungen:

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Stochastische Methoden der Wirtschaftsmathematik"

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.3143
Sprache:	Modulverantwortliche[r]:
Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
unregelmäßig	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik	

Modul B.Mat.3444: Seminar im Zyklus "Mathematische Statistik"

English title: Seminar on mathematical statistics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Mathematische Statistik" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen im Bereich "Mathematische Statistik" kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Bachelor oder Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Verfahren der mathematischen Statistik wie Schätzen, Testen, Konfidenzaussagen und Klassifikation vertraut und wenden diese in einfachen Modellen der mathematischen Statistik an;
- bewerten statistische Methoden mathematisch präzise durch geeignete Risikound Verlustbegriffe;
- analysieren die Optimalitätseigenschaften von statistischen Schätzverfahren mittels unterer und oberer Schranken:
- · analysieren die Fehlerraten von Test- und Klassifikationsverfahren basierend auf der Neyman Pearson Theorie;
- sind sicher im Umgang mit grundlegenden statistischen Verteilungsmodellen, die auf der Theorie der exponentiellen Familien aufbauen;
- kennen verschiedene Techniken um untere und obere Risikoschranken in diesen Modellen zu gewinnen;
- können typische Datenstrukturen der Regression sicher modellieren;
- analysieren praktische statistische Probleme einerseits mit den erlernten Techniken mathematisch exakt und andererseits mittels Computersimulationen;
- · können Resampling-Verfahren mathematisch analysieren und zielgerichtet einsetzen;
- sind sicher im Umgang mit fortgeschrittenen Werkzeugen der nichtparametrischen Statistik und der empirischen Prozess Theorie;
- arbeiten sich selbstständig in ein aktuelles Thema der mathematischen Statistik
- bewerten komplexe statistische Verfahren und entwickeln diese problemorientiert weiter.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Mathematische Statistik" einzuarbeiten und in einem Vortrag vorzustellen;
- · wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar	3 C	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellu im Bereich "Mathematische Statistik"	ung komplexer mathematischer Sachverhalte	
Zugangsvoraussetzungen:Empfohlene Vorkenntnisse:keineB.Mat.3144		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik		

Georg-August-Universität Göttingen Modul B.Mat.3445: Seminar im Zyklus "Statistische Modellierung und Inferenz" English title: Seminar on statistical modelling and inference

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Statistische Modellierung und Inferenz" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden sukzessive an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den Grundprizipien der parametrischen und nicht-parametrischen Modellierung in Statistik und Inferenz vertraut: Schätzung, Test, Konfidenzaussagen, Vorhersage, Modellauswahl und Validierung;
- sind mit den Werkzeugen der asymptotischen statistischen Inferenz vertraut;
- Kennen die Bayesianischen und frequentistischen Konzepte zur Datenmodellierung und Inferenz sowie deren Zusammenhang, insbesodere empirische Bayesianische Methoden;
- können statistische Monte Carlo Methoden für Bayesianische und frequentistische Inferenz implementieren und lernen deren theoretische Eigenschaften kennen;
- beherrschen nicht-parametrische (Regressions-)Modelle und Inferenz für verschiedene Datentypen: Zähldaten, kategorielle und abhängige Daten;
- können komplexe statistische Modelle für reale Datenprobleme entwickeln und auswerten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Statistische Modellierung und Inferenz" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Lehrveranstaltung: Seminar (2 SWS) (Seminar)	
Prüfung: Präsentation (ca. 75 Minuten)	3 C
Prüfungsvorleistungen:	
Teilnahme am Seminar	
Prüfungsanforderungen:	
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte	
im Bereich "Statistische Modellierung und Inferenz"	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.3145

Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Modul B.Mat.3446: Seminar im Zyklus "Multivariate Statistik"

English title: Seminar on multivariate statistics

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Multivariate Statistik" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden nach und nach an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot, ggf. unterschiedlich geordnet und gewichtet, werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Methoden der multivariaten Statistik wie Schätzung, Test, Konfidenzaussage, Vorhersage, lineare und verallgemeinerte lineare Modelle vertraut und setzen diese in der Modellierung realer Anwendungen ein;
- können spezifische Methoden der multivariaten Statistik wie Dimensionsreduzierung PCA (principal component analysis), Faktoranalysis und multidimensionale Skalierung anwenden;
- sind mit dem Umgang mit nicht-euklidischen Daten wie "Directional analysis" oder "Shape data" vertraut und setzen dafür parametrische und nicht-parametrische Methoden ein:
- können verschachtelte Deskriptoren für nicht-Euklidische Daten verwenden und beherrschen Procrustes-Methoden in der "Shape analysis";
- sind mit zeitabhängigen Daten, Grundlagen der "Functional data analysis" und inferentiellen Konzepten wie kinematischen Formeln vertraut;
- analysieren wesentliche Abhängigkeiten zwischen Topologie/Geometrie der zu Grunde liegenden Abhängigkeiten und Grenzverteilungen;
- wenden Resampling-Methoden sicher auf nicht-euklidische Deskriptoren an;
- beherrschen hoch-dimensionale Diskriminierungs- und Klassifizierungstechniken wie Kern-PCA, Regularisierungsmethoden und "support vector maschines";
- erwerben grundlegendes Wissen über statistische Punktprozesse und der zugehörigen Bayesianischen Methoden;
- beherrschen Techniken der "large scale computational statistics";
- erarbeiten selbstständig aktuelle Themen der multivariaten und nicht-euklidischen Statistik;
- evaluieren komplexe statistische Methoden und entwickeln diese für die Anwendung auf reale Probleme weiter.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Multivariate Statistik" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

Lehrveranstaltung: Seminar (2 SWS) (Seminar)			
Prüfung: Präsentation (ca. 75 Minuten) Prüfungsvorleistungen: Teilnahme am Seminar		3 C	
Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Multivariate Statistik"			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.3146		
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl: nicht begrenzt			
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik			

Modul B.Mat.3447: Seminar im Zyklus "Statistische Grundlagen der Data Science"

English title: Seminar on statistical foundations of data science

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Das erfolgreiche Absolvieren von Modulen zum Zyklus "Statistische Grundlagen der Data Science" ermöglicht den Studierenden Methoden, Begriffe, Theorien und Anwendungen in diesem Bereich kennenzulernen. Sie werden nach und nach an aktuelle Forschungsthemen herangeführt und befähigt, in diesem Bereich erste eigene Beiträge zur Forschung zu leisten (z.B. im Rahmen einer Masterarbeit). Je nach aktuellem Lehrangebot, ggf. unterschiedlich geordnet und gewichtet, werden folgende inhaltsbezogene Kompetenzen angestrebt. Die Studierenden

- sind mit den wichtigsten Methoden der statistischen Grundlagen der Data science wie Schätzung, Test, Konfidenzaussage, Vorhersage, Resampling, Mustererkennung und -klassifizierung vertraut und setzen diese in der Modellierung realer Modelle ein;
- setzen geeignete statistische Risiko- und Verlustkonzepte für eine präzise mathematische Evaluierung statistischer Methoden ein;
- verwenden untere und obere Informationsschranken für die Analyse der Charakteristiken statistischer Schätzmethoden;
- sind mit grundlegenden statistischen Verteilungsmodellen vertraut, die sich auf der Theorie exponentieller Familien stützen;
- beherrschen die Modellierung realer Datenstrukturen wie kategorielle Daten, mehr- und hochdimensionale Daten, Daten in Bildern, Daten mit seriellen Abhängigkeiten;
- sie wenden die erlernten Techniken und Modelle sowie Computersimulationen für eine präzise mathematische Analyse aus der Praxis stammender statistischer Probleme an:
- sie können Resampling-Methode mathematisch analysieren und zielgerichtet anwenden;
- sind mit Konzepten der "large scale computational statistics" vertraut;
- sind mit fortgeschrittenen Werkzeugen der nicht-parametrischen Statistik und der Theorie empirischer Prozesse vertraut;
- erarbeiten selbstständig aktuelle Themen der statistischen Data science;
- evaluieren komplexe statistische Methoden und entwickeln diese für die Anwendung auf reale Probleme weiter.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Statistische Grundlagen der Data Science" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Arbeitsaufwand:

Lehrveranstaltung: Seminar (2 SWS) (Seminar)		
Prüfung: Präsentation (ca. 75 Minuten)		3 C
Prüfungsvorleistungen:		
Teilnahme am Seminar		
Prüfungsanforderungen:		
Selbständige Durchdringung und Darstellu	ing komplexer mathematischer Sachverhalte	
im Bereich "Statistische Grundlagen der Data Science"		
ugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	B.Mat.3147	
Sprache:	Modulverantwortliche[r]:	
Englisch, Deutsch	Studiengangsbeauftragte/r	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig	6	
Maximale Studierendenzahl:		
nicht begrenzt		
Bemerkungen:		
Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik		

Georg-August-Universität Göttingen	9 C 4 SWS
Modul B.Phi.01: Basismodul Theoretische Philosophie English title: Basic Studies in Theoretical Philosophy	4 5005
	1
Lernziele/Kompetenzen: 1. In einem Einführungskurs (Vorlesung oder Einführungsseminar) erwerben die Studierenden Kenntnis zentraler Themen, Grundbegriffe und Theorieansätze der Theoretischen Philosophie in ihren Disziplinen Erkenntnistheorie, Wissenschaftsphilosophie, Sprachphilosophie oder Metaphysik. 2. In einem Proseminar erlangen die Studierenden grundlegende Fähigkeiten, sich mit Sachfragen der theoretischen Philosophie begrifflich präzise und argumentativ auseinanderzusetzen, insbesondere: ausgewählte Problembereiche und systematische Überlegungen der theoretischen Philosophie adäquat darzustellen, Argumentationen zu analysieren und auf elementarem Niveau in mündlicher und mindestens in Textform zu diskutieren.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 214 Stunden
Lehrveranstaltung: 1. Einführungskurs in die theoretische Philosophie (Vorlesung, Seminar) Angebotshäufigkeit: Einführungskurs bevorzugt im Wintersemester	2 SWS
Prüfung: Klausur (45 Minuten), unbenotet Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie und Fähigkeit, diese auf elementarem Niveau argumentativ verständlich darzulegen.	2 C
Lehrveranstaltung: 2. Proseminar zur theoretischen Philosophie Es muss <u>eine</u> der nachfolgenden Prüfungsformen (Klausur, Hausarbeit oder Essays) absolviert werden.	2 SWS
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf elementarem Niveau mindestens in Textform.	7 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf elementarem Niveau mindestens in Textform.	7 C

Prüfung: Klausur (120 Minuten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen:	
Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen	
Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf	
elementarem Niveau mindestens in Textform.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christian Beyer
Angebotshäufigkeit: jedes Semester; Einführungskurs bevorzugt im Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 100	

Goorg August Universität Göttingen	9 C
Georg-August-Universität Göttingen	4 SWS
Modul B.Phi.03: Basismodul Geschichte der Philosophie	
English title: Basic Studies in History of Philosophy	
Lernziele/Kompetenzen:	Arbeitsaufwand:
1. In einem Einführungskurs (Vorlesung oder Einführungsseminar) erwerben die	Präsenzzeit:
Studierenden einen Überblick über Epochen der Philosophiegeschichte, erste	56 Stunden
Bekanntschaft mit jeweils zentralen Themenbereichen und einzelnen Werken	Selbststudium:
klassischer Autoren.	214 Stunden
2. In einem Proseminar (Basisseminar) erlangen die Studierenden Verständnis	
klassischer Texte der Philosophie sowie Grundfertigkeiten der Analyse eines Textes	
unter historischen und systematischen Gesichtspunkten.	
Labruaranataltungu 1. Einführungakura in die Casahiahta der Bhilasanhia	2 SWS
Lehrveranstaltung: 1. Einführungskurs in die Geschichte der Philosophie (Vorlesung, Seminar)	2 3003
Prüfung: Klausur (45 Minuten), unbenotet	2 C
Prüfungsanforderungen:	
Überblick über Epochen der Philosophiegeschichte und elementares Verständnis	
zentraler Themen und klassischer philosophischer Texte sowie Fähigkeit, diese auf	
elementarem Niveau argumentativ verständlich darzulegen.	
Lehrveranstaltung: 2. Proseminar zur Geschichte der Philosophie	2 SWS
Es muss eine der nachfolgenden Prüfungsformen (Klausur, Hausarbeit oder	
Essays) absolviert werden.	
Prüfung: Essays (insgesamt max. 15 Seiten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen:	
Überblick über Epochen der Philosophiegeschichte, elementares Verständnis	
zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion	
philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.	
Prüfung: Klausur (120 Minuten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen:	
Überblick über Epochen der Philosophiegeschichte, elementares Verständnis	
zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion	
philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.	
Prüfung: Hausarbeit (max. 15 Seiten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	

Prüfungsanforderungen:

Überblick über Epochen der Philosophiegeschichte, elementares Verständnis zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Bernd Ludwig
Angebotshäufigkeit: jedes Semester; Einführungskurs bevorzugt im SoSe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 3
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen		5 C
Modul B.Phi.03a: Basismodul Geschichte	der Philosophia für	2 SWS
Mathematik-Studierende	e dei Filliosopille idi	
English title: Basic Studies in History of Philosophy for		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden können klassische Texte der Philosophie auf elementarem Niveau		Präsenzzeit:
hinsichtlich ihrer Struktur analysieren,		28 Stunden
in ihren wesentlichen Aussagen und Argumente	en verstehen,	Selbststudium:
in ihren historischen und systematischen Interpretationsrahmen einordnen.		122 Stunden
Lehrveranstaltung: Proseminar im Bereich Geschichte der Philosophie		2 SWS
Prüfung: Essay (max. 6 Seiten)		5 C
Prüfungsvorleistungen:		
regelmäßige Teilnahme an einem Proseminar; kleine		
(max. 2 Seiten; Protokoll, Kurzreferat o.ä.)		
Prüfungsanforderungen:		
Überblick über Epochen der Philosophiegeschichte, elementares Verständnis		
zentraler Themen und klassischer philosophischer T	-	
philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Catrin Misselhorn	
Angebotshäufigkeit:	Dauer:	
jedes Semester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig	1 - 6	
Maximale Studierendenzahl:		
nicht begrenzt		

Georg-August-Universität Göttingen		6 C	
		4 SWS	
Modul B.Phi.04: Basismodul Logik			
English title: Introduction to Logics			
Lernziele/Kompetenzen:		Arbeitsaufwand:	
		Präsenzzeit:	
 Fähigkeit zur logischen Analyse und Forn 	nalisierung einfacher Aussagen und	56 Stunden	
Schlüsse,			
Kenntnis eines logischen Kalküls.	Kenntnis eines logischen Kalküls.		
Lehrveranstaltung: Vorlesung oder ein Proseminar zur Einführung in die Logik mit 4 SWS			
Tutorien			
Prüfung: Klausur (120 Minuten), unbenotet		6 C	
Prüfungsanforderungen:			
Verständnis elementarer Begriffe der Logik; An	nalyse und Formalisierung einfacher		
Aussagen und Schlüsse; Kenntnis eines logisc	Aussagen und Schlüsse; Kenntnis eines logischen Kalküls; Bearbeitung von		
Übungsaufgaben.			
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:		
keine	keine		
Sprache:	Modulverantwortliche[r]:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Catrin Misselhorn		
Angebotshäufigkeit:	Dauer:		
jedes Sommersemester	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	Empfohlenes Fachsemester:	
zweimalig	2		
Maximale Studierendenzahl:			
100			

Georg-August-Universität Göttingen Modul B.Phi.05: Aufbaumodul Theoretische Philosophie English title: Advanced Studies in Theoretical Philosophy	10 C 4 SWS
Lernziele/Kompetenzen: Die Studierenden verfügen über fortgeschrittene Kenntnisse ausgewählter Themen und Theorien der theoretischen Philosophie sowie über die Fähigkeit der Darstellung und Diskussion systematischer Positionen und Probleme in mündlicher und mindestens in Textform.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 244 Stunden
Lehrveranstaltung: 1. Vorlesung oder Seminar zur theoretischen Philosophie	2 SWS
Lehrveranstaltung: 2. Seminar zur theoretischen Philosophie Zu beiden Lehrveranstaltungen ist je eine Prüfung zu wählen, entweder die kleine Leistung oder eine Modulprüfung in Form einer Hausarbeit, von Essays oder einer Klausur. In welcher Lehrveranstaltung die Prüfung in Form einer kleinen Leistung abgelegt wird und in welcher in Form einer Hausarbeit, von Essays oder einer Klausur, ist frei wählbar.	2 SWS
Prüfung: Kleine Leistung (max. 2 Seiten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie und Fähigkeit, diese mindestens in kurzer Textform argumentativ verständlich darzulegen.	3 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.	7 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.)	7 C

Prüfungsanforderungen:

Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.

Zugangsvoraussetzungen: B.Phi.01	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Catrin Misselhorn
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 5
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen		6 C
Modul B.Phy-NF.7005: Physikalisches Grundpraktikum für Studierende der Mathematik English title: Basic Lab Course in Physics for Students of Mathematics		5 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Nach erfolgreichem Absolvieren des Moduls sollten	die Studierenden	Präsenzzeit:
 experimentelle Arbeitsmethoden der Physik beherrschen und diese in ihrer Bedeutung für das jeweilige Probleme analysieren können; elementare Experimente zu Fragestellungen der Mechanik, Thermodynamik und Elektrizitätslehre durchführen, auswerten und kritisch interpretieren können; die Grundlagen der guten wissenschaftlichen Praxis kennen und diese grundlegend anwenden können 		70 Stunden Selbststudium: 110 Stunden
Lehrveranstaltung: Grundlagen des Experimentierens (Vorlesung)		1 SWS
Lehrveranstaltung: Grundlagen des Experimentierens (Übung)		1 SWS
Lehrveranstaltung: Praktikum		3 SWS
Prüfung: Protokoll (max. 15 Seiten) Prüfungsvorleistungen: 7 testierte Protokolle (je max. 15 Seiten)		6 C
Prüfungsanforderungen: Kenntnisse in Auswertung und Bewertung von physikalischen Experimenten im Bereich der Mechanik, Thermodynamik und Elektrizitätslehre sowie der Interpretation der Ergebnisse; schriftliche Dokumentation von Messungen und Messergebnissen; Kenntnisse in der guten wissenschaftlichen Praxis.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.2101	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 15		
Bemerkungen: Die Versuche dürfen nur nach vorheriger Vorbereitu	ung durchgeführt werden.	

Georg-August-Universität Göttingen Modul B.Phy-NF.7006: Experimentalphysik III - Wellen und Optik für Studierende der Mathematik English title: Experimental Physics III - Waves and Optics for Mathematicians

Lernziele/Kompetenzen:

Emission, Laserprinzip.

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der Wellenausbreitung und Optik anwenden:
- einfache Systeme mit Konzepten der geometrischen Optik und Wellenoptik modellieren und mit den erlernten mathematischen Techniken behandeln.

und Kristalloptik, Interferenz und Beugung (Fresnel-Kirchhoff-Integral, Fresnel- und Fraunhofer-Näherung), Auflösungsgrenze und Mikroskopie, Kohärenz, stimulierte

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Klausur (120 Minuten)

Prüfungsvorleistungen:

Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:

Beherrschung der grundlegenden Begriffe, Fakten und Methoden aus dem Bereich
Wellen und Optik.

Wellenphänomene und Wellengleichungen (Schwerpunkt elektromagnetische
Wellen), Wellenleiter, Superpositionsprinzip, Dispersion, Absorption, Streuung,
Phasen- und Gruppengeschwindigkeit, Fourier-Transformation, Huygen'sches
Prinzip, Eikonalgleichung und Fermat'sches Prinzip, Geometrische Optik (Brechung,
Linsen, optische Instrumente, Prisma, Wellenleiter geometrisch), Polarisation,
Fresnelkoeffizienten (Reflexion, Transmission, Brewster-Winkel), Anisotrope Medien

Prüfungsanforderungen:

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Experimentalphysik II
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

Modul B.Phy-NF.7007: Experimentalphysik IV - Atom- und Quantenphysik für Studierende der Mathematik

English title: Experimental Physics IV - Atom and Quantum Physics for Mathematicians

6 C 6 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der Quantenphysik anwenden;
- einfache quantenmechanische Systeme (Atome, Moleküle, ...) modellieren und behandeln.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden

Selbststudium:

96 Stunden

Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein. Prüfungsanforderungen: Das Photon (thermische Strahlung, Photoeffekt, Compton-Effekt); Materiewellen, Schlüsselexperimente zur Quantentheorie und ihre Interpretation; Heisenberg'sche Unbestimmtheitsrelation; Wasserstoffatom (Bahn- und Spinmagnetismus, Feinstruktur und L-S Kopplung, Lamb Shift); Atome in elektrischen und magnetischen Feldern (Zeeman-, Paschen-Back-, und Stark-Effekt); Emission und Absorption; Spektren und Linienbreiten; Mehrelektronenatome; Grundlagen der chemischen Bindung; Molekülspektren (Rotations- und Vibrationsmoden); Laser.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	4
Maximale Studierendenzahl:	
180	

Modul B.Phy.1101: Experimentalphysik I - Mechanik (mit Praktikum)

English title: Experimental Physics I - Mechanics (Lab Course included)

9 C 9 SWS

Lernziele/Kompetenzen:

Gleichgewicht, Bernoulli).

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der klassischen Mechanik und Thermodynamik anwenden;
- einfache physikalische Systeme modellieren und mit den erlernten mathematischen Techniken behandeln;
- elementare Experimente zu Fragestellungen aus den in der zugehörigen Vorlesung besprochenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren; insbesondere Erarbeitung von Grundlagen der Fehlerrechnung und schriftlicher Dokumentation der Messung und Messergebnisse;
- die Grundlagen der guten wissenschaftlichen Praxis anwenden.
- im Team experimentelle Aufgaben lösen;
- fortgeschrittene Textverarbeitungsprogramme beherrschen und Programme zur Auswertung wissenschaftlicher Daten einsetzen.

Die drei Hauptsätze der Thermodynamik; Wärme, Energie, Entropie, Temperatur,

und Druck; Zustandsgleichungen; Thermodynamische Gleichgewichte und

Phasenübergänge; Kreisprozess; Ideale und reale Gase.

Arbeitsaufwand:

Präsenzzeit: 126 Stunden Selbststudium: 144 Stunden

Lehrveranstaltung: Vorlesung mit Übungen	6 SWS
Prüfung: Klausur (180 Minuten)	
Prüfungsvorleistungen:	
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein	
sowie Anwesenheit bei mindestens der Hälfte der Übungstermine.	
Prüfungsanforderungen:	
Physikalische Größen (Dimensionen, Messfehler); Kinematik (Bezugsysteme,	
Bahnkurve); Dynamik (Newton'sche Gesetze, Bewegungsgleichungen, schwere	
und träge Masse); Erhaltungssätze für Energie; Impuls, und Drehimpuls; Stöße;	
Zentralkraftproblem; Schwingungen (harmonischer Oszillator, Resonanz); Beschleunigte	
Bezugsysteme und Trägheitskräfte; Starre Körper (Drehmoment, Trägheitsmoment,	
Steinersche Satz).	
Deformierbare Medien und Kontinuumsmechanik (Hooke'sche Gesetz, hydrostatisches	

Lehrveranstaltung: Praktikum zu Experimentalphysik I	3 SWS
Prüfung: 5 Protokolle (max. 15 Seiten), unbenotet	3 C
Prüfungsanforderungen:	
Auswertung und Bewertung von physikalischen Experimenten sowie Interpretation der	
durchgeführten Experimente.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Keine	Keirie
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof.in Cynthia Volkert
	Prof. Sarah Köster, Prof. Ansgar Reiners
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	1
Maximale Studierendenzahl:	
210	

9 C Georg-August-Universität Göttingen 9 SWS Modul B.Phy.1102: Experimentalphysik II - Elektromagnetismus (mit Praktikum) English title: Experimental Physics II - Electromagnetism (Lab Course incl.)

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der Elektrostatik und -dynamik anwenden:
- einfache Feldverteilungen modellieren und mit den erlernten mathematischen Techniken behandeln;
- elementare Experimente zu Fragestellungen aus den in der zugehörigen Vorlesung besprochenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren; insbesondere Erarbeitung von Grundlagen der Fehlerrechnung und schriftlicher Dokumentation der Messung und Messergebnisse;

Arbeitsaufwand:

Präsenzzeit: 126 Stunden Selbststudium: 144 Stunden

· die Grundlagen der guten wissenschaftlichen Praxis anwenden. · im Team experimentelle Aufgaben lösen. Lehrveranstaltung: Experimentalphysik II - Elektromagnetismus 6 SWS Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen:

Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein. Prüfungsanforderungen:

Beherrschung und Anwendung der Grundbegriffe und Methoden der Elektrodynamik, insbesondere des Feldkonzeptes.

Elektro- und Magnetostatik; Elektrisches Feld, Potential und Spannung; Vektoranalysis, Sätze von Gauß und Stokes; Elektrischer Strom und Widerstand, Stromkreise; Randwertprobleme und Multipolentwicklung; Biot-Savart'sches Gesetz; Dielektrische Polarisation und Magnetisierung; Induktion; Schwingkreise; Maxwell-Gleichungen; Elektromagnetische Potentiale; Teilchen in Feldern, Energie und Impuls; Elektromagnetische Wellen, beschleunigte Ladungen; Relativitätstheorie (relativistische Mechanik, Lorentzinvarianz der Elektrodynamik).

Lehrveranstaltung: Praktikum zu Experimentalphysik II	3 SWS
Prüfung: Protokoll (max. 15 Seiten)	3 C
Prüfungsvorleistungen:	
6 testierte schriftliche Versuchsprotokolle des Praktikumsteils.	
Prüfungsanforderungen:	
Kenntnisse in Auswertung und Bewertung von physikalischen Experimenten sowie	
Interpretation der durchgeführten Experimente.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Experimentalphysik I

Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Angela Rizzi
	Prof. Jörg Enderlein, Prof. Tim Salditt; Prof. Hans
	Hofsäss
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	2
Maximale Studierendenzahl:	
210	

Georg-August-Universität Göttingen Modul B.Phy.1103: Experimentalphysik III - Wellen und Optik (mit Praktikum) English title: Experimental Physics III - Waves and Optics (Lab Course incl.)

Lernziele/Kompetenzen:

Emission, Laserprinzip.

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der Wellenausbreitung und Optik anwenden;
- einfache Systeme mit Konzepten der geometrischen Optik und Wellenoptik modellieren und mit den erlernten mathematischen Techniken behandeln;
- elementare Experimente zu Fragestellungen aus den in der zugehörigen Vorlesung besprochenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren; insbesondere Erarbeitung von Grundlagen der Fehlerrechnung und schriftlicher Dokumentation der Messung und Messergebnisse;

Fresnelkoeffizienten (Reflexion, Transmission, Brewster-Winkel), Anisotrope Medien und Kristalloptik, Interferenz und Beugung (Fresnel-Kirchhoff-Integral, Fresnel- und Fraunhofer-Näherung), Auflösungsgrenze und Mikroskopie, Kohärenz, stimulierte

- die Grundlagen der guten wissenschaftlichen Praxis anwenden;
- im Team experimentelle Aufgaben lösen.

Arbeitsaufwand:

Präsenzzeit: 126 Stunden Selbststudium: 144 Stunden

Lehrveranstaltung: Vorlesung mit Übung	6 SWS
Prüfung: Klausur (120 Minuten)	
Prüfungsvorleistungen:	
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.	
Prüfungsanforderungen:	
Beherrschung der grundlegenden Begriffe, Fakten und Methoden aus dem Bereich	
Wellen und Optik.	
Wellenphänomene und Wellengleichungen (mechanische und elektromagnetische	
Wellen), Wellenleiter, Superpositionsprinzip, Dispersion, Absorption, Streuung,	
Phasen- und Gruppengeschwindigkeit, Fourier-Transformation, Huygen'sches	
Prinzip, Eikonalgleichung und Fermat'sches Prinzip, Geometrische Optik (Brechung,	
Linsen, optische Instrumente, Prisma, Wellenleiter geometrisch), Polarisation,	

Lehrveranstaltung: Praktikum zu Experimentalphysik III	3 SWS
Prüfung: Protokoll (max. 15 Seiten)	3 C
Prüfungsvorleistungen:	
7 testierte schriftliche Versuchsprotokolle des Praktikumsteils.	
Prüfungsanforderungen:	
Kenntnisse in Auswertung und Bewertung von physikalischen Experimenten sowie	
Interpretation der durchgeführten Experimente.	

Prüfungsanforderungen:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Experimentalphysik II
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Claus Ropers Prof. Tim Salditt; Prof. Jörg Enderlein
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

Modul B.Phy.1104: Experimentalphysik IV - Atom- und Quantenphysik (mit Praktikum)

English title: Experimental Physics IV - Atom and Quantum Physics (Lab Course incl.)

9 C 9 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie können...

- die grundlegenden Begriffe und Methoden der Quantenphysik anwenden;
- einfache quantenmechanische Systeme (Atome, Moleküle, ...) modellieren und behandeln;
- elementare Experimente zu Fragestellungen aus den in der zugehörigen Vorlesung besprochenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren; insbesondere Erarbeitung von Grundlagen der Fehlerrechnung und schriftlicher Dokumentation der Messung und Messergebnisse;
- die Grundlagen der guten wissenschaftlichen Praxis anwenden;
- im Team experimentelle Aufgaben lösen.

Arbeitsaufwand:

Präsenzzeit: 126 Stunden Selbststudium:

144 Stunden

6 SWS

Lehrveranstaltung:	Vorlesung	mit	Übung
--------------------	-----------	-----	-------

Prüfung: Klausur (120 Minuten)

Prüfungsvorleistungen:

Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:

Das Photon (thermische Strahlung, Photoeffekt, Compton-Effekt); Materiewellen, Schlüsselexperimente zur Quantentheorie und ihre Interpretation; Heisenberg'sche Unbestimmtheitsrelation; Wasserstoffatom (Bahn- und Spinmagnetismus, Feinstruktur und L-S Kopplung, Lamb Shift); Atome in elektrischen und magnetischen Feldern (Zeeman-, Paschen-Back-, und Stark-Effekt); Emission und Absorption; Spektren und Linienbreiten; Mehrelektronenatome; Grundlagen der chemischen Bindung; Molekülspektren (Rotations- und Vibrationsmoden); Laser.

Lehrveranstaltung: Praktikum zu Experimentalphysik IV	3 SWS
Prüfung: 7 testierte Protokolle (max. 15 Seiten), unbenotet	3 C
Prüfungsanforderungen:	
Kenntnisse in Auswertung und Bewertung von physikalischen Experimenten sowie	
Interpretation der durchgeführten Experimente.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	4
Maximale Studierendenzahl:	
180	

Georg-August-Universität Göttingen	8 C 6 SWS
Modul B.Phy.1201: Analytische Mechanik	0 3003
English title: Analytical mechanics	

Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach erfolgreichem Absolvieren des Moduls können die Studierenden	Präsenzzeit:
 die Begriffe und Methoden der klassischen theoretischen Mechanik anwenden; komplexe mechanische Systeme modellieren und mit den Erlernten formalen 	84 Stunden Selbststudium: 156 Stunden

Lehrveranstaltung: Vorlesung mit Übung	
Prüfung: Klausur (180 Minuten)	8 C
Prüfungsvorleistungen:	
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.	
Prüfungsanforderungen:	
Newton'sche Mechanik (Zentralkraftproblem, Streuquerschnitte); Lagrange-	
Formalismus (Variationsprinzipien, Nebenbedingungen und Zwangskräfte,	
Symmetrien und Erhaltungssätze); Starre Körper (Euler-Winkel, Trägheitstensor und	
Hauptachsentransformation, Euler-Gleichungen); Kleine Schwingungen; Hamilton-	
Formalismus (Legendre-Transformation, Phasenraum, Liouville'scher Satz, Poisson-	
Klammern).	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl: 180	

Georg-August-Universität Göttingen Modul B.Phy.1202: Klassische Feldtheorie English title: Classical Field Theory

Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls • verfügen die Studierenden über ein vertieftes Verständnis der Begriffsbildungen der Feldtheorie; • besitzen die Studierenden erweiterte Fähigkeiten im Umgang mit den wichtigsten linearen und nichtlinearen partiellen Differentialgleichungen; • können Lösungsmethoden der Elektrostatik und der Elektrodynamik kennen und anwenden; • beherrschen die wichtigsten Anwendungsbeispiele.

Lehrveranstaltung: Vorlesung mit Übung	
Prüfung: Klausur (180 Minuten)	8 C
Prüfungsvorleistungen:	
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.	
Prüfungsanforderungen:	
Konkrete Umsetzung der Methoden der Feldtheorie in einfachen	
Anwendungsbeispielen.	
Elementare Kontinuumsmechanik und Hydrodynamik; Elektromagnetische Felder und	
Maxwell'sche Gleichungen im Vakuum und in Materie; Quellen und Randbedingungen,	
Anfangswertproblem; Multipol-Entwicklung und elektromagnetische Strahlung;	
Lagrange-Formalismus der Feldtheorie; Spezielle Relativitätstheorie; Grundzüge der	
Allgemeinen Relativitätstheorie in der Sprache der Differentialgeometrie.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Analytische Mechanik
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

Mehrteilchensysteme.

Georg-August-Universität Göttingen 8 C 6 SWS

Modul B.Phy.1203: Quantenmechanik I English title: Quantum Mechanics I	6 5005
Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls können die Studierenden • die Begriffe, Interpretation und mathematischen Methoden der Quantentheorie anwenden; • einfache Potentialprobleme mit den erlernten mathematischen Techniken behandeln.	Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 156 Stunden
Lehrveranstaltung: Vorlesung mit Übung	
Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen: Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein. Prüfungsanforderungen: Kenntnis des konzeptionellen Rahmens, der Prinzipien und Methoden der Quantenmechanik:	8 C
Wellenmechanik und Schrödinger-Gleichung. Statistische Interpretation von Quantensystemen; Eindimensionale Modellsysteme, gebundene Zustände und Streuzustände; Formulierung der Quantenmechanik (Hilbertraum, lineare Operatoren, unitäre Transformationen, Operatoren und Messgrößen, Symmetrie und Erhaltungsgrößen); Heisenberg-Bild; Quantisierung des Drehimpulses und Spin;	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

Wasserstoffatom; Näherungsverfahren (Störungsrechnung, Variationsverfahren);

Georg-August-Universität Göttingen 8 C		
Modul B.Phy.1204: Statistische Physik		6 SWS
English title: Statistical Physics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Nach erfolgreichem Absolvieren des Moduls können	die Studierenden	Präsenzzeit:
die Konzepte und Methoden der statistischen P	hysik anwenden;	84 Stunden
einfache thermodynamische Systeme modellier	en und mit den erlernten	Selbststudium:
mathematischen Techniken behandeln.		156 Stunden
Lehrveranstaltung: Vorlesung mit Übung		
Prüfung: Klausur (180 Minuten)		8 C
Prüfungsvorleistungen:		
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.		
Prüfungsanforderungen:		
Thermodynamik (Hauptsätze, Potentiale, Gleichgewichtsbedingungen,		
Phasenübergänge); Statistik (Wahrscheinlichkeitsverteilungen, Zentralwertsatz);		
Statistische Ensembles; Ergodenhypothese; Statistische Deutung der Thermodynamik;		
Zustandssumme; Theorie der Phasenübergänge; Quantenstatistik.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	StudiendekanIn der Fakultät für Pl	nysik
Angebotshäufigkeit:	jebotshäufigkeit: Dauer:	
jedes Wintersemester	1 Semester	

5

Empfohlenes Fachsemester:

Wiederholbarkeit:

Maximale Studierendenzahl:

dreimalig

180

Georg-August-Universität Göttingen Modul B.Phy.1601: Grundlagen der C-Programmierung English title: Basics of C programming

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen eine aktuelle Programmiersprache, sie Präsenzzeit: 42 Stunden • beherrschen den Einsatz von Editor, Compiler und weiteren Selbststudium: Programmierwerkzeugen (z.B. Build-Management-Tools). 138 Stunden • kennen grundlegende Techniken des Programmentwurfs und können diese anwenden. • kennen Standarddatentypen (z.B. für ganze Zahlen und Zeichen) und spezielle Datentypen (z.B. Felder und Strukturen). • kennen die Operatoren der Sprache und können damit gültige Ausdrücke bilden und verwenden. • kennen die Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) und können diese anwenden. • kennen die Möglichkeiten zur Strukturierung von Programmen (z.B. Funktionen und Module) und können diese einsetzen. kennen die Techniken zur Speicherverwaltung und können diese verwenden. • kennen die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und • Gleitkommarithmetik) und können diese beim Programmentwurf berücksichtigen. · kennen die Programmbibliotheken und können diese einsetzen.

Lehrveranstaltung: Kompaktkurs Grundlagen der C-Programmierung Angebotshäufigkeit: jedes Wintersemester	
Prüfung: Klausur (90 Minuten) Prüfungsanforderungen:	6 C
Standarddatentypen, Konstanten, Variablen, Operatoren, Ausdrücke, Anweisungen, Kontrollstrukturen zur Steuerung des Programmablaufs, Strings, Felder, Strukturen, Zeiger, Funktionen, Speicherverwaltung, Rechnerarithmetik, Ein-/Ausgabe, Module, Standardbibliothek, Präprozessor, Compiler, Linker	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: StudiendekanIn der Fakultät für Physik
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:

Georg-August-Universität Göttingen Modul B.Phy.1602: Computergestütztes wissenschaftliches Rechnen English title: Scientific Computing

Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Absolvieren können die Studierenden komplexe Probleme aus Präsenzzeit: 84 Stunden dem naturwissenschaftlichen Bereich in effiziente Algorithmen umsetzen. Weiter sind sie in der Lage, diese Algorithmen in Programme oder Programmbibliotheken Selbststudium: zu fassen, die durch gute Programmierpraxis (Dokumentation, Modularisierung und 96 Stunden Versionsverwaltung) lange effizient wartbar und nutzbar bleibt. Einfache Parallelisierungsstrategien können zur effizienten Implementierung angewendet werden. Die Studierenden sind in der Lage gewonnene numerische Daten auszuwerten, zu interpretieren, grafisch aufzubereiten und in guter wissenschaftlicher Form zu präsentieren.

Lehrveranstaltung: Computergestütztes wissenschaftliches Rechnen (Vorlesung, Übung)	
Prüfung: Schriftlicher Bericht (max. 10 Seiten)	6 C
Prüfungsvorleistungen:	
4 erfolgreich bearbeitete Programmieraufgaben	
Prüfungsanforderungen:	
Umsetzung einer Aufgabenstellung in ein lauffähiges, effizientes Programm. Anschließende wissenschaftliche Interpretation der Ergebnisse.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Kenntnisse der Programmiersprache C
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Stefan Klumpp
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 4
Maximale Studierendenzahl: 200	

6 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy.2101: Experimentalphysik I: Mechanik und **Thermodynamik** English title: Experimental Physics I: Mechanics Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Präsenzzeit: Zusammenhängen vertraut. Sie sollten 84 Stunden Selbststudium: die grundlegenden Begriffe und Methoden der klassischen Mechanik und 96 Stunden Thermodynamik anwenden können; • einfache physikalische Systeme modellieren und mit den erlernten mathematischen Techniken behandeln können; elementare Experimente zu Fragestellungen aus den in der zugehörigen Vorlesung besprochenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren können; insbesondere Erarbeitung von Grundlagen der Fehlerrechnung und schriftlicher Dokumentation der Messung und Messergebnisse; • die Grundlagen der guten wissenschaftlichen Praxis anwenden können. Als Schlüsselkompetenzen sind sie fähig im Team experimentelle Aufgaben zu lösen Lehrveranstaltung: Vorlesung Experimentalphysik I (Vorlesung) 4 SWS Prüfung: Klausur (180 Minuten) 6 C Prüfungsvorleistungen: mindestens 50 % der in den Hausaufgaben zu erreichenden Punkte sowie Anwesenheit bei mindestens der Hälfte der Übungstermine Lehrveranstaltung: Übung Experimentalphysik I 2 SWS Prüfungsanforderungen: Physikalische Größen (Dimensionen, Messfehler); Kinematik (Bezugsysteme, Bahnkurve); Dynamik (Newtonsche Gesetze, Bewegungsgleichungen, schwere und träge Masse); Erhaltungssätze für Energie, Impuls und Drehimpuls; Stöße; Zentralkraftproblem; Schwingungen (harmonischer Oszillator, Resonanz); Beschleunigte Bezugsysteme und Trägheitskräfte; Starre Körper (Drehmoment, Trägheitsmoment, Steinersche Satz). Deformierbare Medien und Kontinuumsmechanik (Hooke'sche Gesetz, hydrostatisches Gleichgewicht, Bernoulli). Die drei Hauptsätze der Thermodynamik; Wärme, Energie, Entropie, Temperatur, und Druck; Zustandsgleichungen; Thermodynamische Gleichgewichte und PhasenübergängeM; Kreisprozess; Ideale und reale Gase. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]:

Deutsch	apl. Prof. Dr. Susanne Schneider
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

6 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy.2102: Experimentalphysik II: Elektromagnetismus English title: Experimental Physics II: Electromagnetism Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit physikalischen Präsenzzeit: 84 Stunden Zusammenhängen und ihrer Anwendung im Experiment vertraut. Sie sollten • die grundlegenden Begriffe und Methoden der Elektrostatik und -dynamik Selbststudium: 96 Stunden anwenden können; • einfache Feldverteilungen modellieren und mit den erlernten mathematischen Techniken behandeln können: • die Grundlagen der guten wissenschaftlichen Praxis anwenden können; • im Team experimentelle Aufgaben lösen können. Lehrveranstaltung: Vorlesung Experimentalphysik II (Vorlesung) 4 SWS Prüfung: Klausur (180 Minuten) 6 C Prüfungsvorleistungen: mindestens 50 % der in den Hausaufgaben zu erreichenden Punkte sowie Anwesenheit bei mindestens der Hälfte der Übungstermine Lehrveranstaltung: Übung Experimentalphysik II 2 SWS Prüfungsanforderungen: Elektro- und Magnetostatik; Elektrisches Feld, Potential und Spannung; Vektoranalysis, Sätze von Gauß und Stokes; Elektrischer Strom und Widerstand, Stromkreise; Randwertprobleme und Multipolentwicklung; Biot-Savartsches Gesetz; Dielektrische Polarisation und Magnetisierung; Induktion; Schwingkreise; Maxwell-Gleichungen; Elektromagnetische Potentiale; Teilchen in Feldern, Energie und Impuls; Elektromagnetische Wellen, beschleunigte Ladungen; Relativitätstheorie (relativistische Mechanik, Lorentzinvarianz der Elektrodynamik). **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine B.Phy.2101 und B.Phy.1301 Sprache: Modulverantwortliche[r]: Deutsch apl. Prof. Dr. Susanne Schneider Angebotshäufigkeit: Dauer: iedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalia Maximale Studierendenzahl: 40

Modul B.Phy.2103: Experimentalphysik III für 2FB: Wellen, Optik und Atomphysik

English title: Experimental Physics III for Two-Subject Students: Waves, Optics and Atomic Physics

6 C 6 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden...

- über strukturiertes Fachwissen zu Wellen, Optik und Atomphysik verfügen;
- die grundlegenden Unterschiede zwischen klassischer und quantenphysikalischer Beschreibung kennen;
- zentrale Fragestellungen auf der Basis solider Grundkenntnisse erläutern können;
- wichtige physikalische Konzepte darstellen können;
- verschiedenen Teilgebiete strukturell verknüpfen können.

Arbeitsaufwand:

Präsenzzeit:

84 Stunden

Selbststudium:

96 Stunden

Lehrveranstaltung: Vorlesung Experimentalphysik III für 2FB (Vorlesung)	4 SWS
Prüfung: Mündlich (ca. 30 Minuten)	6 C
Prüfungsvorleistungen:	
mindestens 50 % der in den Hausaufgaben zu erreichenden Punkte sowie Anwesenheit	
bei mindestens der Hälfte der Übungstermine	

Lehrveranstaltung: Übung Experimentalphysik III für 2FB

2 SWS

Prüfungsanforderungen:

Beherrschung und Anwendung der grundlegenden Begriffe, Modelle und Methoden aus dem Bereich der Wellen, Optik und Atomphysik: Wellengleichungen (elektromagnetische, akustische und mechanische Wellen), Wellenpakete (Superpositionsprinzip, Dispersionsrelation, Gruppen- und Phasengeschwindigkeit), geometrische Optik, optische Abbildung, Spiegel, Prismen, Linsen, optische Instrumente (Auge, Lupe, Mikroskop, Fernrohr), Reflexion, Transmission, Fermatsches Prinzip, Brechung, Absorption, Streuung (Rayleigh), Interferenz, Beugung, Huygensches Prinzip, Kohärenz, Polarisation;

Atommodelle (Demokrit, Dalton, Rutherford, Bohr, Kugelwolkenmodell),
Atomgröße, Atommassen, Schlüsselexperimente zum Teilchen- und
Wellencharakter elektromagnetischer Strahlung, Materiewellen, Heisenbergsche
Unbestimmtheitsrelation, Wasserstoffatom, Zeeman-Effekt, Stern-GerlachExperiment, Einstein-de-Haas-Effekt, Emmission und Absorption durch Atome
(Übergangswahrscheinlichkeiten, Auswahlregeln, Lebensdauern, Linienbreiten), Laser.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.2102
Sprache: Deutsch	Modulverantwortliche[r]: apl. Prof. Dr. Susanne Schneider
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	3
Maximale Studierendenzahl:	
40	

Georg-August-Universität Göttingen Modul B.WIWI-BWL.0001: Unternehmenssteuern I English title: Company Taxes I

Lernziele/Kompetenzen:

Mit Abschluss haben die Studierenden folgende Kompetenzen erworben:

- Benennung der zentralen Charakteristika des deutschen Steuersystems und vor diesem Hintergrund auf grundsätzliche Fragestellungen der betriebswirtschaftlichen Steuerlehre Antworten geben können,
- Kenntnis über die wesentlichen nationalen Ertrag- und Substanzsteuern, denen natürliche und juristische Personen ausgesetzt sind (Einkommensteuer, Körperschaftsteuer, Gewerbesteuer, Grundsteuer sowie die Umsatzsteuer),
- Kenntnis über Interdependenzen, die zwischen den genannten Steuerarten bestehen.
- Kenntnis über die wesentlichen Grundlagen der steuerlichen Gewinnermittlung,
- Identifikation von Anknüpfungspunkten der einzelnen Steuerarten in spezifischen Sachverhalten und steuerrechtliche Würdigung dieser Sachverhalte unter Berücksichtigung der Interdependenzen zwischen den Steuerarten,
- Würdigung von spezifischen Sachverhalten bezüglich ihrer Auswirkungen auf die steuerliche Gewinnermittlung.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

96 Stunden

2 SWS

Lehrveranstaltung: Unternehmenssteuern I (Vorlesung) Inhalte: Die Vorlesung soll den Studierenden einen Überblick über die für die Besteuerung natürlicher und juristischer Personen in Deutschland wichtigsten Ertrags- und Substanzsteuern vermitteln und ihnen bedeutende Regelungen der steuerlichen Gewinnermittlung aufzeigen. Im ersten Kapitel wird einleitend ein Überblick über das deutsche Steuersystem und relevante Fragestellungen der betriebswirtschaftlichen Steuerlehre gegeben, ehe sich das zweite Kapitel mit der Einkommensbesteuerung natürlicher Personen auseinandersetzt. Kapitel drei widmet sich der Gewinnermittlung im Rahmen der Ertragsteuerbilanz. Im vierten Kapitel werden die Grundsteuer und bewertungsrechtliche Aspekte behandelt. Die Kapitel fünf und sechs setzen sich mit der Körperschaft- und der Gewerbesteuer auseinander. Die Vorlesung schließt in Kapitel sieben mit einer Vorstellung der Umsatzsteuer. Lehrveranstaltung: Unternehmenssteuern I (Übung) Inhalte:

Im Rahmen der begleitenden Großübung vertiefen, ergänzen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten.

Im Rahmen der begleitenden Tutorenübung vertiefen, ergänzen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten.

Insbesondere werden den Studierenden Übungsfälle präsentiert, mithilfe derer sie durch Berechnungen und Stellungnahmen zu einzelnen Sachverhalten verschiedene

2 SWS

2 SWS

Themenbereiche der Vorlesung verfestigen.

Inhalte:

Lehrveranstaltung: Unternehmenssteuern I (Tutorium)

Insbesondere werden den Studierenden Aufgaben präsentiert, die Berechnungen, Erläuterungen und Stellungnahmen umfassen.	
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis eines sicheren Umgangs mit den für die	
Besteuerung von natürlichen und juristischen Personen relevanten Steuerarten und	
zeigen, dass sie nationale steuerrechtliche Regelungen auf spezifische Sachverhalte	
anwenden können. Ferner erbringen die Studierenden den Nachweis über den Erwerb	
grundlegender Kenntnisse der steuerlichen Gewinnermittlung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0005 Jahresabschluss B.WIWI-OPH.0004 Finanzwirtschaft
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Oestreicher
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 4
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-BWL.0002: Interne Unternehmensrechnung English title: Cost and Management Accounting

Lernziele/Kompetenzen:

Die Studierenden verfügen nach dem erfolgreichen Abschluss des Moduls über Wissen zu den allgemeinen Aufgaben, Grundbegriffen und Instrumenten der internen Unternehmensrechnung. Zudem ist den Studierenden der Nutzen der internen Unternehmensrechnung für das Management bei der Lösung von Planungs-, Kontrollund Steuerungsaufgaben bekannt. Schwerpunktmäßig verfügen die Studierenden nach dem Abschluss des Moduls über Kompetenzen bezüglich der Konzeption, dem Aufbau und dem Einsatz operativer Kosten-, Leistungs- und Erfolgsrechnungssysteme.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

2 SWS

Lehrveranstaltung: Interne Unternehmensrechnung (Vorlesung) 2 SWS Inhalte: 1. Die Kosten- und Leistungsrechnung als Element der internen Unternehmensrechnung 2. Kalkulation der Kosten von Produkteinheiten 3. Kalkulation der Leistung von Produkteinheiten 4. Kalkulatorische Periodenerfolgsrechnung

Lehrveranstaltung: Interne Unternehmensrechnung (Tutorium)

5. Entwicklungslinien der Kosten- und Leistungsrechnung

Inhalte:

Im Rahmen des begleitenden Tutoriums vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten.

6 C Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Die Studierenden müssen grundlegende Kenntnisse im Bereich der internen Unternehmensrechnung nachweisen. Dieses beinhaltet, dass die Studierenden die Konzeption, den Aufbau und die Anwendung der grundlegenden Instrumente der internen Unternehmensrechnung theoretisch verstanden haben müssen. Darüber hinaus müssen sie in der Lage sein, die Instrumente der internen Unternehmensrechnung bei Fallstudien und Aufgaben anzuwenden und im Hinblick auf ihre Eignung zur Lösung von Managementaufgaben zu beurteilen.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.WIWI-OPH.0005 Jahresabschluss
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Stefan Dierkes
	Prof. Dr. Michael Wolff
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	3 - 4
Maximale Studierendenzahl: nicht begrenzt	

Modul B.WIWI-BWL.0003: Unternehmensführung und Organisation

English title: Management and Organization

6 C 4 SWS

Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage:

- Gegenstand, Ziel und Prozess der strategischen Planung zu beschreiben,
- Instrumente der Strategieformulierung auf ausgewählte Unternehmensfallstudien anzuwenden,
- Unternehmensstrategien, Wettbewerbsstrategien und Funktionsbereichsstrategien zu analysieren,
- die Grundlagen der Organisationsgestaltung und deren Stellhebel zu beschreiben.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

Lehrveranstaltung: Unternehmensführung und Organisation (Vorlesung) *Inhalte*:

Die Veranstaltung beschäftigt sich mit den Grundzügen des strategischen Managements und der Organisationsgestaltung. Grundlegende Ansätze, Theorien und Funktionen der Unternehmensführung und der Organisation werden betrachtet. Praktische Problemstellungen im Bereich der Unternehmensführung und Organisation werden analysiert, wobei wissenschaftlich fundierte Handlungsempfehlungen zur Lösung dieser Problemstellungen entwickelt werden. Die Veranstaltung ist in folgende Themenbereiche gegliedert:

1. Unternehmensverfassung / Corporate Governance

Grundfragen und Ziele der Unternehmensverfassung, gesellschafts-rechtlichen Grundstrukturen, Arbeitnehmereinfluss und Mitbestimmung, Ziel, Funktionsprinzip und Regelungsbereiche des deutschen Corporate Governance Codex

2. Grundlagen des strategischen Managements

Ziele des strategischen Managements, theoretischen Ansätze des strategischen Managements

3. Ebenen und Instrumente der Strategieformulierung

Kenntnis und Anwendung von Konzepten und Instrumenten auf Gesamtunternehmens-, Wettbewerbs- und Wertschöpfungsebene

4. Strategieimplementierung

Schritte zur operativen Umsetzung einer Strategie, Steuerung strategischer Ziele mit Hilfe der Balanced Scorecard sowie notwendige Prozessschritte zur Erstellung und Stärken und Schwächen

5. Begrifflichkeiten und Stellhebel der Organisationsgestaltung

Funktionaler und institutioneller Organisationsbegriff, Gründe und Arten der Arbeitsteilung, organisatorische Gestaltungsprobleme, Organisationseinheiten

6. Stellhebel der Organisationsgestaltung und deren Wirkung

2 SWS

I		1
Stellhebel der Organisationsgestaltung und ihre Ausprägungen, Vor- und Nachteile sowie Anwendungsbedingungen		
Prüfung: Klausur (90 Minuten)		6 C
Lehrveranstaltung: Fallstudienübung Unternehmensführung und Organisation (Übung) Inhalte: In der Übung werden die Vorlesungsinhalte vertieft und eine Anleitung zum Lösen von Klausuraufgaben gegeben. Hierbei liegt der Fokus auf dem Transfer von theoretischem Wissen in praktisches Handeln sowie die Schulung von Problemlösekompetenzen bei Fragestellungen mit unterschiedlicher Komplexität.		2 SWS
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis, dass sie mit den Inhalten der Veranstaltung vertraut sind. Sie zeigen, dass sie die vermittelten Theorien und grundlegenden Konzepte benennen und erläutern können. Weiterhin sollen sie die Theorien und Konzepte auf konkrete Fälle anwenden sowie auch kritisch reflektieren können.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Indre Maurer	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 4	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen Modul B.WIWI-BWL.0004: Produktion und Logistik English title: Production and Logistics	6 C 4 SWS
 Lernziele/Kompetenzen: Die Studierenden können Produktions- und Logistikprozesse in das betriebliche Umfeld einordnen, können die Teilbereiche der Logistik differenzieren und charakterisieren, kennen die Grundlagen der Produktionsprogrammplanung, können mit Hilfe der linearen Optimierung Produktionsprogrammplanungsprobleme lösen und die Ergebnisse im betrieblichen Kontext interpretieren, kennen die Grundlagen und Zielgrößen der Bestell- und Ablaufplanung, kennen die Teilbereiche der Distributionslogistik und können diese differenziert in den logistischen Zusammenhang setzen, können verschiedene Verfahren der Transport- und Standortplanung auf einfache Probleme anwenden. 	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Produktion und Logistik (Vorlesung) Inhalte: Die Vorlesung gibt einen Überblick über betriebliche Produktionsprozesse und zeigt die enge Verzahnung von Produktion und Logistik auf. Es werden Methoden und Planungsmodelle vorgestellt, mit denen betriebliche Abläufe effizient gestaltet werden können. Insbesondere wird dabei auf die Bereiche Produktions- und Kostentheorie, Produktionsprogrammplanung mit linearer Programmierung, Beschaffungs- und Produktionslogistik sowie Distributionslogistik eingegangen.	2 SWS
Lehrveranstaltung: Produktion und Logistik (Tutorium) Inhalte: In den Tutorien werden dazu die Methodenanwendungen vermittelt, vor allem Simplex- Algorithmus, Gozinto-Graphen und Verfahren zur Bestellplanung, Ablaufplanung, Transport- und Standortplanung.	2 SWS
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung Kenntnisse in den folgenden Bereichen nach:

- Produktions- und Kostentheorie
- Produktionsprogrammplanung
- Bereitstellungsplanung/Beschaffungslogistik
- Durchführungsplanung/Produktionslogistik
- Distributionslogistik
- Simulation und Visualisierung von Produktions- und Logistikprozessen
- Anwendung grundlegender Algorithmen des Operations Research und der linearen Optimierung auf Probleme der oben genannten Bereiche.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0004 Mathematik
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jutta Geldermann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-BWL.0005: Marketing English title: Marketing Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage, die Ziele, die Rahmenbedingungen und die Entscheidungen bei der Ausgestaltung 56 Stunden der Absatzpolitik zu erläutern und anzuwenden. Darüber hinaus beherrschen sie Selbststudium: 124 Stunden die Grundlagen des Konsumentenverhaltens und der Marktforschung. Aufbauend auf den bereits erworbenen Kompetenzen sind sie ferner in der Lage, strategische Entscheidungen eines Unternehmens zu analysieren sowie theoriebasiert die Wirkungen der absatzpolitischen Instrumente zu beurteilen. Lehrveranstaltung: Marketing (Vorlesung) 2 SWS Inhalte: 1. Begriffliche Grundlagen des Marketings 2. Marketingentscheidungen, Managementzyklus 3. Analyse des Käuferverhaltens • Grundlagen des Käuferverhaltens · Kaufprozesse bei Konsumenten · Kaufprozesse in Unternehmen 4. Marktforschung · Grundlagen der Marktforschung · Methoden der Datenerhebung · Methoden der Datenauswertung 5. Marketingziele und -strategien 6. Produkt- und Programmpolitik Grundlagen

7. Preispolitik

Grundlagen

Markenpolitik

- · Preissetzung mittels Marginalanalysen
- · Preisdifferenzierung und Preisbündelung
- 8. Kommunikationspolitik

· Entscheidungsfelder

- Definition der Kommunikationspolitik
- Kommunikationsprozess
- 9. Distributionspolitik
 - · Akquisitorische Distribution
 - · Physische Distribution

Lehrveranstaltung: Marketing (Übung)

2 SWS

Maximale Studierendenzahl:

nicht begrenzt

Inhalte: Vertiefung der Vorlesungsinhalte mit Fallbeispielen und Übungen		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsanforderungen: Nachweis von Kenntnissen zur Ausgestaltung des Absatzmarketings, Verständnis von strategischen Entscheidungen, Grundlagen der Marktforschung und des Konsumentenverhaltens.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Waldemar Toporowski	
Angebotshäufigkeit: jedes Semester; im SoSe als Aufzeichnung	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 4	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-BWL.0006: Finanzmärkte und Bewertung English title: Capital Markets and Valuation Lernziele/Kompetenzen: Arbeitsaufwand: Mit dem erfolgreichen Abschluss des Moduls haben die Studierenden folgende Präsenzzeit: Kompetenzen erworben:

- sie kennen die Besonderheiten verschiedener Finanzinstrumente wie Anleihen, Forwards, Optionen und Aktien kennen und können diese erklären,
- sie verstehen verschiedene Verfahren zur Bewertung von Finanztiteln und können diese kritisch reflektierend beurteilen,
- sie können die Implikationen der verschiedenen Bewertungsverfahren für das Asset Management und für das Verhalten von Investoren herausarbeiten und erklären.
- · sie kennen wesentliche Unterschiede zwischen Finanzinvestitionen und Realinvestitionen und können die sich daraus ergebenden Unterschiede bei der Bewertung erklären und kritisch beurteilen,
- sie können ein gegebenes Bewertungsproblem in den Kontext der in der Veranstaltung vorgestellten Verfahren einordnen und selbstständig analysieren.

56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Finanzmärkte und Bewertung (Vorlesung) Inhalte: 1. Einführung in die Bewertung von Finanzinstrumenten und grundlegende Bewertungsprinzipien	2 SWS
Bewertung von Anleihen: Statische Duplikation bei sicheren Zahlungen	
Bewertung von Forwards und Futures: Statische Duplikation bei unsicheren Zahlungen	
Bewertung von Optionen: Dynamische Duplikation bei unsicheren Zahlungen	
5. Bewertung von Aktien: Duplikation auf Basis eines äquivalenten bewerteten Risikos	
5.1. Portfoliotheorie	
5.2. Capital Asset Pricing Model (CAPM)	
6. Bewertung von Realinvestitionen	
Prüfung: Klausur (90 Minuten)	6 C
Lehrveranstaltung: Finanzmärkte und Bewertung (Übung) Inhalte:	2 SWS
Im Rahmen der begleitenden Übung vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten.	

Prüfungsanforderungen:

- Nachweis von Kenntnissen über Ähnlichkeiten und Unterschiede von verschiedenen Klassen von Finanzinstrumenten, wie Anleihen, Aktien und Derivaten.
- Nachweis von Kenntnissen über die zentralen Konzepte der Bewertung von Finanzinstrumenten (Duplikationsprinzip, No-Arbitrage Bewertung, Gleichgewichtsbewertung).
- Fähigkeit zur Analyse von Finanzprodukten und Realinvestitionen.
- Fähigkeit zur Umsetzung einer konkreten Bewertung von Finanzprodukten und Realinvestitionen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0004 Einführung in die Finanzwirtschaft
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Olaf Korn
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Module B.WIWI-BWL.0089: Corporate Financial Management 6 C 4 WLH

Learning outcome, core skills: Workload: After successful completion of the course students will be able to: Attendance time: 56 h • understand and analyze different financial instruments (debt, equity, and hybrids) Self-study time: available to a corporation, 124 h · describe the debt characteristics and understand the global environment in which debt is issued. · critically assess different financing alternatives, • demonstrate a sound knowledge of different capital structure theories, · understand and critically assess the process of capital structure optimization, understand the components of the cost of capital and why it might change over • critically apply the obtained knowledge to several realistic problem sets. 2 WLH Course: Corporate Financial Management (Lecture) Contents: 1. Introduction to corporate financial management What are the advantages of the corporate form? What is the goal of corporate financial management? What actions can managers take to increase shareholder value? 2. Equity financing Repetition: Dividend discount model for common stocks CAPM Theories about dividend payments and stock repurchases Understanding the IPO process and theories explaining underpricing 3. Debt financing Review: corporate bond valuation Yield to maturity and yield curves Covenants, bond markets and call provisions Securitization, MBS and the financial crisis 4. Capital structure & cost of capital Capital structure theories: MM (w/ taxes), trade-off, pecking-order, etc. Determining the cost of debt (before and after tax, w/ floatation costs) Determining the cost of equity (beta (un-)levering, w/ & w/o taxes Calculating the WACC Hybrid financing Valuation and use of Preferred stock, warrants & convertibles **Examination: Written examination (90 minutes)** 6 C 2 WLH Course: Corporate Financial Management (Tutorial)

In the accompanying practice sessions students deepen and broaden their knowledge from lectures by applying theories and methods to real-world problem sets

Contents:

Examination requirements:

- Demonstrate a profound knowledge of equity, debt and hybrid instruments available to corporations,
- Document an understanding of how strategic financing decisions affect company value,
- Demonstrate the ability to analyze and evaluate the effect of capital structure changes on the cost of capital and on company value,
- Show a profound understanding of methods and techniques to manage a company's financing needs and tactical financing decisions.

Admission requirements: none	Recommended previous knowledge: B.WIWI-OPH.0004 Einführung in die Finanzwirtschaft B.WIWI-BWL.0006 Finanzmärkte und Bewertung
Language: English	Person responsible for module: Dr. Alexander Merz
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: not limited	

Georg-August-Universität Göttingen Modul B.WIWI-OPH.0004: Einführung in die Finanzwirtschaft English title: Introduction to Finance

Lernziele/Kompetenzen: Mit dem erfolgreichen Abschluss des Moduls haben die Studierenden folgende Kompetenzen erworben: sie verstehen die verschiedenen Funktionen des Finanzbereichs eines

sie verstehen die verschiedenen Funktionen des Finanzbereichs eines Unternehmens gemäß der traditionellen und der modernen Betrachtungsweise und können diese erklären,

- sie kennen die Grundbegriffe der betrieblichen Finanzwirtschaft und können diese anwenden,
- sie kennen die ökonomischen Grundlagen der Investitionstheorie und können diese kritisch reflektierend beurteilen,
- sie verstehen wesentliche Verfahren der Investitionsrechnung (Amortisationsrechnung, Kapitalwertmethode, Endwertmethode, Annuitätenmethode, Methode des internen Zinsfußes) und können diese erklären und anwenden.
- · sie können Entscheidungsprobleme unter Unsicherheit strukturieren,
- sie kennen verschiedene Finanzierungsformen, können diese voneinander abgrenzen sowie deren Vor- und Nachteile beurteilen,
- sie kennen die Konzepte der Kapitalkosten sowie des Leverage und können deren Bedeutung für die Finanzierung von Unternehmen aufzeigen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

Lehrveranstaltung: Einführung in die Finanzwirtschaft (Vorlesung) Inhalte:	2 SWS
 Die traditionelle Betrachtungsweise der Finanzwirtschaft Die moderne Betrachtungsweise der Finanzwirtschaft Grundlagen der Investitionstheorie Methoden der Investitionsrechnung Darstellung und Lösung von Entscheidungsproblemen unter Unsicherheit Finanzierungskosten einzelner Finanzierungsarten Kapitalstruktur und Kapitalkosten bei gemischter Finanzierung 	
Lehrveranstaltung: Einführung in die Finanzwirtschaft (Tutorium) Inhalte: Im Rahmen der begleitenden Tutorien vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten.	2 SWS
Prüfung: Klausur (90 Minuten)	6 C

zur fachlich korrekten Verwendung dieser Grundbegriffe.

Nachweis von Kenntnissen über die Funktionen des Finanzbereichs eines Unternehmens gemäß der traditionellen und modernen Betrachtungsweise.
Nachweis der Kenntnis der finanzwirtschaftlichen Grundbegriffe und der Fähigkeit

Prüfungsanforderungen:

- Nachweis des Verständnisses der ökonomischen Grundlagen der Investitionstheorie.
- Fähigkeit zur Darstellung, inhaltlichen Abgrenzung und korrekten Anwendung der wesentlichen Verfahren der Investitionsrechnung.
- Nachweis, dass das Grundkonzept zur Strukturierung und Lösung von Entscheidungsproblemen unter Unsicherheit verstanden wurde.
- Darlegung des Verständnisses der verschiedenen Finanzierungsformen sowie der Fähigkeit zu deren Beurteilung.
- Nachweis der Kenntnis der Konzepte der Kapitalkosten sowie des Leverage und deren Bedeutung.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Olaf Korn Prof. Dr. Jan Muntermann
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-OPH.0005: Jahresabschluss English title: Financial Accounting Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden haben nach dem erfolgreichen Abschluss des Moduls ein Verständnis Präsenzzeit: der ökonomischen Rolle der Unternehmensberichterstattung und deren Verrechtlichung 56 Stunden durch handelsrechtliche (HGB) wie internationale Vorschriften (IFRS). Sie sind vertraut Selbststudium: mit Handlungszielen und Informationsinteressen von Stakeholdern an Unternehmen. 124 Stunden Studierende sind in der Lage, Aufstellungs-. Offenlegungs- und Prüfungsvorschriften für Jahres- und Konzernabschlüsse anzuwenden und Fragestellungen des bilanziellen Ansatzes, der Bewertung wie des Ausweises zu lösen. Studierende sind mit den grundlegenden Techniken der Jahresabschlussanalyse vertraut. Sie können die deutschen und englischen Fachbegriffe des externen Rechnungswesens sicher

Lehrveranstaltung: Jahresabschluss (Vorlesung)	2 SWS
Inhalte:	
Gegenstand und Zweck des betrieblichen Rechnungswesens	
2. Einführung in die Finanzbuchhaltung	
3. Der Jahresabschluss	
4. Bilanz: Darstellung der Vermögenslage	
5. Erfolgsrechnung: Darstellung der Ertragslage	
6. Jahresabschlussanalyse	
Lehrveranstaltung: Tutorium Jahresabschluss (Übung)	2 SWS
Inhalte:	
Im Rahmen der Tutorien vertiefen und erweitern die Studierenden die in der	
Vorlesung erworbenen Kenntnisse und Fähigkeiten besonders in Hinblick auf die	
Finanzbuchhaltung.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen: · Darlegung eines übergreifenden Verständnisses grundlegender buchhalterischer

- Fragestellungen,
- · Nachweis von Kenntnissen zur Buchführung durch Anwendung der Kenntnisse auf gegebene Geschäftsvorfälle,
- Darlegung eines übergreifenden Verständnisses von Bilanzierung und Bewertung nach HGB sowie IFRS,
- · Nachweis von Kenntnissen zur Unternehmenspublizität und Jahresabschlussanalyse.

voneinander abgrenzen.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Jörg-Markus Hitz

	Dr. Melanie Klett
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	6 C
Modul B.WIWI-OPH.0007: Mikroökonomik I	5 SWS
English title: Microeconomics I	

Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung der Veranstaltung sind Studierende der Lage:

- die Grundlagen der Haushaltstheorie zu verstehen und die optimalen Entscheidungen der Haushalte selbstständig zu ermitteln,
- die Grundlagen der Unternehmenstheorie zu verstehen und die optimale Entscheidung der Unternehmen selbstständig zu ermitteln,
- grundlegende mikroökonomische Zusammenhänge von Angebot und Nachfrage zu verstehen und intuitiv wiederzugeben,
- mathematische und andere analytische Konzepte zur Lösung mikroökonomischer Fragestellung selbstständig anzuwenden,
- selbständig Lösungsansätze für komplexe mikroökonomische Fragestellungen zu entwickeln.

Arbeitsaufwand:

Präsenzzeit: 70 Stunden Selbststudium:

110 Stunden

Lehrveranstaltung: Mikroökonomik I (Vorlesung)

Inhalte:

Haushaltstheorie

- Das Budget: Herleitung der Budgetrestriktion von Haushalten in Abhängigkeit des Einkommens und aller Güterpreise.
- Präferenzen und Nutzenfunktionen: Mathematische und grafische Herleitung verschiedener Präferenzrelationen und deren Eigenschaften. Grafische und mathematische Darstellung verschiedener Nutzenunktionen; Einführung des Grenznutzen und der Grenzrate der Substitution.
- Nutzenmaximierung und Ausgabenminimierung: Grafische und mathematisch analytische Herleitung der optimalen Entscheidung der Haushalte anhand des Lagrange-Optimierungsverfahrens.
- Die Nachfrage: Herleitung der Nachfragefunktion der Haushalte. Einführung von Einkommens-Konsumkurve und Engel-Kurve sowie Preis-Konsumkurve am Beispiel verschiedener Güterklassen und Präferenzen.
- Einkommens- und Preisänderungen: Analyse der Änderung der optimalen Entscheidung bei Änderung von Einkommen und Preisen mithilfe grafischer und mathematisch analytischer Methoden. Analyse von Einkommens- und Substitutionseffekt.
- Das Arbeitsangebot: Herleitung des Arbeitsangebots und Einbeziehung in das Optimierungsproblems des Haushaltes. Mathematisch analytische Betrachtung der Änderung des Arbeitsangebots bei Änderung des Lohns.

Unternehmenstheorie

 Technologie und Produktionsfunktion: Einführung und Definition grundlegender Begriffe der Unternehmenstheorie. Grafische und mathematische Herleitung verschiedener Technologien und Produktionsfunktionen.

- Gewinnmaximierung: Grafische und mathematische Betrachtung der Gewinnmaximierung eines Unternehmens. Komparative Statik der Änderung der optimalen Entscheidung bei Änderung der Faktorpreise. Kurzfristige und langfristige Gewinnmaximierung.
- Kostenminimierung: Einführung der Kostengleichung und Isokostenlinie als Teilproblem der optimalen Entscheidung des Unternehmens. Analytische Kostenminimierung anhand des Lagrange-Verfahrens.
- Kostenkurven: Zusammenhang von Kostenfunktion und Skalenerträgen.
 Einführung von Durchschnitts- und Grenzkosten. Unterscheidung von kurzfristiger und langfristiger Kostenfunktion.
- Der Wettbewerbsmarkt: Kombination der Ergebnisse aus Haushalts- und Unternehmenstheorie zu einem gleichgewichtigen Wettbewerbsmarkt. Grafische Wohlfahrtsanalyse.
- *Das Monopol:* Einführende Analyse von Gewinnmaximierung im Monopol einschließlich Wohlfahrtsbetrachtung.

Lehrveranstaltung: Tutorenübung Mikroökonomik I (Übung)	2 SWS
Inhalte:	
In den Tutorien werden die Inhalte der Vorlesung anhand von Aufgaben wiederholt und	
vertieft.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- Nachweis fundierter Kenntnisse der Haushalts- und Unternehmenstheorie durch intuitive und analytische Beantwortung von Fragen,
- Nachweis der Fähigkeit zur grafischen und mathematischen Herleitung der optimalen Güternachfrage der Haushalte, der Anwendung von komparativer Statik sowie der Analyse von Einkommens- und Substitutionseffekten,
- Nachweis der Fähigkeit zur grafischen und mathematischen Herleitung der gewinnoptimierenden Entscheidung von Unternehmen, der damit verbundenen minimalen Kosten sowie der Anwendung von komparativer Statik zur Analyse der Änderung von Faktorpreisen,
- Nachweis der Fähigkeit zur grafischen und mathematischen Analyse des Marktgleichgewichts und der allgemeinen Wohlfahrt.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Claudia Keser, Prof. Dr. Udo Kreickemeier,
	Prof. Dr. Robert Schwager, Prof. Dr. Sebastian
	Vollmer
Angebotshäufigkeit:	Dauer:
jedes Semester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	1 - 2
Maximale Studierendenzahl:	

nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-OPH.0008: Makroökonomik I English title: Macroeconomics I

Lernziele/Kompetenzen:

Die Studierenden:

- verstehen den Wirtschaftsprozess als Kreislauf und können die Beziehungen zwischen den einzelnen Sektoren darstellen,
- sind in der Lage, das Bruttoinlandsprodukt über verschiedene Wege zu erfassen und abzugrenzen und seine Bedeutung als Wohlfahrtsmaß eines Landes kritisch zu reflektieren,
- kennen die Funktionen und die volkswirtschaftliche Bedeutung von Geld und sind mit der Messung und den Folgen von Inflation vertraut,
- kennen verschiedene volkswirtschaftliche Lehrmeinungen und können gesamtwirtschaftliche Modelle hierzu einordnen,

Lehrveranstaltung: Makroökonomik I (Vorlesung)

- sind in der Lage, die Wirkung wirtschaftspolitischer Maßnahmen anhand der verschiedenen Modelle zu analysieren und die sich dabei ergebenden Wirkungsunterschiede kritisch zu reflektieren,
- können die außenwirtschaftlichen Beziehungen einer Volkswirtschaft systematisch erfassen und die volkswirtschaftliche Bedeutung von dabei entstehenden Ungleichgewichten abwägend beurteilen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

2 SWS

6 C

Inhalte: Die Vorlesung bietet insbesondere einen Überblick über die Erfassung und Bewertung wirtschaftlicher Prozesse auf gesamtwirtschaftlichem Aggregationsniveau. Es wird die volkswirtschaftliche Bedeutung von Geld diskutiert und die Erreichung des gesamtwirtschaftlichen Gleichgewichts sowie die Wirkung wirtschaftspolitischer Maßnahmen anhand verschiedener Modellstrukturen analysiert. Die hinter den Modellen stehenden Annahmen werden unter Einbeziehung empirischer Erfahrungen kritisch hinterfragt. Schließlich werden Ansatzpunkte der Erfassung und der Rolle internationaler Wirtschaftsbeziehungen angesprochen. Lehrveranstaltung: Übung oder Tutorenübung Makroökonomik I (Übung) Inhalte: Im Rahmen der begleitenden Übung/Tutorium vertiefen die Studierenden die Kenntnisse aus der Vorlesung anhand ausgewählter theoretischer Fragestellungen.

Prüfungsanforderungen:

Prüfung: Klausur (90 Minuten)

- Nachweis von Kenntnissen über die Kreislaufanalyse sowie der Definition und Bedeutung des Bruttoinlandsprodukts sowie anderer gesamtwirtschaftlicher Größen,
- Nachweis von Kenntnissen über die Bedeutung von Geld sowie den Ursachen und der Wirkung von Inflation,

- die Studierenden zeigen, dass sie in der Lage sind, mit verschiedenen gesamtwirtschaftlichen Modellen analytisch und graphisch zu arbeiten, die dahinterstehenden Annahmen zu reflektieren sowie die sich ergebenden Unterschiede hinsichtlich der Wirkung wirtschaftspolitischer Maßnahmen darstellen und kritisch würdigen zu können,
- Nachweis von Kenntnissen über die systematische Erfassung der außenwirtschaftlichen Beziehungen einer Volkswirtschaft und von Kenntnissen über deren Bedeutung in modernen Ökonomien.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger, Prof. Dr. Krisztina Kis-Katos, Dr. Katharina Werner
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0001: Mikroökonomik II English title: Microeconomics II

Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung der Veranstaltung sind Studierende in der Lage:

- verschiedene Marktformen voneinander zu unterscheiden und deren Wohlfahrtseffekte zu analysieren,
- zwischen der Gleichgewichtsanalyse eines einzelnen Marktes und der Analyse des allgemeinen Gleichgewichts aller Märkte zu unterscheiden und selbstständig anzuwenden,
- das Prinzip intertemporaler Entscheidungen der Haushalte zu verstehen und in die optimale Entscheidung der Haushalte einzubeziehen,
- die grundlegenden Zusammenhänge von Risiko und Versicherungsmärkten zu verstehen und in die optimale Entscheidung der Haushalte einzubeziehen,
- die Grundlagen simultaner und sequentieller Spieltheorie zu verstehen und selbstständig anzuwenden,
- die Konsequenzen asymmetrischer Informationen für das Verhalten der Marktteilnehmer zu analysieren.

Arbeitsaufwand:

Präsenzzeit: 70 Stunden Selbststudium:

110 Stunden

Lehrveranstaltung: Mikroökonomik II (Vorlesung)

Inhalte:

- Marktgleichgewicht bei vollkommener Konkurrenz und im Monopol: Grafische Analyse des Marktgleichgewichts und der allgemeinen Wohlfahrt in Abhängigkeit von der Marktform.
- Monopolistische Preisdifferenzierung: Analyse von Preis-, Mengen- und Wohlfahrtseffekten.
- Allgemeines Gleichgewicht: Grafische Analyse des allgemeinen Marktgleichgewichts mithilfe der Edgeworth-Box. Definition des Gesetzes von Walras sowie des ersten und zweiten Satzes der Wohlfahrtsökonomik.
- Ersparnis und Investition: Mathematische und grafische Abhandlung der intertemporalen Budgetgleichung der Haushalte sowie der optimalen Konsum- und Produktionsentscheidungen.
- Risiko und Versicherung: Mathematische und grafische Analyse der Entscheidung von Haushalten unter Unsicherheit. Einführung der Erwartungsnutzenhypothese und der von-Neumann-Morgenstern-Nutzenfunktion.
- Oligopoltheorie: Mathematische und grafische Analyse von Cournot-, Stackelbergund Bertrand-Gleichgewicht.
- Spieltheorie: Spiele in Normalform. Bestimmung dominanter Strategien und Nash-Gleichgewicht. Sequentielle Entscheidungen. Analyse sequentieller Spiele mithilfe des Entscheidungsbaumes.
- Asymmetrische Information: Analyse des Verhaltens von Marktteilnehmern im Fall von asymmetrisch verteilter Information. Moralisches Risiko (Moral hazard) und adverse Selektion.

Lehrveranstaltung: Mikroökonomik II (Tutorium)	2 SWS
Inhalte:	
In den Übungen werden die Inhalte der Vorlesung anhand von Aufgaben wiederholt und	
vertieft.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- Aufgaben sind sowohl rechnerisch als auch grafisch und verbal intuitiv zu lösen,
- Nachweis grundlegender Kenntnisse des Wettbewerbsgleichgewichts eines Marktes und des allgemeinen Gleichgewichts, insbesondere der Rolle des Preises für die Markträumung,
- Nachweis der Fähigkeit zur grafischen und mathematischen Analyse verschiedener Marktformen und deren Wohlfahrtseffekte,
- Nachweis grundlegender Kenntnisse der Spieltheorie und Oligopoltheorie und der Fähigkeit der Bestimmung der optimalen Strategie der Marktteilnehmer,
- Nachweis der Fähigkeit zur Bewertung der Risikoeinstellung von Marktteilnehmern und der Konsequenzen für die optimale Entscheidung.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul B.WIWI-OHP.0007: Mikroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Claudia Keser, Prof. Dr. Udo Kreickemeier, Prof. Dr. Robert Schwager, Prof. Dr. Sebastian Vollmer
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0002: Makroökonomik II English title: Macroeconomics II

Lernziele/Kompetenzen:

Die Studierenden:

- verstehen die Zusammenhänge auf Arbeitsmärkten, kennen die Determinanten von Arbeitsangebot und Arbeitsnachfrage und können ein Arbeitsmarktgleichgewicht darstellen,
- sind in der Lage, bekannte gesamtwirtschaftliche Modelle durch die arbeitsmarkttheoretischen Erkenntnisse zu erweitern und dadurch lang- und kurzfristige Wirkungen wirtschaftspolitischer Maßnahmen zu unterscheiden,
- können die Zusammenhänge zwischen Inflation und Arbeitslosigkeit anhand der Phillips-Kurve darstellen und diese kritisch reflektieren,
- sind mit verschiedenen Wachstumsmodellen vertraut und kennen die Bedeutung von Wachstum für eine Volkswirtschaft,
- sind in der Lage, ein gesamtwirtschaftliches Modell durch die Beziehungen zum Ausland zu erweitern und anhand dieses Modells die Wirkung verschiedener wirtschaftspolitischer Maßnahmen zu diskutieren,
- kennen die Eigenschaften verschiedener Währungssysteme und können deren Vor- und Nachteile unter Einbeziehung ihres Einflusses auf die Wirkung wirtschaftspolitischer Maßnahmen beurteilen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Makroökonomik II (Vorlesung)	2 SWS
Inhalte:	
Die Vorlesung vertieft den Stoff des Moduls Makroökonomische Theorie I durch	
die Berücksichtigung verschiedener Erweiterungen. Einen Schwerpunkt bildet	
dabei die Diskussion arbeitsmarkttheoretischer Zusammenhänge, die in bekannte	
gesamtwirtschaftliche Modelle einbezogen werden, um kurz- und langfristige	
Wirkungen wirtschaftlicher Maßnahmen unterscheiden zu können. Weitere	
Schwerpunkte sind die Analyse von Wirtschaftswachstum sowie mikroökonomischer	
Fundierungen makroökonomischer Annahmen. Schließlich werden wirtschaftspolitische	
Maßnahmen in offenen Volkswirtschaften im klassischen und keynesianischen	
Kontext analysiert und deren Wirkung in verschiedenen Währungssystemen diskutiert.	
Aus diesen Überlegungen werden Aussagen über die Geeignetheit verschiedener	
Währungssysteme abgeleitet, wobei auch auf die Europäische Währungsunion	
eingegangen wird.	
Lehrveranstaltung: Makroökonomik II (Übung)	2 SWS
Inhalte:	
Im Rahmen der begleitenden Übung/Tutorium vertiefen die Studierenden die Kenntnisse	
aus der Vorlesung anhand ausgewählter theoretischer Fragestellungen.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- Nachweis von Kenntnissen über arbeitsmarkttheoretische Zusammenhänge und den Modifikationen gesamtwirtschaftlicher Modelle durch deren Berücksichtigung,
- Nachweis der Kenntnis und souveränen Handhabung neoklassischer und keynesianischer Gütermarkt-Hypothesen,
- die Studierenden sind in der Lage, die Zusammenhänge zwischen Inflation und Arbeitslosigkeit zu begründen, theoretisch darzustellen und zu diskutieren,außerdem kennen sie Wachstumsmodelle und deren Bedeutung für die Volkswirtschaften.
- Nachweis von Kenntnissen über die Wirkungsweise verschiedener Währungssysteme und einer Währungsunion,
- Nachweis der Kenntnis und souveränen Anwendung des Mundell-Fleming-Modells zur Analyse der Wirkungen verschiedener wirtschaftspolitischer Maßnahmen für eine offene Volkswirtschaft bei unterschiedlichen Wechselkurssystemen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0008 Makroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger, Prof. Dr. Krisztina Kis-Katos, Dr. Katharina Werner
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0003: Einführung in die Wirtschaftspolitik English title: Foundations of Economic Policy 6 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden:

- · kennen verschiedene Träger und Handlungsoptionen von Wirtschaftspolitik,
- kennen unterschiedliche Zieldimensionen und -begründungen für Wirtschaftspolitik,
- · kennen theoretische Grundkonzepte im Bereich der Konjunkturpolitik,
- · kennen Möglichkeiten und Grenzen antizyklischer Fiskal- und Geldpolitik,
- kennen grundlegende Bestimmungsgrößen für Wirtschaftswachstum und Strukturwandel, sowie für Struktur- und Wachstumsprobleme,
- haben ein Grundverständnis verschiedener wirtschaftspolitischer Bereiche, wie zum Beispiel der Arbeitsmarktpolitik, Sozialpolitik, Außenhandelspolitik, Fiskalpolitik (Wachstums- und Konjunkturpolitik), Geldpolitik, gerechten Einkommensverteilung, Umwelt- und Nachhaltigkeitspolitik,
- kennen aktuelle Anwendungsbezüge wirtschaftspolitischer Konzepte.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

2 SWS

Lehrveranstaltung: Einführung in die Wirtschaftspolitik (Vorlesung) Inhalte:

Diese Vorlesung soll die theoretischen Grundlagen der Wirtschaftspolitik vermitteln und verschiedene (Anwendungs-)Bereiche anhand aktueller wirtschaftspolitischer Themen aufzeigen.

Zum Einstieg in die Thematik, werden der aktuelle Konjunkturausblick und aktuelle, wirtschaftspolitische Schlaglichter mit den Studierenden besprochen. Wirtschaftspolitik bezeichnet zielgerichtete Eingriffe in den Bereich der Wirtschaft durch dazu legitimierte Instanzen. Es wird daher zunächst mit den Studierenden diskutiert, welche Marktgegebenheiten einen Staatseingriff rechtfertigen und welche institutionellen Rahmenbedingungen der Wirtschaftspolitik zugrunde liegen.

Daran anschließend orientieren sich die Mehrzahl der Vorlesungen an verschiedenen Zielen der Wirtschaftspolitik, insbesondere gemäß des Stabilitätsund Wachstumsgesetzes. Bestimmte Ziele dieses Gesetztes sowie ausgesuchte
Zielerweiterungen werden einzeln und ausführlich in verschiedenen Vorlesungseinheiten behandelt. Folgende Themenbereiche der Wirtschaftspolitik können dabei Bestandteil der Vorlesung sein: Arbeitsmarktpolitik, Sozialpolitik, Außenhandelspolitik, Fiskalpolitik (Wachstums- und Konjunkturpolitik), Geldpolitik, gerechte Einkommensverteilung,
Umwelt- und Nachhaltigkeitspolitik.

Die behandelten Ziele der Wirtschaftspolitik werden zudem aus der Perspektive der politischen Ökonomik reflektiert.

Zum Abschluss der Veranstaltung werden aktuelle wirtschaftspolitische Themen anhand der gelernten Theorien und Inhalte besprochen.

Lehrveranstaltung: Einführung in die Wirtschaftspolitik (Übung) *Inhalte*:

Die Übung ist mit der Vorlesung des Moduls inhaltlich abgestimmt. In der Übung werden die Vorlesungsinhalte in ausgewählten Bereichen vertieft und ergänzt.	
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
In der Klausur sollen die erlernten Inhalte und Konzepte wiedergeben und erklärt	
werden. Dies kann, je nach Inhalt, auch rechnerisch und grafisch geschehen.	
Darüber hinaus müssen die Studierenden die theoretischen Konzepte auf aktuelle	
wirtschaftspolitische Themen und Fragestellungen anwenden können.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.WIWI-OPH.0007 Mikroökonomik I,
	B.WIWI-VWL.0001 Mikroökonomik II,
	B.WIWI-OPH.0008 Makroökonomik I,
	B.WIWI-VWL.0002: Makroökonomik II,
	fachfremden Studierenden werden fundierte
	ökonomische Grundkenntnisse dringend empfohlen
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Kilian Bizer
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	4 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

Georg-August-Universität Göttingen

Modul B.WIWI-VWL.0004: Einführung in die Finanzwissenschaft

English title: Introduction to Public Finance

6 C 4 SWS

Lernziele/Kompetenzen:

Nach Abschluss des Moduls kennen die Teilnehmer die beiden grundlegenden Ansätze zur Erklärung staatlichen Handelns, Marktversagen und kollektive Entscheidungsfindung. Sie sind fähig, diese auf wichtige Gebiete des Staatshandelns anzuwenden. Sie verstehen, warum öffentlicher Güter und externe Effekte zu ineffizienten Entscheidungen führen. Sie kennen Grundlagen von Steuern und anderen staatlichen Instrumenten, und verstehen in Grundzügen, wie kollektive Entscheidungen in einer Demokratie getroffen werden.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Einführung in die Finanzwissenschaft (Vorlesung) Inhalte:

1. Der Staat im Überblick

Einführung in grundlegende Konzepte und Begriffe sowie unterschiedlicher Theorien zur Motivation für staatliches Handeln.

Ausgaben und Einnahmen des Staates

2. Öffentliche Güter: Grundlagen

Beschreibung der Eigenschaften öffentlicher Güter und analytische Herleitung der Bedingung für die effiziente Bereitstellung öffentlicher Güter. Nash-Gleichgewicht der privaten Bereitstellung öffentlicher Güter und Lindahl-Gleichgewicht.

Steuern

Definition verschiedener Abgabenarten sowie Einführung in Besteuerungsprinzipien und Steuertarife. Überblick über die wichtigsten Steuerarten und graphische sowie analytische Betrachtung der Inzidenz und Effizienz einer speziellen Verbrauchsteuer.

Öffentliche Güter: Anwendungen

Überblick über die deutschen Staatsausgaben nach Ausgabenarten und Aufgabenbereichen. Einführung in die Nutzen-Kosten-Analyse. Analytische Betrachtung von öffentlichen Gütern mit Überfüllungskosten mit Anwendung auf Staatsausgaben im demographischen Kontext sowie auf Hochschulen.

5. Externe Effekte und Umweltpolitik

Begriff des externen Effekts. Analytische Herleitung der optimalen Umweltsteuer sowie Beschreibung von Zertifikatlösungen (Kyoto-Protokoll, EU-Emissionshandel).

Entscheidungsverfahren und Organisation des Staates

6. Mehrheitswahl

Analytische Untersuchung des Medianwählertheorems sowie von Mehrheitsentscheidungen über öffentliche Güter.

7. Akteure der Politik

Untersuchung und graphische Darstellung des Parteienwettbewerbs anhand des Downs-Modells. Überblick über den politischen Einfluss von Interessengruppen und Lobbys. Analytische Betrachtung des Einflusses der Bürokratie auf das Staatsbudget.

8. Fiskalföderalismus			
Einführung in die Föderalismustheorie (Dezentralisierungstheorem, Skalenerträge,			
Spillovers) und Überblick über die föderale Ordnung D			
Prüfung: Klausur (90 Minuten)	Prüfung: Klausur (90 Minuten)		
Lehrveranstaltung: Einführung in die Finanzwissenschaft (Übung)		2 SWS	
Inhalte:	,		
In der Übung werden die Inhalte der Vorlesung anhan	d von Aufgaben wiederholt und		
vertieft.			
Prüfungsanforderungen:			
Die Studierenden zeigen, dass sie die wichtigsten Urs	achen für Marktversagen und		
die Grundlagen demokratischer Entscheidungsfindung	g kennen und mit diesem Wissen		
Probleme lösen können. Dazu werden mehrere Aufga	Probleme lösen können. Dazu werden mehrere Aufgaben gestellt, in denen die		
Studierenden Fragen zu Modellen beantworten müssen, die sich auf den Inhalt von			
Vorlesung oder Übung beziehen. Auch einfaches institutionelles und Faktenwissen wird			
verlangt.			
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:		
keine	B.WIWI-OPH.0008 Mikroökonomik	c I	
Sprache:	Modulverantwortliche[r]:		
Deutsch	Prof. Dr. Robert Schwager		
Angebotshäufigkeit:	Dauer:		
jedes Sommersemester	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:		
zweimalig	3 - 6		
Maximale Studierendenzahl:			

nicht begrenzt

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen English title: Introduction to International Economics

Lernziele/Kompetenzen:

Die Studierenden:

- kennen verschiedene Ursachen für die Teilnahme eines Landes an der internationalen Arbeitsteilung,
- können verschiedene Ursachen für den relativen Preisvorteil eine Landes theoretisch fundieren und deren wirtschaftspolitische Konsequenzen darstellen,
- ind mit den Wohlfahrtswirkungen von Außenhandel vertraut und können deren gesellschaftlichen Folgen reflektieren,
- kennen mögliche staatliche Instrumente zur Beeinflussung von Im- und Exporten und können die sich daraus ergebenden gesellschaftlichen Konsequenzen einzelstaatlich und weltwirtschaftlich bewerten.
- sind mit den Voraussetzungen und den Motiven einer multinationalen Unternehmertätigkeit vertraut,
- haben einen Überblick über die verschiedenen Erscheinungsformen von Devisenmärkten und den Motiven der dort handelnden Akteure und können die dabei bestehenden Zusammenhänge darstellen,
- sind vertraut mit verschiedenen Determinanten von Wechselkursen und k\u00f6nnen deren Relevanz kritisch reflektieren,
- verstehen die Auswirkungen von Wechselkursveränderungen für eine Volkswirtschaft,
- sind vertraut mit verschiedenen Wechselkursregimen und deren spezifischen Eigenschaften.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

2 SWS Lehrveranstaltung: Grundlagen der internationalen Wirtschaftsbeziehungen (Vorlesung) Inhalte: Die Vorlesung besteht aus zwei Teilen. Teil 1 gibt einen Überblick über die Ursachen und die Folgen der internationalen Arbeitsteilung. Dabei werden verschiedene Theorien des Internationalen Handels analysiert und deren volkswirtschaftliche Konsequenzen dargestellt. Auch die Gründe für staatliche Interventionen in den Welthandel sowie deren ökonomische Konsequenzen werden analysiert. In Teil 2 werden die verschiedenen Erscheinungsformen von Devisenmärkten und die dort praktizierten Geschäfte untersucht und die Bestimmungsfaktoren von Wechselkursen diskutiert und theoretisch vertieft. Darüber hinaus wird die Validität der Theorien mittels empirischer Studien überprüft. 2 SWS Lehrveranstaltung: Grundlagen der internationalen Wirtschaftsbeziehungen (Übung) Inhalte: Im Rahmen der begleitenden Übung vertiefen die Studierenden die Kenntnisse aus der Vorlesung anhand ausgewählter theoretischer Fragestellungen.

Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Nachweis von: • Kenntnissen der Gründe für die internationale Arbeitsteilung sowie über Theorien	
zur Bestimmung relativer Preisvorteile eines Landes und über die ökonomischen	
Folgen des Außenhandels,	
 Kenntnissen über die Erscheinungsformen von Devisenmärkten und die dort 	
praktizierten Geschäfte sowie der Bestimmungsfaktoren von Wechselkursen.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0007 Mikroökonomik I, B.WIWI-OPH.0008 Makroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger Prof. Dr. Udo Kreickemeier
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-VWL.0006: Wachstum und Entwicklung English title: Economic Growth and Development Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Nach Abschluss dieses Moduls haben die Studierenden ein grundlegendes Verständnis für die Ursachen und Konsequenzen von langfristigem Wirtschaftswachstum 56 Stunden bekommen. Sie machen sich mit den Standardmodellen der Wachstumstheorie vertraut, Selbststudium: bewerten empirische Tests dieser, ziehen wirtschaftspolitische Implikationen und 124 Stunden reflektieren diese kritisch. Lehrveranstaltung: Wachstum und Entwicklung (Vorlesung) 2 SWS Inhalte: 1) Faktorakkumulation Kapitalakkumulation ii) Das Modell überlappender Generationen. iii) Bevölkerungswachstum und Wirtschaftswachstum iv) Der Demographische Übergang v) Humankapital: Gesundheit und Ausbildung vi) Warum fließt Kapital nicht von reichen zu armen Ländern? 2) Produktivität i) Wachstumszerlegung ii) Erfindungen und Ideen iii) Technologischer Fortschritt und Wachstum vor dem 18. Jahrhundert iv) Technologischer Fortschritt und Wachstum heute 3) Deep Determinants 2 SWS Lehrveranstaltung: Wachstum und Entwicklung (Übung) In der begleitenden Übung sollen die Studierenden anhand von Übungsaufgaben ihr Wissen zu den in der Vorlesung behandelten Themen vertiefen und erweitern. 6 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Nachweis: • fundierter Kenntnisse über die Ursachen und Konsequenzen langfristiger Einkommensunterschiede, • von grundlegendem Verständnis der behandelten Wachstumsmodelle, • von der Fähigkeit zum selbstständigen Lösen von Anwendungsbeispielen im Themenbereich der Vorlesung (theoretisch, graphisch und verbal).

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	B.WIWI-OPH.0008 Makroökonomik I B.WIWI-OPH.0006 Statistik
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Holger Strulik Dr. Katharina Werner
Angebotshäufigkeit: jedes zweite Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen		6 C
		6 SWS
Modul B.WIWI-VWL.0007: Einführung in die Ökonometrie English title: Introduction to Econometrics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Das Modul gibt eine umfassende Einführung in die ökonomischer Fragestellungen. Die Studierenden erle linearer Regressionsanalyse erste eigene empirische Die vermittelten Kompetenzen beinhalten die Spezifik Modellen, die Modellselektion und –schätzung. Darüb	Das Modul gibt eine umfassende Einführung in die ökonometrische Analyse ökonomischer Fragestellungen. Die Studierenden erlernen mit Hilfe der Methoden linearer Regressionsanalyse erste eigene empirische Studien durchzuführen. Die vermittelten Kompetenzen beinhalten die Spezifikation von ökonometrischen Modellen, die Modellselektion und –schätzung. Darüber hinaus werden Studierende mit ersten Problemen im Bereich der linearen Regression wie beispielsweise	
Fundament für weiterführende Ökonometrie Veranstal		
Lehrveranstaltung: Einführung in die Ökonometrie	e (Vorlesung)	2 SWS
 Einführung in lineare multiple Regressionsmodelle, Modellspezifikation, KQ-Schätzung, Prognose und Modellselektion, Multikollinearität und partielle Regression. Lineares Regressionsmodell mit normalverteilten Störtermen, Maximum-Likelihood-Schätzung, Intervallschätzung, Hypothesentests Asymptotische Eigenschaften des KQ- und GLS Schätzers Lineares Regressionsmodell mit verallgemeinerter Kovarianzmatrix, Modelle mit autokorrelierten und heteroskedastischen Fehlertermen, Testen auf Autokorrelation und Heteroskedastizität. 		
Lehrveranstaltung: Einführung in die Ökonometrie (Übung) Inhalte:		2 SWS
Die Großübung vertieft die Inhalte der Vorlesung anhand von Rechenaufgaben mit ökonomischen Fragestellungen und Datensätzen. Weiterhin werden theoretische Konzepte aus der Vorlesung detailliert hergeleitet.		
Lehrveranstaltung: Einführung in die Ökonometrie	(Tutorium)	2 SWS
Inhalte: Das Tutorium vertieft die Inhalte der Vorlesung und Großübung anhand von Rechenaufgaben. Ein großer Teil beinhaltet das Schätzen von ökonometrischen Modellen mit realen Daten und mit Hilfe des Softwareprogramms Eviews.		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsanforderungen: Die Studierenden zeigen, dass sie einfache ökonometrische Konzepte verstanden haben. Darüber hinaus sind sie in der Lage, diese auf reale wirtschaftliche Fragestellungen anzuwenden.		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik B.WIWI-OPH.0006 Statistik		

Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Helmut Herwartz
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.WIWI-VWL.0075: Dynamische Methoden in der Ökonomie	4 5005
English title: Economic Dynamics	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach Abschluss dieses Moduls:	Präsenzzeit:
 haben die Studierenden ein grundlegendes Verständnis der dynamischen Prozesse in der Ökonomie, 	56 Stunden Selbststudium:
• sie machen sich mit den mathematischen Methoden vertraut, wenden diese zur	124 Stunden
Lösung ökonomischer Fragestellungen an und reflektieren kritisch die Methoden und Resultate.	
Lehrveranstaltung: Dynamische Methoden in der Ökonomie (Vorlesung)	2 SWS
Inhalte: 1) Differentialgleichungen	
i. Existenz, Eindeutigkeit und weitere Eigenschaften von Lösungen	
ii. Lineare Differentialgleichungen erster Ordnung	
iii. Lösungsverfahren für Differentialgleichungen (u.a. Trennung der Variablen, Variation der Konstanten)	
iv. Systeme linearer Differentialgleichungen	
v. Differentialgleichungen höherer Ordnung	
vi. Stabilität	
2) Dynamische Optimierung: Variationsrechnung und optimale Kontrolle	
i. Notwendige und hinreichende Optimalitätsbedingungen	
ii. Transversalitätsbedingungen	
iii. Endlicher und unendlicher Zeithorizont	
iv. Anwendungen in der Ökonomie (u.a. neoklassisches Wachstumsmodell, Extraktion von Ressourcen)	
Lehrveranstaltung: Dynamische Methoden in der Ökonomie (Übung) Inhalte:	2 SWS
In der begleitenden Übung sollen die Studierenden anhand von Übungsaufgaben ihr	
Wissen zu den in der Vorlesung behandelten Themen vertiefen und erweitern.	
Prüfung: Mündliche Prüfung (20 Minuten) oder Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Nachweis:	
fundierter Kenntnisse der dynamischen Methoden in der Ökonomie,	
von grundlegendem Verständnis der behandelten Modelle, von der Fähigkeit zum selbständigen Läsen von Anwendungsheisnielen im	
 von der Fähigkeit zum selbständigen Lösen von Anwendungsbeispielen im Themenbereich der Vorlesung (theoretisch, graphisch und verbal). 	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Katharina Werner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Studierende, die das Modul B.WIWI-VWL.0075 absolviert haben, können im Masterstudiengang das Modul M.WIWI-VWL.0160 nicht belegen.

Georg-August-Universität Göttingen 6 C 2 SWS Modul B.WIWI-WIN.0031: Design Science und Design Thinking English title: Design Science and Design Thinking Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden: Präsenzzeit: 24 Stunden · kennen und verstehen die Rolle und Bedeutung von Design in der Wirtschaft und Selbststudium: 156 Stunden · kennen und verstehen die typische Design Science Forschungsmethodik, • kennen und verstehen Design Artefakte, Design Theorien und deren Beitrag zu Theorie und Praxis. • kennen und verstehen die Anwendungsfelder von Design Thinking in der Praxis, können eigenständig Design Artefakte auf Basis von Nutzerforschung (bspw. Customer Journey) kreieren, prototypisch evaluieren und grundlegend in den Design-Diskurs einordnen, analysieren und evaluieren wissenschaftliche Artikel hinsichtlich wissenschaftlicher und praxisrelevanter Fragestellungen. Lehrveranstaltung: Design Science und Design Thinking (Vorlesung) 1 SWS Inhalte: 1. Einführung in Design Science · Einführung in Design Science und die historische Entwicklung, • Einführung in den Design Diskurs im Kontext von Informationssystem(IS)-Forschung, • Darstellung von Design Science (Forschungs-)Prozessen und den Grundlagen von Design Theorien. Lehrveranstaltung: Einführung in Design Thinking (Übung) **1 SWS** · Einführung in den Design Thinking Prozess nach IDEO / Hasso Plattner School of Design Thinking, Vermittlung von methodischen Kenntnissen für die einzelnen Design Thinking Phasen (Verstehen, Beobachten, Sichtweise definieren (Point of View), Ideen finden, Prototypen entwickeln, Testen), • eigenständiges Durchlaufen und Anwendung des Design Thinking Zyklus im Rahmen einer Gruppenarbeit. Vorlesung und Übung finden alternierend statt. 6 C Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: Eine aktive Teilnahme an den Übungen sowie die erfolgreiche wissenschaftliche Bearbeitung und Abgabe zweier Gruppenarbeiten im Rahmen der Übung. Prüfungsanforderungen: • Nachweis eines übergreifenden Verständnisses zu den vorgestellten Themen des Design Science und Design Thinking,

- eigenständige Reflexion zu Fragen der Design Science Forschung und zu der Anwendung des Design Thinking Prozesses in der Praxis,
- Nachweis des Verständnisses zentraler Begriffe, Prozesse und Theorien der Design Science Forschung und des Design Thinkings sowie die Fähigkeit zur kritischen Würdigung und Einordnung in verschiedenen Anwendungsfällen,
- Nachweis der kritischen Beurteilung von Forschungsansätzen in der Design Science Forschung,
- Verständnis der Vor- und Nachteile sowie Grenzen eines Einsatzes von Design Science Forschung und Design Thinking in der Wissenschaft und Praxis.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: • Orientierungsphase abgeschlossen
keine	 Orientierungsphase abgeschlossen Es werden zu Kursbeginn vorausgesetzt: Einschlägige Erfahrungen im Verfassen wissenschaftlicher Seminar- bzw. Hausarbeiten (bspw. durch die erfolgreiche Absolvierung eines Bachelor-Seminars oder einer Lehrveranstaltung mit integrierter Hausarbeit (z.B. Management der Informationswirtschaft)) Mindestens gute Englischkenntnisse, da der wissenschaftliche Design Science und Design Thinking Diskurs nahezu ausschließlich englischsprachig ist und die Lektüre englischsprachiger Publikationen im
Sprache:	Rahmen der Lehrveranstaltung notwendig ist Modulverantwortliche[r]:
Deutsch	Dr. Alfred B. Brendel
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Fakultät für Mathematik und Informatik:

Nach Beschluss des Fakultätsrats der Fakultät für Mathematik und Informatik vom 09.03.2022 hat das Präsidium der Georg-August-Universität Göttingen am 16.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Mathematik" genehmigt (§ 44 Abs. 1 Satz 2 NHG, §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II rückwirkend zum 01.04.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Mathematik" (Amtliche Mitteilungen I Nr. 14/2013 S. 313, zuletzt geaendert durch Amtliche Mitteilungen I Nr. 24/2022 S. 447)

Module

B.Inf.1236: Machine Learning	6263
B.Inf.1237: Deep Learning	6264
B.Inf.1240: Visualization	6265
B.Inf.1241: Computational Optimal Transport	6266
B.Mat.0720: Mathematische Anwendersysteme (Grundlagen)	6267
B.Mat.0721: Mathematisch orientiertes Programmieren	6269
B.Mat.0730: Praktikum Wissenschaftliches Rechnen	6271
B.Mat.0740: Stochastisches Praktikum	6273
B.Mat.0910: Linux effektiv nutzen	6275
B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen	6277
B.Mat.0922: Mathematics information services and electronic publishing	6279
B.Mat.0931: Tutorentraining	6281
B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum	6283
B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und Nutzung wissenschaftlicher Modellsammlungen	
B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen	6285
B.Mat.0940: Mathematik in der Welt, in der wir leben	6286
B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung	6288
B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld	6289
B.Mat.0952: Organisation einer mathematischen Veranstaltung	6290
B.Mat.0970: Betriebspraktikum	6291
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie	6292
B.Mat.2100: Partielle Differenzialgleichungen	6294
B.Mat.2110: Funktionalanalysis	6296
B.Mat.2120: Funktionentheorie	6298
B.Mat.2200: Moderne Geometrie	6300
B.Mat.2210: Zahlen und Zahlentheorie	6302
B.Mat.2300: Numerische Analysis	6304
B.Mat.2310: Optimierung	6306
B.Mat.3041: Overview on non-life insurance mathematics	6308

Inhaltsverzeichnis

B.Mat.3042: Overview on life insurance mathematics	6309
B.Mat.3043: Non-life insurance mathematics	6310
B.Mat.3044: Life insurance mathematics	6312
B.Mat.3111: Introduction to analytic number theory	6314
B.Mat.3112: Introduction to analysis of partial differential equations	6316
B.Mat.3113: Introduction to differential geometry	6318
B.Mat.3114: Introduction to algebraic topology	6320
B.Mat.3115: Introduction to mathematical methods in physics	6322
B.Mat.3121: Introduction to algebraic geometry	6324
B.Mat.3122: Introduction to algebraic number theory	6326
B.Mat.3123: Introduction to algebraic structures	6328
B.Mat.3124: Introduction to groups, geometry and dynamical systems	6330
B.Mat.3125: Introduction to non-commutative geometry	6332
B.Mat.3131: Introduction to inverse problems	6334
B.Mat.3132: Introduction to approximation methods	6336
B.Mat.3133: Introduction to numerics of partial differential equations	6338
B.Mat.3134: Introduction to optimisation	6340
B.Mat.3137: Introduction to variational analysis	6342
B.Mat.3138: Introduction to image and geometry processing	6344
B.Mat.3139: Introduction to scientific computing / applied mathematics	6346
B.Mat.3141: Introduction to applied and mathematical stochastics	6348
B.Mat.3142: Introduction to stochastic processes	6350
B.Mat.3143: Introduction to stochastic methods of economathematics	6352
B.Mat.3144: Introduction to mathematical statistics	6354
B.Mat.3145: Introduction to statistical modelling and inference	6356
B.Mat.3146: Introduction to multivariate statistics	6358
B.Mat.3147: Introduction to statistical foundations of data science	6360
B.Mat.3311: Advances in analytic number theory	6362
B.Mat.3312: Advances in analysis of partial differential equations	6364
B.Mat.3313: Advances in differential geometry	6366
B.Mat.3314: Advances in algebraic topology	6368

B.Mat.3315: Advances in mathematical methods in physics	6370
B.Mat.3321: Advances in algebraic geometry	6372
B.Mat.3322: Advances in algebraic number theory	6374
B.Mat.3323: Advances in algebraic structures	6376
B.Mat.3324: Advances in groups, geometry and dynamical systems	6378
B.Mat.3325: Advances in non-commutative geometry	6380
B.Mat.3331: Advances in inverse problems	6382
B.Mat.3332: Advances in approximation methods	6384
B.Mat.3333: Advances in numerics of partial differential equations	6386
B.Mat.3334: Advances in optimisation	6388
B.Mat.3337: Advances in variational analysis	6390
B.Mat.3338: Advances in image and geometry processing	6392
B.Mat.3339: Advances in scientific computing / applied mathematics	6394
B.Mat.3341: Advances in applied and mathematical stochastics	6396
B.Mat.3342: Advances in stochastic processes	6398
B.Mat.3343: Advances in stochastic methods of economathematics	6400
B.Mat.3344: Advances in mathematical statistics	6402
B.Mat.3345: Advances in statistical modelling and inference	6404
B.Mat.3346: Advances in multivariate statistics	6406
B.Mat.3347: Advances in statistical foundations of data science	6408
B.Phi.01: Basismodul Theoretische Philosophie	6410
B.Phi.02: Basismodul Praktische Philosophie	6412
B.Phi.03: Basismodul Geschichte der Philosophie	6414
B.Phi.05: Aufbaumodul Theoretische Philosophie	6416
B.Phi.06: Aufbaumodul Praktische Philosophie	6418
B.Phi.07: Aufbaumodul Geschichte der Philosophie	6420
B.Phi.18a: Vertiefte Bearbeitung philosophischer Themen für HörerInnen aller Fächer	6422
B.Phi.19a: Spezielle Themen der Philosophie für HörerInnen aller Fächer	6424
B.Phy.1551: Introduction to Astrophysics	6425
B.WIWI-BWL.0014: Rechnungslegung der Unternehmung	6426
B.WIWI-BWL.0023: Grundlagen der Versicherungstechnik	6427

Inhaltsverzeichnis

B.WIWI-BWL.0038: Supply Chain Management	6429
B.WIWI-BWL.0087: International Marketing	6431
B.WIWI-VWL.0001: Mikroökonomik II	6433
B.WIWI-VWL.0002: Makroökonomik II	6435
B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen	6437
B.WIWI-VWL.0006: Wachstum und Entwicklung	6439
B.WIWI-VWL.0007: Einführung in die Ökonometrie	6441
B.WIWI-VWL.0008: Geldtheorie und Geldpolitik	6443
B.WIWI-VWL.0010: Einführung in die Institutionenökonomik	6445
B.WIWI-VWL.0059: Internationale Finanzmärkte	6447
B.WIWI-VWL.0075: Dynamische Methoden in der Ökonomie	6449
B.WIWI-WIN.0001: Management der Informationssysteme	6451
B.WIWI-WIN.0002: Management der Informationswirtschaft	6454
M.Che.1311: Schwingungsspektroskopie und zwischenmolekulare Dynamik	6456
M.Che.1313: Elektronische Spektroskopie und Reaktionsdynamik	6457
M.Che.1314: Biophysikalische Chemie	6458
M.Che.1315: Chemical Dynamics at Surfaces	6459
M.Inf.1112: Effiziente Algorithmen	6460
M.Inf.1141: Semistrukturierte Daten und XML	6461
M.Inf.1151: Vertiefung Softwaretechnik: Data Science und Big Data Analytics	6462
M.Inf.1171: Cloud and Service Computing	6463
M.Inf.1172: Using Research Infrastructures	6465
M.Inf.1185: Sensor Data Fusion	6467
M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics	6469
M.Inf.1188: Mobile Robotics	6470
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte	6471
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen	6472
M.Inf.1213: Algorithmisches Lernen und Mustererkennung	6473
M.Inf.1216: Datenkompression und Informationstheorie	6474
M.Inf.1231: Spezialisierung Verteilte Systeme	6476
M.Inf.1232: Parallel Computing	6478

M.Inf.1244: Seminar on optimal transport	6480
M.Inf.1268: Informationstheorie	6481
M.Inf.1802: Praktikum XML	6482
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme	6483
M.Inf.1808: Practical Course on Parallel Computing	6484
M.Inf.2102: Advanced Statistical Learning for Data Science	6486
M.Inf.2201: Probabilistic Machine Learning	6488
M.Inf.2241: Current Topics in Machine Learning	6489
M.Mat.0731: Advanced practical course in scientific computing	6490
M.Mat.0741: Advanced practical course in stochastics	6492
M.Mat.0971: Internship	6494
M.Mat.3110: Higher analysis	6495
M.Mat.3130: Operations research	6497
M.Mat.3140: Mathematical statistics	6499
M.Mat.4511: Specialisation in analytic number theory	6501
M.Mat.4512: Specialisation in analysis of partial differential equations	6503
M.Mat.4513: Specialisation in differential geometry	6505
M.Mat.4514: Specialisation in algebraic topology	6507
M.Mat.4515: Specialisation in mathematical methods in physics	6509
M.Mat.4521: Specialisation in algebraic geometry	6511
M.Mat.4522: Specialisation in algebraic number theory	6513
M.Mat.4523: Specialisation in algebraic structures	6515
M.Mat.4524: Specialisation in groups, geometry and dynamical systems	6517
M.Mat.4525: Specialisation in non-commutative geometry	6519
M.Mat.4531: Specialisation in inverse problems	6521
M.Mat.4532: Specialisation in approximation methods	6523
M.Mat.4533: Specialisation in numerical methods of partial differential equations	6525
M.Mat.4534: Specialisation in optimisation	6527
M.Mat.4537: Specialisation in variational analysis	6529
M.Mat.4538: Specialisation in image and geometry processing	6531
M.Mat.4539: Specialisation in scientific computing / applied mathematics	6533

Inhaltsverzeichnis

M.Mat.4541: Specialisation in applied and mathematical stochastics	6535
M.Mat.4542: Specialisation in stochastic processes	6537
M.Mat.4543: Specialisation in stochastic methods in economathematics	6539
M.Mat.4544: Specialisation in mathematical statistics	6541
M.Mat.4545: Specialisation in statistical modelling and inference	6543
M.Mat.4546: Specialisation in multivariate statistics	6545
M.Mat.4547: Specialisation in statistical foundations of data science	6547
M.Mat.4611: Aspects of analytic number theory	6549
M.Mat.4612: Aspects of analysis of partial differential equations	6551
M.Mat.4613: Aspects of differential geometry	6553
M.Mat.4614: Aspects of algebraic topology	6555
M.Mat.4615: Aspects of mathematical methods in physics	6557
M.Mat.4621: Aspects of algebraic geometry	6559
M.Mat.4622: Aspects of algebraic number theory	6561
M.Mat.4623: Aspects of algebraic structures	6563
M.Mat.4624: Aspects of groups, geometry and dynamical systems	6565
M.Mat.4625: Aspects of non-commutative geometry	6567
M.Mat.4631: Aspects of inverse problems	6569
M.Mat.4632: Aspects of approximation methods	6571
M.Mat.4633: Aspects of numerical methods of partial differential equations	6573
M.Mat.4634: Aspects of optimisation	6575
M.Mat.4637: Aspects of variational analysis	6577
M.Mat.4638: Aspects of image and geometry processing	6579
M.Mat.4639: Aspects of scientific computing / applied mathematics	6581
M.Mat.4641: Aspects of applied and mathematical stochastics	6583
M.Mat.4642: Aspects of stochastic processes	6585
M.Mat.4643: Aspects of stochastics methods of economathematics	6587
M.Mat.4644: Aspects of mathematical statistics	6589
M.Mat.4645: Aspects of statistical modelling and inference	6591
M.Mat.4646: Aspects of multivariate statistics	6593
M.Mat.4647: Aspects of statistical foundations of data science	6595

M.Mat.4711: Special course in analytic number theory	6597
M.Mat.4712: Special course in analysis of partial differential equations	6599
M.Mat.4713: Special course in differential geometry	6601
M.Mat.4714: Special course in algebraic topology	6603
M.Mat.4715: Special course in mathematical methods in physics	6605
M.Mat.4721: Special course in algebraic geometry	6607
M.Mat.4722: Special course in algebraic number theory	6609
M.Mat.4723: Special course in algebraic structures	6611
M.Mat.4724: Special course in groups, geometry and dynamical systems	6613
M.Mat.4725: Special course in non-commutative geometry	6615
M.Mat.4731: Special course in inverse problems	6617
M.Mat.4732: Special course in approximation methods	6619
M.Mat.4733: Special course in numerical methods of partial differential equations	6621
M.Mat.4734: Special course in optimisation	6623
M.Mat.4737: Special course in variational analysis	6625
M.Mat.4738: Special course in image and geometry processing	6627
M.Mat.4739: Special course in scientific computing / applied mathematics	6629
M.Mat.4741: Special course in applied and mathematical stochastics	6631
M.Mat.4742: Special course in stochastic processes	6633
M.Mat.4743: Special course in stochastic methods of economathematics	6635
M.Mat.4744: Special course in mathematical statistics	6637
M.Mat.4745: Special course in statistical modelling and inference	6639
M.Mat.4746: Special course in multivariate statistics	6641
M.Mat.4747: Special course in statistical foundations of data science	6643
M.Mat.4811: Seminar on analytic number theory	6645
M.Mat.4812: Seminar on analysis of partial differential equations	6647
M.Mat.4813: Seminar on differential geometry	6649
M.Mat.4814: Seminar on algebraic topology	6651
M.Mat.4815: Seminar on mathematical methods in physics	6653
M.Mat.4821: Seminar on algebraic geometry	6655
M.Mat.4822: Seminar on algebraic number theory	6657

Inhaltsverzeichnis

M.Mat.4823: Seminar on algebraic structures	6659
M.Mat.4824: Seminar on groups, geometry and dynamical systems	6661
M.Mat.4825: Seminar on non-commutative geometry	6663
M.Mat.4831: Seminar on inverse problems	6665
M.Mat.4832: Seminar on approximation methods	6667
M.Mat.4833: Seminar on numerical methods of partial differential equations	6669
M.Mat.4834: Seminar on optimisation	6671
M.Mat.4837: Seminar on variational analysis	6673
M.Mat.4838: Seminar on image and geometry processing	6675
M.Mat.4839: Seminar on scientific computing / applied mathematics	6677
M.Mat.4841: Seminar on applied and mathematical stochastics	6679
M.Mat.4842: Seminar on stochastic processes	6681
M.Mat.4843: Seminar on stochastic methods of economathematics	6683
M.Mat.4844: Seminar on mathematical statistics	6685
M.Mat.4845: Seminar on statistical modelling and inference	6687
M.Mat.4846: Seminar on multivariate statistics	6689
M.Mat.4847: Seminar on statistical foundations of data science	6691
M.Mat.4911: Advanced seminar on analytic number theory	6693
M.Mat.4912: Advanced seminar on analysis of partial differential equations	6695
M.Mat.4913: Advanced seminar on differential geometry	6697
M.Mat.4914: Advanced seminar on algebraic topology	6699
M.Mat.4915: Advanced seminar on mathematical methods in physics	6701
M.Mat.4921: Advanced seminar on algebraic geometry	6703
M.Mat.4922: Advanced seminar on algebraic number theory	6705
M.Mat.4923: Advanced seminar on algebraic structures	6707
M.Mat.4924: Advanced seminar on groups, geometry and dynamical systems	6709
M.Mat.4925: Advanced seminar on non-commutative geometry	6711
M.Mat.4931: Advanced seminar on inverse problems	6713
M.Mat.4932: Advanced seminar on approximation methods	6715
M.Mat.4933: Advanced seminar on numerical methods of partial differential equations	6717
M.Mat.4934: Advanced seminar on optimisation	6719

M.Mat.4937: Advanced seminar on variational analysis	6721
M.Mat.4938: Advanced seminar on image and geometry processing	6723
M.Mat.4939: Advanced seminar on scientific computing / applied mathematics	6725
M.Mat.4941: Advanced seminar on applied and mathematical stochastics	6727
M.Mat.4942: Advanced seminar on stochastic processes	6729
M.Mat.4943: Advanced seminar on stochastic methods in economathematics	6731
M.Mat.4944: Advanced seminar on mathematical statistics	6733
M.Mat.4945: Advanced seminar on statistical modelling and inference	6735
M.Mat.4946: Advanced seminar on multivariate statistics	6737
M.Mat.4947: Advanced seminar on statistical foundations of data science	6739
M.Phi.101: Ausgewählte Themen der Theoretischen Philosophie	6741
M.Phi.102: Ausgewählte Themen der Praktischen Philosophie	6743
M.Phi.103: Ausgewählte Themen der Geschichte der Philosophie	6745
M.WIWI-BWL.0001: Finanzwirtschaft	6747
M.WIWI-BWL.0002: Rechnungslegung nach IFRS	6749
M.WIWI-BWL.0003: Unternehmensbesteuerung	6751
M.WIWI-BWL.0004: Financial Risk Management	6753
M.WIWI-BWL.0006: Seminar in Finanzwirtschaft	6755
M.WIWI-BWL.0008: Derivate	6756
M.WIWI-BWL.0023: Performance Management	6758
M.WIWI-BWL.0034: Logistik- und Supply Chain Management	6760
M.WIWI-BWL.0133: Banking Supervision	6762
M.WIWI-BWL.0134: Panel Data Analysis in Marketing	6764
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes)	6765
M.WIWI-QMW.0004: Econometrics I	6767
M.WIWI-QMW.0005: Econometrics II	6769
M.WIWI-QMW.0009: Introduction to Time Series Analysis	6770
M.WIWI-QMW.0012: Multivariate Time Series Analysis	6772
M.WIWI-VWL.0001: Advanced Microeconomics	6774
M.WIWI-VWL.0041: Panel Data Econometrics	6776
M.WIWI-VWL.0092: International Trade	6779

Inhaltsverzeichnis

Übersicht nach Modulgruppen

I. Study tracks in the Master's Degree programme in Mathematics (M.Sc.)

In the Master's Degree programme in Mathematics, one of the following study tracks has to be chosen, whereas modules with a total of at least 90 C have to be completed successfully in accordance with the following regulations. The regulations for the modules that can be chosen within the scope of a study focus can be found in No. II "Elective courses in Mathematics (graduate studies)".

Im Master-Studiengang "Mathematik" ist eines der nachfolgenden Studienprofile zu wählen, wobei nach Maßgabe der folgenden Bestimmungen Module im Umfang von wenigstens 90 C erfolgreich zu absolvieren sind. Die im Rahmen eines Schwerpunktes wählbaren Module sind unter "II. Elective courses in Mathematics (graduate studies)" geregelt.

1. Study track F "Research-oriented - general"

In the study track F "Research-oriented - general" modules have to be completed successfully according to the regulations below.

Im Studienprofil F "Forschungsorientiert - allgemein" sind Module nach Maßgabe der nachstehenden Bestimmungen erfolgreich zu absolvieren.

a. Elective compulsory modules in Mathematics (60 C)

In the study track F, elective compulsory modules in the subject mathematics with a total of at least 60 C have to be completed successfully according to the following regulations:

Im Studienprofil F müssen Wahlpflichtmodule im Fach Mathematik im Umfang von insgesamt mindestens 60 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden:

i) In the study foci SP 1 or SP 2, modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3C (M.Mat.481*, M.Mat.482*, M.Mat.491*, M.Mat.492*). If the Master's thesis is in one out of these two study foci, a total of at least 6 C of the modules out of the other study focus have to be completed successfully.

Aus den Schwerpunkten SP 1 oder SP 2 müssen Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden, davon mindestens ein Seminar- oder Oberseminarmodul (M.Mat.481*, M.Mat.482*, M.Mat.491*, M.Mat.492*) im Umfang von wenigstens 3 C; ist einer dieser beiden Schwerpunkte der Studienschwerpunkt der Masterarbeit, so müssen mindestens 6 C aus Modulen des anderen Schwerpunkts erworben werden.

ii) In the study foci SP 3 or SP 4, modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3C (M.Mat.483*, M.Mat.484*, M.Mat.493*, M.Mat.494*). If the Master's thesis is in one out of these two study foci, a total of at least 6 C of the modules out of the other study focus have to be completed successfully.

Aus den Schwerpunkten SP 3 oder SP 4 müssen Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden, davon mindestens ein Seminar- oder Oberseminarmodul (M.Mat.483*, M.Mat.484*, M.Mat.493*, M.Mat.494*) im Umfang von wenigstens 3 C; ist einer dieser beiden Schwerpunkte der Studienschwerpunkt der Masterarbeit, so müssen mindestens 6 C aus Modulen des anderen Schwerpunkts erworben werden.

iii) Further modules can be chosen freely out of the modules offered in all four mathematical study foci.

Darüber hinaus kann frei aus den angebotenen Modulen aller vier mathematischen Studienschwerpunkte gewählt werden.

b. Elective compulsory modules in the minor subject (18 C)

In the study track F, modules with at total of at least 18 C have to be completed successfully in one out of the following minor subjects: Astrophysics, Business Administration, Chemistry, Computer Science, Philosophy, Physics, Economics. The regulations for the modules to choose from in each case can be found in No.III "Minor subjects in the graduate programme in Mathematics".

Im Studienprofil F sind Module im Gesamtumfang von wenigstens 18 C in einem der folgenden Nebenfächer erfolgreich zu absolvieren: Astrophysik, Betriebswirtschaftslehre, Chemie, Informatik, Philosophie, Physik, Volkswirtschaftslehre. Die jeweils wählbaren Module sind in "III. Minor subjects in the graduate programme in Mathematics" geregelt.

c. Elective modules in the key competencies area (12 C)

Modules with a total of at least 12 C have to be completed successfully, among them one out of the key competencies modules offered by the Unit Mathematics, according to the regulations in No. IV. "Key competencies in the graduate programme in Mathematics". The remaining modules can be chosen freely from the key competencies modules offered by the Unit Mathematics, according to the regulations in No. IV. "Key competencies in the graduate programme in Mathematics", or from the cross-faculty key competencies offer. The choice of other modules (alternative modules) is only possible with the approval of the dean of students of the faculty that offers the module. The choice of an alternative module has to be reported to the Study Office Mathematics in advance.

Es sind Module im Gesamtumfang von wenigstens 12 C erfolgreich zu absolvieren, darunter eines der Schlüsselkompetenzmodule aus dem Angebot der Lehreinheit Mathematik nach "IV. Key competencies in the graduate programme in Mathematics". Die übrigen Module können frei aus den unter IV. "Schlüsselkompetenzmodule im Masterstudium" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik oder aus dem universitätsweiten Schlüsselkompetenzangebot gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen.

2. Study track Phy "Physics"

In the research-oriented study track Phy "Physics", modules below have to be completed successfully according to the regulations.

Im forschungsorientierten Studienprofil Phy "Physik" sind Module nach Maßgabe der nachstehenden Bestimmungen erfolgreich zu absolvieren.

a. Elective compulsory modules in Mathematics (60 C)

In the study track Phy, elective compulsory modules covering a total of at least 60 C have to be completed successfully according to the following regulations:

Im Studienprofil Phy müssen Wahlpflichtmodule im Umfang von insgesamt mindestens 60 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

i) In the study foci SP 3 or SP 4, ective compulsory modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3 C (M.Mat.483*, M.Mat.484*, M.Mat.493*, M.Mat.494*).

Es müssen Wahlpflichtmodule aus den Schwerpunkten SP 3 oder SP 4 im Gesamtumfang von wenigstens 12 C erfolgreich absolviert werden, davon mindestens ein Seminar- oder Oberseminarmodul im Umfang von wenigstens 3 C.

ii) In the cycles "Mathematical Methods in Physics", "Analysis of Partial Differential Equations", "Differential Geometry", "Algebraic Topology", "Non-commutative Geometry" and "Groups, Geometry and Dynamical Systems", modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3C.

Es müssen Module im Gesamtumfang von mindestens 12 C aus den Zyklen Mathematische Methoden der Physik, Analysis partieller Differenzialgleichungen, Differenzialgeometrie, Algebraische Topologie, Nichtkommutative Geometrie sowie Gruppen, Geometrie und Dynamische Systeme erfolgreich absolviert werden, davon mindestens ein Seminar- oder Oberseminarmodul im Umfang von wenigstens 3 C.

iii) Further moduls can be chosen freely out the modules offered in all four mathematical study foci SP1-4. Additionally, modules in the section No. III.6. "Physics" can be chosen freely, however this option is restricted to modules with a total of at most 12 C.

Ferner kann frei aus den angebotenen Modulen aller vier mathematischen Studienschwerpunkte gewählt werden. Weiterhin können Module im Gesamtumfang von maximal 12 C aus dem Bereich "III.6. Physics" frei gewählt werden.

b. Elective compulsory modules in the minor subject (18 C)

In the study track Phy, in the minor subject "Physics", modules with a total of at least 18 C have to be completed successfully. The regulations for the modules that can be chosen can be found in No.III "Minor subjects in the graduate programme in Mathematics".

Im Studienprofil Phy sind Module im Gesamtumfang von mindestens 18 C im Nebenfach Physik erfolgreich zu absolvieren. Die jeweils wählbaren Module sind in "III. Minor subjects in the graduate programme in Mathematics" geregelt.

c. Elective modules of the key competencies area (12 C)

At least one key competencies module out of the offer of the Faculty of Physics or out of the offer of the Unit Mathematics has to be completed successfully. Furthermore, modules can be chosen freely from the key competencies modules offered by the Unit Mathematics, according to the regulations in No. IV. "Key competencies in the graduate programme in Mathematics", or from the cross-faculty key competencies offer. The choice of other modules (alternative modules) is only possible with the approval of the dean of students of the faculty that offers the module. The choice of an alternative module has to be reported to the Study Office Mathematics in advance.

Es ist ein Schlüsselkompetenzmodul aus dem Angebot der Fakultät für Physik oder eines aus dem Angebot der Lehreinheit Mathematik erfolgreich zu absolvieren. Ferner können Module aus den unter IV. "Schlüsselkompetenzmodule im Masterstudium" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik oder aus dem universitätsweiten Schlüsselkompetenzangebot frei gewählt werden. Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro vorab anzuzeigen.

3. Study track MDS "Mathematical Data Science"

In the study track MDS "Mathematical Data Science" modules have to be completed successfully according to the regulations below. In the study track "Mathematical Data Science" the study foci SP 3 or SP 4 are permitted as study focus of the Master's thesis, only.

Im forschungsorientierten Studienprofil MDS "Mathematical Data Science" sind Module nach Maßgabe der nachstehenden Bestimmungen erfolgreich zu absolvieren. Als Schwerpunkt der Masterarbeit sind im Studienprofil Mathematical Data Sience nur die Schwerpunkte SP 3 oder SP 4 zugelassen.

a. Elective compulsory modules in Mathematics (60 C)

In the study track MDS, elective compulsory modules in the subject mathematics with a total of at least 60 C have to be completed successfully according to the following regulations:

Im Studienprofil MDS müssen Wahlpflichtmodule im Umfang von insgesamt mindestens 60 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

aa. Elective compulsory modules in SP 3

In the cycles listed below, modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3C.

Es müssen Module im Gesamtumfang von mindestens 12 C, davon mindestens ein Seminar- oder Oberseminarmodul im Umfang von wenigstens 3 C, aus den folgenden Zyklen absolviert werden.

- · Inverse problems
- · Optimisation
- · Variational analysis
- · Image and geometry processing
- · Scientific computing / applied mathematics

bb. Elective compulsory modules in SP 4

In the cycles listed below, modules with a total of at least 12 C have to be completed successfully, thereof at least a seminar module or an advanced seminar module with at least 3C.

Es müssen Module im Gesamtumfang von mindestens 12 C, davon mindestens ein Seminar- oder Oberseminarmodul im Umfang von wenigstens 3 C, aus den folgenden Zyklen absolviert werden.

- · Applied and mathematical stochastics
- · Statistical modelling and inference
- · Multivariate and non-Euclidean statistics
- · Statistical foundations of data science

cc. Practical course

One out of the following practical course modules with 10 C has to be completed successfully: Eines der folgenden Praktikumsmodule im Umfang von 10 C muss erfolgreich absolviert werden:

M.Mat.0731: Advanced practical course in scientific computing (10 C, 4 SWS) 6490)
M.Mat.0741: Advanced practical course in stochastics (10 C, 6 SWS)6492	2

dd. Computer science

In the area "Computer science", one out of the following modules has to be completed successfully.

Es muss eines der folgenden Module erfolgreich absolviert werden.

B.Inf.1236: Machine Learning (6 C, 4 SWS)	6263
B.Inf.1237: Deep Learning (6 C, 4 SWS)	6264
B.Inf.1240: Visualization (5 C, 3 SWS)	.6265
B.Inf.1241: Computational Optimal Transport (6 C, 4 SWS)	6266
M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS)	6460
M.Inf.1141: Semistrukturierte Daten und XML (6 C, 4 SWS)	. 6461

M.Inf.1151: Vertiefung Softwaretechnik: Data Science und Big Data Analytics (5 C, 3 SWS)	6462
M.Inf.1171: Cloud and Service Computing (5 C, 3 SWS)	6463
M.Inf.1172: Using Research Infrastructures (5 C, 3 SWS)	6465
M.Inf.1185: Sensor Data Fusion (5 C, 4 SWS)	6467
M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics (5 C, 2 SWS)	. 6469
M.Inf.1188: Mobile Robotics (5 C, 4 SWS)	6470
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS)	. 6471
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS)	6472
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS)	6473
M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS)	6474
M.Inf.1231: Spezialisierung Verteilte Systeme (6 C, 4 SWS)	6476
M.Inf.1232: Parallel Computing (6 C, 4 SWS)	6478
M.Inf.1244: Seminar on optimal transport (5 C, 2 SWS)	6480
M.Inf.1268: Informationstheorie (6 C, 4 SWS)	6481
M.Inf.1802: Praktikum XML (6 C, 4 SWS)	6482
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme (6 C, 2 SWS)	. 6483
M.Inf.1808: Practical Course on Parallel Computing (6 C, 4 SWS)	6484
M.Inf.2102: Advanced Statistical Learning for Data Science (6 C, 4 SWS)	6486
M.Inf.2201: Probabilistic Machine Learning (6 C, 4 SWS)	6488
M Inf 2241: Current Tonics in Machine Learning (5.C. 2.SWS)	6480

ee. Elective modules

In order to achieve 60 C, modules out of the four study foci in Mathematics can be added In addition, modules with a total of at most 12 C can be chosen in the subject "Computer science" as listed in No.II.4 "Computer Science". However, those listed in No.I.4.a.dd) "Computer Science" are recommended.

Zum Auffüllen auf 60 C kann frei aus den angebotenen Modulen aller vier mathematischen Studienschwerpunkte gewählt werden. Weiterhin können Module im Gesamtumfang von maximal 12 C aus dem Bereich III.4 "Computer Science" frei gewählt werden, empfohlen werden die im Abschnitt .I.4.a.dd) "Computer Science" gelisteten Module.

b. Elective compulsory modules in the minor subject (18 C)

In the study track MDS, in the minor subject "Computer science" modules with a total of at least 18 C have to be completed successfully. The regulations can be found in No.III.4) "Computer science". However, those listed in No.I.4.a.dd) "Computer Science" are recommended.

Im Studienprofil MDS sind Module im Gesamtumfang von mindestens 18 C im Nebenfach Informatik erfolgreich zu absolvieren. Die wählbaren Module sind in Nr. III.4) "Computer science" geregelt, empfohlen werden die im Abschnitt I.4.a.dd) "Computer Science" gelisteten Module.

c. Elective modules in the key competencies area (12 C)

One out of the key competencies modules offered by the Unit Mathematics, according to the regulations in No. IV. "Key competencies in the graduate programme in Mathematics", or from the modules according to section dd. "Computer science" has to be completed successfully.

Further modules may be chosen freely from the key competencies modules offered by the Unit Mathematics, according to the regulations in No. IV. "Key competencies in the graduate programme in Mathematics", or from the cross-faculty key competencies offer.

The choice of other modules (alternative modules) is only possible with the approval of the dean of students of the faculty that offers the module. The choice of an alternative module has to be reported to the Study Office Mathematics in advance.

Es ist ein Modul aus den in Nr. IV) "Schlüsselkompetenzmodule im Masterstudium" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik oder aus den im Abschnitt iv) "Informatik" gelisteten Modulen zu belegen.

Ferner können weitere Module aus den unter IV. "Schlüsselkompetenzmodule im Masterstudium" genannten Wahlmodulen aus dem Angebot der Lehreinheit Mathematik oder aus dem universitätsweiten Schlüsselkompetenzangebot frei gewählt werden.

Die Belegung anderer Module (Alternativmodule) ist mit Zustimmung der Studiendekanin oder des Studiendekans der Fakultät, die das Modul anbietet, ebenfalls möglich. Die Belegung eines Alternativmoduls ist dem Studienbüro Mathematik vorab anzuzeigen.

II. Elective courses in Mathematics (graduate studies)

1. Elective compulsory modules in study focus SP 1 "Analysis, geometry, topology"

M.Mat.3110: Higher analysis (9 C, 6 SWS)	6495
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS)	6314
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS)	6316
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS)	6318
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS)	6320
B.Mat.3115: Introduction to mathematical methods in physics (9 C, 6 SWS)	6322
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS)	6362
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS)	6364
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS)	6366
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS)	6368
B.Mat.3315: Advances in mathematical methods in physics (9 C, 6 SWS)	6370
M.Mat.4511: Specialisation in analytic number theory (9 C, 6 SWS)	6501

M.Mat.4512: Specialisation in analysis of partial differential equations (9 C, 6 SWS)	6503
M.Mat.4513: Specialisation in differential geometry (9 C, 6 SWS)	6505
M.Mat.4514: Specialisation in algebraic topology (9 C, 6 SWS)	6507
M.Mat.4515: Specialisation in mathematical methods in physics (9 C, 6 SWS)	6509
M.Mat.4611: Aspects of analytic number theory (6 C, 4 SWS)	6549
M.Mat.4612: Aspects of analysis of partial differential equations (6 C, 4 SWS)	6551
M.Mat.4613: Aspects of differential geometry (6 C, 4 SWS)	6553
M.Mat.4614: Aspects of algebraic topology (6 C, 4 SWS)	6555
M.Mat.4615: Aspects of mathematical methods in physics (6 C, 4 SWS)	6557
M.Mat.4711: Special course in analytic number theory (3 C, 2 SWS)	6597
M.Mat.4712: Special course in analysis of partial differential equations (3 C, 2 SWS)	6599
M.Mat.4713: Special course in differential geometry (3 C, 2 SWS)	6601
M.Mat.4714: Special course in algebraic topology (3 C, 2 SWS)	6603
M.Mat.4715: Special course in mathematical methods in physics (3 C, 2 SWS)	6605
M.Mat.4811: Seminar on analytic number theory (3 C, 2 SWS)	6645
M.Mat.4812: Seminar on analysis of partial differential equations (3 C, 2 SWS)	6647
M.Mat.4813: Seminar on differential geometry (3 C, 2 SWS)	6649
M.Mat.4814: Seminar on algebraic topology (3 C, 2 SWS)	6651
M.Mat.4815: Seminar on mathematical methods in physics (3 C, 2 SWS)	6653
M.Mat.4911: Advanced seminar on analytic number theory (3 C, 2 SWS)	6693
M.Mat.4912: Advanced seminar on analysis of partial differential equations (3 C, 2 SWS)	6695
M.Mat.4913: Advanced seminar on differential geometry (3 C, 2 SWS)	6697
M.Mat.4914: Advanced seminar on algebraic topology (3 C, 2 SWS)	6699
M.Mat.4915: Advanced seminar on mathematical methods in physics (3 C, 2 SWS)	6701
2. Elective compulsory modules in study focus SP 2 "Algebra, geometry, number theory"	
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS)	6324
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS)	6326
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS)	6328
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS)	6330

B.Mat.3125: Introduction to non-commutative geometry (9 C, 6 SWS)	6332
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS)	6372
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS)	6374
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS)	6376
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS)	6378
B.Mat.3325: Advances in non-commutative geometry (9 C, 6 SWS)	6380
M.Mat.4521: Specialisation in algebraic geometry (9 C, 6 SWS)	6511
M.Mat.4522: Specialisation in algebraic number theory (9 C, 6 SWS)	6513
M.Mat.4523: Specialisation in algebraic structures (9 C, 6 SWS)	6515
M.Mat.4524: Specialisation in groups, geometry and dynamical systems (9 C, 6 SWS)	6517
M.Mat.4525: Specialisation in non-commutative geometry (9 C, 6 SWS)	6519
M.Mat.4621: Aspects of algebraic geometry (6 C, 4 SWS)	6559
M.Mat.4622: Aspects of algebraic number theory (6 C, 4 SWS)	6561
M.Mat.4623: Aspects of algebraic structures (6 C, 4 SWS)	6563
M.Mat.4624: Aspects of groups, geometry and dynamical systems (6 C, 4 SWS)	6565
M.Mat.4625: Aspects of non-commutative geometry (6 C, 4 SWS)	6567
M.Mat.4721: Special course in algebraic geometry (3 C, 2 SWS)	6607
M.Mat.4722: Special course in algebraic number theory (3 C, 2 SWS)	6609
M.Mat.4723: Special course in algebraic structures (3 C, 2 SWS)	6611
M.Mat.4724: Special course in groups, geometry and dynamical systems (3 C, 2 SWS)	6613
M.Mat.4725: Special course in non-commutative geometry (3 C, 2 SWS)	6615
M.Mat.4821: Seminar on algebraic geometry (3 C, 2 SWS)	6655
M.Mat.4822: Seminar on algebraic number theory (3 C, 2 SWS)	6657
M.Mat.4823: Seminar on algebraic structures (3 C, 2 SWS)	6659
M.Mat.4824: Seminar on groups, geometry and dynamical systems (3 C, 2 SWS)	6661
M.Mat.4825: Seminar on non-commutative geometry (3 C, 2 SWS)	6663
M.Mat.4921: Advanced seminar on algebraic geometry (3 C, 2 SWS)	6703
M.Mat.4922: Advanced seminar on algebraic number theory (3 C, 2 SWS)	6705
M.Mat.4923: Advanced seminar on algebraic structures (3 C, 2 SWS)	6707
M.Mat.4924: Advanced seminar on groups, geometry and dynamical systems (3 C, 2 SWS)	6709
M.Mat.4925: Advanced seminar on non-commutative geometry (3 C, 2 SWS)	6711

3. Elective compulsory modules in study focus SP 3 "Numerical and applied mathematics"

M.Mat.0731: Advanced practical course in scientific computing (10 C, 4 SWS)	6490
M.Mat.3110: Higher analysis (9 C, 6 SWS)	6495
M.Mat.3130: Operations research (9 C, 6 SWS)	6497
B.Mat.3131: Introduction to inverse problems (9 C, 6 SWS)	6334
B.Mat.3132: Introduction to approximation methods (9 C, 6 SWS)	6336
B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS)	6338
B.Mat.3134: Introduction to optimisation (9 C, 6 SWS)	6340
B.Mat.3137: Introduction to variational analysis (9 C, 6 SWS)	6342
B.Mat.3138: Introduction to image and geometry processing (9 C, 6 SWS)	6344
B.Mat.3139: Introduction to scientific computing / applied mathematics (9 C, 6 SWS)	6346
B.Mat.3331: Advances in inverse problems (9 C, 6 SWS)	6382
B.Mat.3332: Advances in approximation methods (9 C, 6 SWS)	6384
B.Mat.3333: Advances in numerics of partial differential equations (9 C, 6 SWS)	6386
B.Mat.3334: Advances in optimisation (9 C, 6 SWS)	6388
B.Mat.3337: Advances in variational analysis (9 C, 6 SWS)	6390
B.Mat.3338: Advances in image and geometry processing (9 C, 6 SWS)	6392
B.Mat.3339: Advances in scientific computing / applied mathematics (9 C, 6 SWS)	6394
M.Mat.4531: Specialisation in inverse problems (9 C, 6 SWS)	6521
M.Mat.4532: Specialisation in approximation methods (9 C, 6 SWS)	6523
M.Mat.4533: Specialisation in numerical methods of partial differential equations (9 C, 6 SWS)	6525
M.Mat.4534: Specialisation in optimisation (9 C, 6 SWS)	6527
M.Mat.4537: Specialisation in variational analysis (9 C, 6 SWS)	6529
M.Mat.4538: Specialisation in image and geometry processing (9 C, 6 SWS)	6531
M.Mat.4539: Specialisation in scientific computing / applied mathematics (9 C, 6 SWS)	6533
M.Mat.4631: Aspects of inverse problems (6 C, 4 SWS)	6569
M.Mat.4632: Aspects of approximation methods (6 C, 4 SWS)	6571
M.Mat.4633: Aspects of numerical methods of partial differential equations (6 C, 4 SWS)	6573
M.Mat.4634: Aspects of optimisation (6 C, 4 SWS)	6575

M.Mat.4637: Aspects of variational analysis (6 C, 4 SWS)	6577
M.Mat.4638: Aspects of image and geometry processing (6 C, 4 SWS)	6579
M.Mat.4639: Aspects of scientific computing / applied mathematics (6 C, 4 SWS)	6581
M.Mat.4731: Special course in inverse problems (3 C, 2 SWS)	6617
M.Mat.4732: Special course in approximation methods (3 C, 2 SWS)	6619
M.Mat.4733: Special course in numerical methods of partial differential equations (3 C, 2 SWS)	6621
M.Mat.4734: Special course in optimisation (3 C, 2 SWS)	6623
M.Mat.4737: Special course in variational analysis (3 C, 2 SWS)	6625
M.Mat.4738: Special course in image and geometry processing (3 C, 2 SWS)	6627
M.Mat.4739: Special course in scientific computing / applied mathematics (3 C, 2 SWS)	. 6629
M.Mat.4831: Seminar on inverse problems (3 C, 2 SWS)	6665
M.Mat.4832: Seminar on approximation methods (3 C, 2 SWS)	6667
M.Mat.4833: Seminar on numerical methods of partial differential equations (3 C, 2 SWS)	. 6669
M.Mat.4834: Seminar on optimisation (3 C, 2 SWS)	6671
M.Mat.4837: Seminar on variational analysis (3 C, 2 SWS)	6673
M.Mat.4838: Seminar on image and geometry processing (3 C, 2 SWS)	6675
M.Mat.4839: Seminar on scientific computing / applied mathematics (3 C, 2 SWS)	6677
M.Mat.4931: Advanced seminar on inverse problems (3 C, 2 SWS)	6713
M.Mat.4932: Advanced seminar on approximation methods (3 C, 2 SWS)	6715
M.Mat.4933: Advanced seminar on numerical methods of partial differential equations (3 C, 2 SWS)	6717
M.Mat.4934: Advanced seminar on optimisation (3 C, 2 SWS)	6719
M.Mat.4937: Advanced seminar on variational analysis (3 C, 2 SWS)	6721
M.Mat.4938: Advanced seminar on image and geometry processing (3 C, 2 SWS)	6723
M.Mat.4939: Advanced seminar on scientific computing / applied mathematics (3 C, 2 SWS)	6725
4. Elective compulsory modules in study focus SP 4 "Mathematical stochastics"	
M.Mat.0741: Advanced practical course in stochastics (10 C, 6 SWS)	6492
B.Mat.3041: Overview on non-life insurance mathematics (3 C, 2 SWS)	. 6308
B.Mat.3042: Overview on life insurance mathematics (3 C, 2 SWS)	6309
B.Mat.3043: Non-life insurance mathematics (6 C, 4 SWS)	6310

B.Mat.3044: Life insurance mathematics (6 C, 4 SWS)	6312
M.Mat.3140: Mathematical statistics (9 C, 6 SWS)	6499
B.Mat.3141: Introduction to applied and mathematical stochastics (9 C, 6 SWS)	6348
B.Mat.3142: Introduction to stochastic processes (9 C, 6 SWS)	6350
B.Mat.3143: Introduction to stochastic methods of economathematics (9 C, 6 SWS)	6352
B.Mat.3144: Introduction to mathematical statistics (9 C, 6 SWS)	6354
B.Mat.3145: Introduction to statistical modelling and inference (9 C, 6 SWS)	6356
B.Mat.3146: Introduction to multivariate statistics (9 C, 6 SWS)	6358
B.Mat.3147: Introduction to statistical foundations of data science (9 C, 6 SWS)	6360
B.Mat.3341: Advances in applied and mathematical stochastics (9 C, 6 SWS)	6396
B.Mat.3342: Advances in stochastic processes (9 C, 6 SWS)	6398
B.Mat.3343: Advances in stochastic methods of economathematics (9 C, 6 SWS)	6400
B.Mat.3344: Advances in mathematical statistics (9 C, 6 SWS)	6402
B.Mat.3345: Advances in statistical modelling and inference (9 C, 6 SWS)	6404
B.Mat.3346: Advances in multivariate statistics (9 C, 6 SWS)	6406
B.Mat.3347: Advances in statistical foundations of data science (9 C, 6 SWS)	6408
M.Mat.4541: Specialisation in applied and mathematical stochastics (9 C, 6 SWS)	6535
M.Mat.4542: Specialisation in stochastic processes (9 C, 6 SWS)	6537
M.Mat.4543: Specialisation in stochastic methods in economathematics (9 C, 6 SWS)	6539
M.Mat.4544: Specialisation in mathematical statistics (9 C, 6 SWS)	6541
M.Mat.4545: Specialisation in statistical modelling and inference (9 C, 6 SWS)	6543
M.Mat.4546: Specialisation in multivariate statistics (9 C, 6 SWS)	6545
M.Mat.4547: Specialisation in statistical foundations of data science (9 C, 6 SWS)	6547
M.Mat.4641: Aspects of applied and mathematical stochastics (6 C, 4 SWS)	6583
M.Mat.4642: Aspects of stochastic processes (6 C, 4 SWS)	6585
M.Mat.4643: Aspects of stochastics methods of economathematics (6 C, 4 SWS)	6587
M.Mat.4644: Aspects of mathematical statistics (6 C, 4 SWS)	6589
M.Mat.4645: Aspects of statistical modelling and inference (6 C, 4 SWS)	6591
M.Mat.4646: Aspects of multivariate statistics (6 C, 4 SWS)	6593
M.Mat.4647: Aspects of statistical foundations of data science (6 C, 4 SWS)	6595
M.Mat.4741: Special course in applied and mathematical stochastics (3 C, 2 SWS)	6631

	M.Mat.4742: Special course in stochastic processes (3 C, 2 SWS)	6633
	M.Mat.4743: Special course in stochastic methods of economathematics (3 C, 2 SWS)	6635
	M.Mat.4744: Special course in mathematical statistics (3 C, 2 SWS)	6637
	M.Mat.4745: Special course in statistical modelling and inference (3 C, 2 SWS)	. 6639
	M.Mat.4746: Special course in multivariate statistics (3 C, 2 SWS)	6641
	M.Mat.4747: Special course in statistical foundations of data science (3 C, 2 SWS)	6643
	M.Mat.4841: Seminar on applied and mathematical stochastics (3 C, 2 SWS)	6679
	M.Mat.4842: Seminar on stochastic processes (3 C, 2 SWS)	6681
	M.Mat.4843: Seminar on stochastic methods of economathematics (3 C, 2 SWS)	6683
	M.Mat.4844: Seminar on mathematical statistics (3 C, 2 SWS)	6685
	M.Mat.4845: Seminar on statistical modelling and inference (3 C, 2 SWS)	. 6687
	M.Mat.4846: Seminar on multivariate statistics (3 C, 2 SWS)	6689
	M.Mat.4847: Seminar on statistical foundations of data science (3 C, 2 SWS)	6691
	M.Mat.4941: Advanced seminar on applied and mathematical stochastics (3 C, 2 SWS)	6727
	M.Mat.4942: Advanced seminar on stochastic processes (3 C, 2 SWS)	. 6729
	M.Mat.4943: Advanced seminar on stochastic methods in economathematics (3 C, 2 SWS)	6731
	M.Mat.4944: Advanced seminar on mathematical statistics (3 C, 2 SWS)	6733
	M.Mat.4945: Advanced seminar on statistical modelling and inference (3 C, 2 SWS)	. 6735
	M.Mat.4946: Advanced seminar on multivariate statistics (3 C, 2 SWS)	6737
	M.Mat.4947: Advanced seminar on statistical foundations of data science (3 C, 2 SWS)	6739
Ш	I. Minor subjects in the graduate programme in Mathematics	
	1. Astrophysics	
	In "Astrophysics" as a minor subject the following module has to be completed successfully. Furthermore, all modules with module number B.Phy.55** and M.Phy.55** may be chosen.	
	Im Nebenfach "Astrophysik" ist folgendes Modul erfolgreich zu absolvieren. Weiterhin stehen alle Module mit Modulnummern B.phy.55** und M.Phy.55** zur Auswahl.	e
	B.Phy.1551: Introduction to Astrophysics (8 C, 6 SWS)	6425
	2. Business Administration	
	In "Business Administration" as a minor subject the following modules may be chosen.	
	Im Nebenfach "Betriebswirtschaftslehre" stehen folgende Module zur Auswahl:	
	B.WIWI-WIN.0001: Management der Informationssysteme (6 C, 3 SWS)	6451

B.WIWI-WIN.0002: Management der Informationswirtschaft (6 C, 6 SWS)	6454
B.WIWI-BWL.0014: Rechnungslegung der Unternehmung (6 C, 4 SWS)	6426
B.WIWI-BWL.0023: Grundlagen der Versicherungstechnik (6 C, 2 SWS)	6427
B.WIWI-BWL.0038: Supply Chain Management (6 C, 2 SWS)	6429
B.WIWI-BWL.0087: International Marketing (6 C, 2 SWS)	6431
M.WIWI-BWL.0001: Finanzwirtschaft (6 C, 4 SWS)	6747
M.WIWI-BWL.0002: Rechnungslegung nach IFRS (6 C, 4 SWS)	6749
M.WIWI-BWL.0003: Unternehmensbesteuerung (6 C, 4 SWS)	6751
M.WIWI-BWL.0004: Financial Risk Management (6 C, 4 SWS)	6753
M.WIWI-BWL.0006: Seminar in Finanzwirtschaft (6 C, 2 SWS)	6755
M.WIWI-BWL.0008: Derivate (6 C, 4 SWS)	6756
M.WIWI-BWL.0023: Performance Management (6 C, 4 SWS)	6758
M.WIWI-BWL.0034: Logistik- und Supply Chain Management (6 C, 3 SWS)	6760
M.WIWI-BWL.0133: Banking Supervision (6 C, 2 SWS)	6762
M.WIWI-BWL.0134: Panel Data Analysis in Marketing (6 C, 2 SWS)	6764
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) (6 C, 4 SWS)	6765
M.WIWI-QMW.0009: Introduction to Time Series Analysis (6 C, 4 SWS)	
M.WIWI-QMW.0012: Multivariate Time Series Analysis (6 C, 4 SWS)	6772

3. Chemistry

In "Chemistry" as a minor subject the following module may be chosen. Furthermore all modules in Chemistry out of the graduate programm in Chemistry (module number M.Che.****) can be chosen. Selection of modules out of the undergraduate programme in Chemistry may be selected provided approval through the dean of studies of the Faculty of Chemistry. In this case the Study Office Mathematics must be informed beforehand.

Im Nebenfach "Chemie" stehen folgende Module zur Auswahl. Darüber hinaus können alle Chemie-Module aus dem Master-Studiengang "Chemie" (Modul-Nummern M.Che.****) gewählt werden. Die Belegung von Chemie-Modulen aus dem Bachelor-Studiengang "Chemie" ist mit Zustimmung durch die Studiendekanin oder den Studiendekan der Fakultät für Chemie zulässig. Die Belegung eines solchen Moduls ist dem Studienbüro vorab anzuzeigen.

M.Che.1311: Schwingungsspektroskopie und zwischenmolekulare Dynamik (6 C, 4 SWS)645	56
M.Che.1313: Elektronische Spektroskopie und Reaktionsdynamik (6 C, 4 SWS)645	57
M.Che.1314: Biophysikalische Chemie (6 C, 5 SWS)645	58
M.Che.1315: Chemical Dynamics at Surfaces (6 C, 4 SWS)	59

4. Computer Science

a.

In "Computer Science" as a minor subject all the modules with module number B.Inf.**** or M.Inf.**** can be chosen with the exception of the following modules.

Im Nebenfach "Informatik" stehen alle Module mit den Modul-Nummern B.Inf.**** und M.Inf.**** zur Auswahl. Davon abweichend können folgende Module nicht eingebracht werden.

- B.Inf.1101: Grundlagen der Informatik und Programmierung
- B.Inf.1102: Grundlagen der Praktischen Informatik
- · B.Inf.1801: Programmierkurs

b.

In addition, following modules may be chosen.

Weiterhin können folgende Module eingebracht werden:

- B.Phy.5651 Advanced Computational Neuroscience
- B.Phy.5652: Advanced Computational Neuroscience II
- B.Phy.5676: Computer Vision and Robotics
- M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik

5. Philosophy

In "Philosophy" as a minor subject the following modules can be chosen; for at least one of the selected modules a term paper has to be prepared. Advanced studies modules may be chosen after the respective basic studies module has successfully been completed, only.

Im Nebenfach "Philosophie" stehen folgende Module zur Auswahl; in einem der gewählten Module muss eine Hausarbeit angefertigt werden. Aufbaumodule dürfen nur belegt werden, wenn zuvor die entsprechenden Basismodule erfolgreich abgeschlossen wurden.

B.Phi.01: Basismodul Theoretische Philosophie (9 C, 4 SWS)	6410
B.Phi.02: Basismodul Praktische Philosophie (9 C, 4 SWS)	6412
B.Phi.03: Basismodul Geschichte der Philosophie (9 C, 4 SWS)	6414
B.Phi.05: Aufbaumodul Theoretische Philosophie (10 C, 4 SWS)	.6416
B.Phi.06: Aufbaumodul Praktische Philosophie (10 C, 4 SWS)	6418
B.Phi.07: Aufbaumodul Geschichte der Philosophie (10 C, 4 SWS)	6420
B.Phi.18a: Vertiefte Bearbeitung philosophischer Themen für HörerInnen aller Fächer (6 C, 2 SWS)	6422
B.Phi.19a: Spezielle Themen der Philosophie für HörerInnen aller Fächer (3 C, 2 SWS)	6424
M.Phi.101: Ausgewählte Themen der Theoretischen Philosophie (9 C, 4 SWS)	6741
M.Phi.102: Ausgewählte Themen der Praktischen Philosophie (9 C, 4 SWS)	6743
M.Phi.103: Ausgewählte Themen der Geschichte der Philosophie (9 C, 4 SWS)	6745

6. Physics

In "Physics" as a minor subject all modules with module number B.Phy.**** or M.Phy.*** can be chosen, with the exception of the following module:

Im Nebenfach "Physik" stehen alle Module mit den Modul-Nummer B.Phy.**** oder M.Phy.**** zur Auswahl. Davon abweichend kann folgendes Modul <u>nicht</u> absolviert werden:

• B.Phy.1301 "Rechenmethoden der Physik"

7. Economics

In "Economics" as a minor subject the following modules can be chosen: Im Nebenfach "Volkswirtschaftslehre" stehen folgende Module zur Auswahl: B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen (6 C, 4 SWS)........... 6437 B.WIWI-VWL.0006: Wachstum und Entwicklung (6 C, 4 SWS)......6439 B.WIWI-VWL.0007: Einführung in die Ökonometrie (6 C, 6 SWS)......6441 B.WIWI-VWL.0010: Einführung in die Institutionenökonomik (6 C, 2 SWS).......6445 M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) (6 C, 4 SWS)......6765 M.WIWI-QMW.0009: Introduction to Time Series Analysis (6 C, 4 SWS).......6770 M.WIWI-QMW.0012: Multivariate Time Series Analysis (6 C, 4 SWS)......6772 M.WIWI-VWL.0001: Advanced Microeconomics (6 C, 4 SWS).......6774 M.WIWI-VWL.0092: International Trade (6 C, 4 SWS).......6779

IV. Key competencies in the graduate programme in Mathematics

Within the graduate programme in Mathematics, the Unit Mathematics offers the following modules.

Die Lehreinheit Mathematik bietet im Master-Studiengang "Mathematik" folgende Schlüsselkompetenzmodule an.

B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)	. 6267
B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)	6269
B.Mat.0730: Praktikum Wissenschaftliches Rechnen (9 C, 4 SWS)	. 6271
M.Mat.0731: Advanced practical course in scientific computing (10 C, 4 SWS)	. 6490
B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)	6273
M.Mat.0741: Advanced practical course in stochastics (10 C, 6 SWS)	6492
B.Mat.0910: Linux effektiv nutzen (3 C, 2 SWS)	6275
B.Mat.0921: Einführung in TeX/LaTeX und praktische Anwendungen (3 C, 2 SWS)	6277
B.Mat.0922: Mathematics information services and electronic publishing (3 C, 2 SWS)	6279
B.Mat.0931: Tutorentraining (4 C, 2 SWS)	6281
B.Mat.0932: Vermittlung mathematischer Inhalte an ein Fachpublikum (3 C, 2 SWS)	6283
B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und Nutzung wissenschaftlicher Modellsammlungen (4 C, 2 SWS)	
B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen (4 C, 2 SWS)	. 6285
B.Mat.0940: Mathematik in der Welt, in der wir leben (3 C, 2 SWS)	6286
B.Mat.0950: Mitgliedschaft in der studentischen oder akademischen Selbstverwaltung (3 C, 1 SWS).	6288
B.Mat.0951: Ehrenamtliches Engagement in einem mathematischen Umfeld (3 C, 1 SWS)	. 6289
B.Mat.0952: Organisation einer mathematischen Veranstaltung (3 C, 2 SWS)	6290
B.Mat.0970: Betriebspraktikum (8 C)	6291
M.Mat.0971: Internship (10 C)	6494

V. Master's thesis

By successfully completing a Master's thesis students earn 30 C.

VI. Additional optional modules ("Zusatzmodule") (graduate studies)

In addition to the compulsory, the elective compulsory and the elective modules, additional optional modules can be completed, a distinction is made between two classes.

Es können weitere als die erforderlichen Module als Zusatzmodule absolviert werden. Es wird zwischen den nachstehenden Gruppen unterschieden.

1. Additional optional modules ("Zusatzmodule") in Mathematics (graduate studies)

Upon written request the grades of additional optional modules ("Zusatzmodule") are counted towards the overall grade of the Master's Degree. This option is restricted to modules with numbers B.Mat.**** and M.Mat.**** and it is limited to a total of 30 C. These modules are listed as additional optional courses on the Master's Degree certificate and the Transcript of Records.

Auf Antrag werden Noten von freiwilligen Zusatzleistungen ("Zusatzmodule") in Modulen B.Mat.**** oder M.Mat.***** des Master-Studiengangs Mathematik im Umfang von höchstens 30 C bei der Berechnung des Gesamtergebnisses der Masterprüfung berücksichtigt. Diese Zusatzmodule werden als freiwillige Zusatzleistungen in Zeugnis und Zeugnisergänzung (Diploma Supplement) ausgewiesen.

2. Further additional optional modules (graduate studies)

Beyond the additional modules mentioned in the preceding item, further modules not required for the Master's Degree can be completed. These are listed as additional optional modules ("Zusatzmodule") on the Master's Degree certificate and the Transcript of Records, too. However, the respective grades will **not** count towards the overall grade of the Master's Degree. Pre-approval is required in case a module is not listed in this directory of modules.

Über die in dem vorhergehenden Punkt genannten Zusatzmodule hinaus können weitere, für den Masterabschluss nicht erforderliche Module als Zusatzmodule absolviert werden. Diese werden in Zeugnis und Zeugnisergänzung (Transcript of Records) als freiwillige Zusatzleistungen gelistet, jedoch bei der Berechnung des Gesamtergebnisses der Masterprüfung **nicht** berücksichtigt. Im Fall von Modulen, die nicht in diesem Modulverzeichnis genannt werden, muss die Belegung vorab genehmigt werden.

VII. Modulpakete "Mathematik" im Umfang von 36 C oder 18 C (belegbar ausschließlich im Rahmen eines anderen geeigneten Master-Studiengangs)

This paragraph is addressed to students in non-mathematics M.A. graduate programmes, only.

Die Lehreinheit Mathematik bietet folgende Modulpakete für Studierende anderer Studiengänge an. Studierende des Master-Studiengangs "Mathematik" können das Modul B.Mat.1400 und die Module der Form B.Mat.2XXX ausschließlich als freiwillige Zusatzprüfungen absolvieren; dabei fließt die Note nicht in das Gesamtergebnis der Masterprüfung im Master-Studiengang "Mathematik" ein.

1. Zugangsvoraussetzungen

Für die Modulpakete "Mathematik" im Umfang von 36 C bzw. 18 C gelten folgende gemeinsame Zugangsvoraussetzungen:

Nachweis von Leistungen aus Grundlagen der Mathematik im Umfang von insgesamt wenigstens 33 C, darunter Grundlagen der Analysis im Umfang von insgesamt wenigstens 18 C (z.B. durch die Module B.Mat.0011 und B.Mat.0021) sowie der Analytischen Geometrie und Linearen Algebra im Umfang von insgesamt wenigstens 15 C (z.B. durch die Module B.Mat.0012 und B.Mat.0026). Ferner der Nachweis weiterführender Leistungen der reinen oder angewandten Mathematik im Umfang von insgesamt wenigstens 21 C.

2. Modulpaket "Mathematik" im Umfang von 36 C

Es müssen aus dem nachfolgenden Angebot Module im Umfang von insgesamt wenigstens 36 C erfolgreich absolviert werden. Es können weiterführende mathematische Module des Bachelor-Studiengangs "Mathematik" der Georg-August-Universität Göttingen (Modulnummern B.Mat.3XXX) oder mathematische Wahlpflichtmodule aus dem Modulhverzeichnis des Master-Studiengangs "Mathematik" der Georg-August-Universität Göttingen (Modulnummern M.Mat.4XXX) absolviert werden. Empfohlen werden folgende Module:

B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS)	6292
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)	6294
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	6296
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)	6298

B.Mat.2200: Moderne Geometrie (9 C, 6 SWS)	6300
B.Mat.2210: Zahlen und Zahlentheorie (9 C, 6 SWS)	6302
B.Mat.2300: Numerische Analysis (9 C, 6 SWS)	6304
B.Mat.2310: Optimierung (9 C, 6 SWS)	6306

3. Modulpaket "Mathematik" im Umfang von 18 C

Es müssen aus dem nachfolgenden Angebot Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden. Es können weiterführende mathematische Module des Bachelor-Studiengangs "Mathematik" der Georg-August-Universität Göttingen (Modulnummern B.Mat.3XXX) oder mathematische Wahlpflichtmodule aus dem Modulverzeichnis des Master-Studiengangs "Mathematik" der Georg-August-Universität Göttingen (Modulnummern M.Mat.4XXX) absolviert werden. Empfohlen werden folgende Module:

B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS)	. 6292
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)	. 6294
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)	6296
B.Mat.2120: Funktionentheorie (9 C, 6 SWS)	6298
B.Mat.2200: Moderne Geometrie (9 C, 6 SWS)	. 6300
B.Mat.2210: Zahlen und Zahlentheorie (9 C, 6 SWS)	. 6302
B.Mat.2300: Numerische Analysis (9 C, 6 SWS)	6304
B.Mat.2310: Optimierung (9 C, 6 SWS)	6306

VIII. Methods of examination and glossary

Methods of examination

As far as in this directory of modules a module description is published in the English language the following mapping applies:

Soweit in diesem Modulverzeichnis Modulbeschreibungen in englischer Sprache veröffentlicht werden, gilt für die verwendeten Prüfungsformen nachfolgende Zuordnung:

- Oral examination = mündliche Prüfung [§ 15 Abs. 8 APO]
- Written examination = Klausur [§ 15 Abs. 9 APO]
- Term paper = Hausarbeit [§ 15 Abs. 11 APO]
- Presentation = Präsentation [§ 15 Abs. 12 APO]
- Presentation and written report = Präsentation mit schriftlicher Ausarbeitung [§ 15 Abs. 12 APO]

Glossary

APO = Allgemeinen Prüfungsordnung für Bachelor- und Master-Studiengänge sowie sonstige Studienangebote an der Universität Göttingen

PStO = Prüfungs- und Studienordnung für den Bachelor/Master-Studiengang "Mathematik"

WLH = Weekly lecture hours = SWS

Programme coordinator = Studiengangsbeauftrage/r

Georg-August-Universität Göttingen	6 C
Module B.Inf.1236: Machine Learning	4 WLH

Module B.Inf. 1236: Machine Learning	
Learning outcome, core skills: Students • learn concepts and techniques of machine learning and understand their advantages and disadvantages compared with alternative approaches • learn techniques of supervised learning for classification and regression • learn techniques of unsupervised learning for density estimation, dimensionality reduction and clustering • implement machine learning algorithms like linear regression, logistic regression, kernel methods, tree-based methods, neural networks, principal component analysis, k-means and Gaussian mixture models • solve practical data science problems using machine learning methods	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Machine Learning (Lecture) Bishop: Pattern recognition and machine learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1236.Ex: At least 50% of homework exercises solved. Examination requirements: Knowledge of the working principles, advantages and disadvantages of the machine learning methods covered in the lecture	6 C
Course: Machine Learning - Exercise (Exercise)	2 WLH

,	
Admission requirements:	Recommended previous knowledge: Knowledge of basic linear algebra and probability
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4
Maximum number of students:	

Georg-August-Universität Göttingen	6 C 4 WLH
Module B.Inf.1237: Deep Learning	4 WEH

Module B.Inf.1237: Deep Learning	7 ***
Learning outcome, core skills: Students • learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches • learn to solve practical data science problems using deep learning • implement deep learning techniques like multi-layer perceptrons, convolutional neural nerworks, recurrent neural networks, deep reinforcement learning • learn techniques for optimization and regularization of deep neural networks	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Deep Learning (Lecture) Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1237.Ex: At least 50% of homework exercises solved. Examination requirements: Knowledge of basic deep learning techniques, their advantages and disadvantages and approaches to optimization and regularization. Ability to implement these techniques.	6 C
Course: Deep Learning - Exercise (Exercise)	2 WLH

Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 5
Maximum number of students: 100	

Soor g / tagast Sint Stonat Sottings:	5 C 3 WLH
Module B.Inf.1240: Visualization	3 WLH

Learning outcome, core skills: Workload: Knowledge of Attendance time: 42 h • the potentials and limitations of data visualization Self-study time: · the fundamentals of visual perception and cognition and their implications for data 108 h visualization. Students can apply these to the design of visualizations and detect manipulative design choices • a broad variety of techniques for visual representation of data, including abstract and high-dimensional data. Students can select appropriate methods on new problems • integration of visualization into the data analysis process, algorithmic generation and interactive methods Course: Visualization (Lecture, Exercise) 3 WLH

Course. Visualization (Ecotaro, Excisioo)	O WEIT
Examination: Practical project (2-3 weeks) with presentation and questions during	5 C
oral exam in groups (approx. 20 minutes per examinee).	
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of potentials and limitations of data visualization, fundamentals of visual	
perception and their implications for good design choices, techniques for visual	
representation and how to use them.	

Admission requirements:	Recommended previous knowledge: Basic linear algebra and programming skills
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 3 - 6
Maximum number of students: 50	

100019 / tagaot om voi onat oottinigon	6 C
Module B.Inf.1241: Computational Optimal Transport	4 WLH

Learning outcome, core skills:	Workload:
Knowledge of	Attendance time:
 the fundamental notions of optimal transport, and its strengths and limitations as a data analysis tool the discrete Kantorovich formulation, its convex duality, and Wasserstein distances classical numerical algorithms, entropic regularization, and their scopes of applicability examples for data analysis applications. Students can transfer these to new 	56 h Self-study time: 124 h
potential applications Course: Computational Optimal Transport (Lecture, Exercise)	4 WLH

Course: Computational Optimal Transport (Lecture, Exercise)	4 WLH
Examination: Written exam (90 minutes) or oral exam (approx. 20 minutes)	6 C
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of Kantorovich duality, Wasserstein distances, standard algorithms and	
implications for data analysis applications.	

Admission requirements: none	Recommended previous knowledge: B.Mat.2310: Optimierung, analysis, linear algebra, programming skills
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: 50	

Georg-August-Universität Göttingen Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software

Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software	
Lernziele: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden • die Grundprinzipien der Programmierung erfasst; • die Befähigung zum sicheren Umgang mit einer Programmiersprache im mathematische Kontext erworben; • Erfahrungen mit elementaren Algorithmen und deren Anwendungen gesammelt. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende	Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
 Kenntnisse über eine Programmiersprache im mathematischen Kontext erworben. Sie haben die Fähigkeit erworben, Algorithmen in einer Programmiersprache umzusetzen; haben gelernt die Programmiersprache zum Lösen von Algebraischen Problemen zu nutzen (Computeralgebra CAS). 	
Lehrveranstaltung: Blockkurs Inhalte: Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Einführung in Python und Computeralgebra".	2 SWS
Prüfung: Klausur (90 Minuten)	3 C
Prüfungsanforderungen: Grundkenntnisse in einer Programmiersprache mit Fokus auf mathematisch orientierte Anwendung und Hintergrund.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

• Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik.

• Ausschluss: Studierende, die das Modul B.Mat.0721 bereits erfolgreich absolviert haben, dürfen das Modul B.Mat.0720 nicht absolvieren.

42 Stunden

Selbststudium:

138 Stunden

Georg-August-Universität Göttingen Modul B.Mat.0721: Mathematisch orientiertes Programmieren English title: Mathematics related programming Lernziele/Kompetenzen: Lernziele: Arbeitsaufwand: Präsenzzeit:

Das erfolgreiche Absolvieren des Moduls ermöglicht den Studierenden den sicheren Umgang mit mathematischen Anwendersystemen. Die Studierenden

- erwerben die Befähigung zum sicheren Umgang mit mathematischen Anwendersystemen,
- erfassen die Grundprinzipien der Programmierung,
- sammeln Erfahrungen mit elementaren Algorithmen und deren Anwendungen,
- verstehen die Grundlagen der Programmierung in einer high-level Programmiersprache,
- · lernen Kontroll- und Datenstrukturen kennen,
- erlernen die Grundzüge des imperativen und funktionalen Programmierens,
- setzen Bibliotheken zur Lösung naturwissenschaftlicher Fragestellungen ein,
- erlernen verschiedene Methoden der Visualisierung,
- beherrschen die Grundtechniken der Projektverwaltung (Versionskontrolle, Arbeiten im Team).

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Techniken für das Lösen mathematisch/physikalischer Problemstellungen mit der Hilfe einer high-level Programmiersprache erlernt.

Lehrveranstaltung: Blockkurs Inhalte: Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Mathematisch orientiertes Programmieren" Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 min) 6 C

Prüfungsanforderungen:

Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten. Die Teilnehmer/ innen weisen grundlegende Techniken für das Lösen mathematisch/physikalischer Problemstellungen mit der Hilfe einer Programmiersprache nach.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: 120	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik	

Georg-August-Universität Göttingen 9 C 4 SWS Modul B.Mat.0730: Praktikum Wissenschaftliches Rechnen English title: Practical course in scientific computing

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 56 Stunden Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden praktische Selbststudium: Erfahrungen im wissenschaftlichen Rechnen. Sie 214 Stunden · erstellen größere Programmierprojekte in Einzel- oder Gruppenarbeit; · erwerben und festigen Programmierkenntnisse; • haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, • mathematische Algorithmen und Verfahren in einer Programmiersprache oder einem Anwendersystem zu implementieren; · spezielle numerische Bibliotheken zu nutzen; • komplexe Programmieraufgaben so zu strukturieren, dass sie effizient in Gruppenarbeit bewältigt werden können. Lehrveranstaltung: Praktikum Wissenschaftliches Rechnen 4 SWS

Prüfung: Präsentation (ca. 30 Minuten) oder Hausarbeit (max. 50 Seiten ohne Anhänge) Prüfungsvorleistungen: Regelmäßige Teilnahme im Praktikum	9 C
Prüfungsanforderungen:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0721, B.Mat.1300 Kenntnis des objektorientierten Programmierens
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte(r)
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

Präsenzzeit: 84 Stunden

Selbststudium:

186 Stunden

Georg-August-Universität Göttingen	9 C 6 SWS
Modul B.Mat.0740: Stochastisches Praktikum	0 3003
English title: Practical course in stochastics	

Lernziele/Kompetenzen: Arbeitsaufwand:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den grundlegenden Eigenschaften und Methoden einer stochastischen Simulationsund Analyse-Software (z.B. "R" oder Matlab) vertraut. Sie haben in Projektarbeit Spezialkenntnisse in Stochastik erworben. Sie

- · implementieren und interpretieren selbstständig einfache stochastische Problemstellungen in einer entsprechenden Software;
- schreiben selbständig einfache Progamme in der entsprechenden Software;
- beherrschen einige grundlegende Techniken der statistischen Datenanalyse und stochastischen Simulation, wie etwa der deskriptiven Statistik, der linearen, nichtlinearen und logistischen Regression, der Maximum-Likelihood-Schätzmethode, sowie von verschiedenen Testverfahren und Monte-Carlo-Simulationsmethoden.

Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · eine stochastische Simulations- und Analyse-Software auf konkrete stochastische Problemstellungen anzuwenden und die erhaltenen Resultate fachgerecht zu präsentieren;
- statistische Daten und ihre wichtige Eigenschaften adäguat zu visualisieren und interpretieren.

Lehrveranstaltung: Stochastisches Praktikum	6 SWS
Prüfung: Präsentation (ca. 45 Minuten) mit schriftlicher Ausarbeitung (max. 50	9 C
Seiten ohne Anhänge)	

Prüfungsanforderungen: Weiterführende Kenntnisse in Stochastik

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.2410
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0910: Linux effektiv nutzen	2 SWS
English title: Effective use of Linux	

Lernziele/Kompetenzen:

Lernziele:

Das UNIX-Derivat Linux ist mit Abstand das meistgenutzte Betriebssystem, allerdings nicht auf dem Desktop, sondern in Mobiltelefonen, auf Heimgeräten und auf Servern. Auch MAC-Systeme beruhen auf einem UNIX-System. Diese Modul biete eine Einführung in Grundlagen des Systems und der Netzwerkanbindung von Linux. Der Schwerpunkt liegt in der Nutzung von Linux und der Automation von Aufgaben auf der Commandline. Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über fundierte Grundlagenkenntnisse in folgenden Bereichen:

- Linux als Einzelsystem;
- · Linux im Netzwerk;
- · Automatisierung von Aufgaben mit Shellskripten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · wesentlichen Abläufe im Linuxsystem zu verstehen;
- mit einem Mehrbenutzerbetriebssystem auf der Ebene einfacher Systemverwaltung im Einzel- und im Netzwerkbetrieb umzugehen;
- Skripte zur effektiven Aufgabenbewältigung zu erstellen.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Vorlesung mit integrierten Übungen	2 SWS
Prüfung: Klausur (90 Minuten), unbenotet	3 C
Prüfungsvorleistungen:	
B.Mat.0910.Ue: Erreichen von mindestens 50% der Übungspunkte	

Prüfungsanforderungen:

Grundkenntnisse in der Erstellung von Skripten im Einzel- und Netzwerkbetrieb, sicherer Umgang mit und Zuordnung von Begriffen aus einem Mehrbenutzerbetriebssystem im Einzel- und Netzwerkbetrieb.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Sicherer Umgang mit einem Computersystem
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Schlüsselkompetenz im Bereich "EDV/IKT-Kompetenz (IKT=Informations- und Kommunikationstechnologie)", auch für Studierende anderer Fakultäten.

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul B.Mat.0921: Einführung in TeX/LaTeX und praktische	2 SWS
Anwendungen	
English title: Introduction to TeX/LaTeX with applications	

Anwendungen	2 SVVS	
English title: Introduction to TeX/LaTeX with applications		
Lernziele/Kompetenzen: Lernziele:	Arbeitsaufwand: Präsenzzeit:	
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit dem Einsatz von TeX oder LaTeX zur Erstellung von wissenschaftlichen Texten und Vorträgen vertraut. Sie	28 Stunden Selbststudium: 62 Stunden	
 sind vertraut mit ordentlicher Dokumentengliederung; erstellen Literaturangaben und Querverweise; erzeugen mathematische Formeln; erzeugen Grafiken und binden sie ein. 		
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,		
einfache Dokumente mit LaTeX zu erstellen;ansprechende Vortragsfolien mit LaTeX zu erzeugen.		
Lehrveranstaltung: Blockkurs		
Inhalte:		
Einwöchige Blockveranstaltung mit Praktikum		
Prüfung: Hausarbeit (max. 10 Seiten), unbenotet	3 C	
Prüfungsvorleistungen:		
Regelmäßige Teilnahme an der Veranstaltung		
Prüfungsanforderungen:		
Erstellung eines wissenschaftlichen Portfolios mit TeX/LaTeX und der Folien für eine Präsentation mit Beamer-TeX.		

Prüfungsanforderungen: Sicherer Umgang mit den grundlegenden Funktionen von LaTeX und Bearmer-TeX

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse im Umgang mit einem Computer.
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen

Module B.Mat.0922: Mathematics information services and electronic publishing

3 C (incl. key comp.: 3 C) 2 WLH

Learning outcome, core skills:

Learning outcome:

After having successfully completed the module, students are familiar with the basics of mathematics information services and electronic publishing. They

- work with popular information services in mathematics and with conventional, nonelectronic as well as electronic media;
- know a broad spectrum of mathematical information sources including classification principles and the role of meta data;
- are familiar with current development in the area of electronic publishing in the subject mathematics.

Core skills:

After successfull completion of the module students have acquired subject-specific information competencies. They

- · have suitable research skills;
- are familiar with different information and specific publication services.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	
Contents:	
Lecture course with project report	
Examination: Written examination (90 minutes), not graded	3 C
Examination prerequisites:	
Regular participation in the course	

Examination requirements:

Application of the acquired skills in individual projects in the area of mathematical information services and electronic publishing

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Programme coordinator
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximum number of students: not limited	

Additional notes and regulations:

Instructors: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen		4 C (Anteil SK: 4
Modul B.Mat.0931: Tutorentraining English title: Coaching of teaching assistants		C) 2 SWS
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:
Nach erfolgreichem Absolvieren des Moduls sind die und praktischen Fragestellungen der Vermittlung matl werden befähigt,		28 Stunden Selbststudium: 92 Stunden
 mathematische Inhalte an Studierende im erster eine heterogene Übungsgruppe zu leiten. verschiedene Lehrmethoden und Visualisierung souverän aufzutreten. 	,	
Kompetenzen:		
Nach erfolgreichem Absolvieren des Moduls sind die	Studierenden in der Lage,	
 Rhetorik- und Präsentationstechniken einzusetz Teamkompetenzen (insb. Motivationsfähigkeit u Konfliktsituationen) einzusetzen; Methoden des Zeitmanagements zu verwenden interkulturelle Kompetenzen, insbesondere inter einzusetzen. 	nd sicherer Umgang mit	
Lehrveranstaltung: Integratives Projekt Inhalte: Neben dem Leiten einer Übungsgruppe während des einer Blockveranstaltung beinhaltet das Projekt ein Vo	orbereitungsseminar und ein	
Abschlussseminar sowie begleitende Kurzveranstaltu		
Prüfung: Präsentation [Übungsstunde] (ca. 45 Mir Ausarbeitung (max. 5 Seiten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung	nuten) und schriftliche	4 C
Prüfungsanforderungen: Nachweis des Erreichens der Lernziele und Erwerbs dumsetzung in einer Übungsstunde	der Kompetenzen durch	
Zugangsvoraussetzungen: Übertragung der Leitung einer Übungsgruppe zu einer Lehrveranstaltung der Fakultät für Mathematik und Informatik im gleichen Semester	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit:	Dauer:	

jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl:	
nicht begrenzt	
Remerkungen:	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen 3 C (Anteil SK: 3 C) Modul B.Mat.0932: Vermittlung mathematischer Inhalte an ein 2 SWS **Fachpublikum** English title: Communicating mathematical topics to a professional audience Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit theoretischen Selbststudium: und praktischen Grundlagen der Vermittlung mathematischen Wissens vertraut. Sie 62 Stunden • schätzen das Niveaus der Zielgruppe einer mathematischen Darbietung ein; · strukturieren Präsentationen gut; • beherrschen sicher stilistische und technische Aspekte der Darbietung; • wählen adäquate Hilfsmittel (z.B. zur Visualisierung); steuern die Diskussion mit dem Publikum. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über je nach Veranstaltung verschiedene Kommunikations- und Vermittlungskompetenzen sowie ggf. Fremdsprachenkompetenzen. Lehrveranstaltung: Veranstaltung mit theoretischem und praktischem Anteil, kann ggf. als Blockveranstaltung angeboten werden oder als Teil eines mathematischen Seminars. (Seminar) 3 C Prüfung: Präsentation (ca. 45 Minuten), unbenotet Prüfungsvorleistungen: Teilnahme an der Veranstaltung Prüfungsanforderungen: Nachweis des Erreichens der Lernziele durch Anfertigen einer Darbietung zur Vermittlung mathematischer Inhalte (Format der Darbietung je nach Veranstaltung) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Modulverantwortliche[r]: Sprache: Deutsch, Englisch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: keine Angabe 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 3 - 6; Master: 1 - 4; Promotion: 1 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt Bemerkungen: Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen

Modul B.Mat.0935: Historische, museumspädagogische und technische Aspekte für den Aufbau, Erhalt und die Nutzung wissenschaftlicher Modellsammlungen

English title: Historical, museum-related, and technical aspects of the building-up, the maintenance and the use of scientific collections

4 C (Anteil SK: 4 C)

2 SWS

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium: 92 Stunden

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse des Planens und Gestaltens von Mathematikunterricht und mathematikdidaktischen Forschungsprojekten

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls nutzen die Studierenden Kenntnisse der mathematischen Wissensvermittlung. Sie

- ordnen wissenschaftliche Modellsammlungen in ihren historischen Kontext ein,
- nutzen museumspädagogische Ansätze für die Vermittlung mit Hilfe von Objekten,
- kennen Beispiele für Techniken, die für den Aufbau und Erhalt von Objekten in Modellsammlungen erforderlich sind.

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen:

Erarbeitung historischer, museumspädagogischer und technischer Aspekte eines Modells oder mehrerer Modelle in Kontexten von Sammlungen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.0936: Medienbildung zu mathematischen Objekten und Problemen English title: Media education for mathematical objects and problems 4 C (Anteil SK: 4 C) 2 SWS

Lernziele/Kompetenzen: Lernziele: Präsenzzeit: 28 Stunden

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über Kenntnisse des Medienunterstützen Lehrens und Lernens zu mathematischen Objekten und Problemen.

28 Stunden Selbststudium: 92 Stunden

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls ordnen die Studierenden wissenschaftliche Modellsammlungen in ihren historischen Kontext ein. Sie

- nutzen Kenntnisse der Medienbildung zur mathematischen Wissensvermittlung,
- vergleichen unterschiedliche Designs für die Illustration mathematischer Objekte und Probleme,
- implementieren beispielhaft unterschiedliche medientechnische Realisierungen mathematischer
- · Objekte.

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Portfolio (max. 5000 Zeichen), unbenotet	4 C

Prüfungsanforderungen:

Erarbeitung medienbezogener Aspekte eines Modells oder mehrerer Modelle in Kontexten von Sammlungen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.0940: Mathematik in der Welt, in der wir leben English title: The mathematical nature of the world we are living in

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit der Rolle der Mathematik in unserer Gesellschaft vertraut, wobei die Schwerpunktsetzung je nach Veranstaltung ausgestaltet wird. Die Studierenden

- entwickeln ein stärkeres Bewusstsein für die Rolle der Mathematik in anderen Fachdisziplinen;
- erwerben ein tieferes Verständnis für die Bedeutung der Mathematik für den (technologischen) Fortschritt;
- erkennen die Bedeutung der Mathematik für das Verständnis von Vorgängen und Erscheinungen in der Natur;
- verstehen die Rolle der Mathematik in der Gesellschaft.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über verschiedene Kompetenzen, je nach Ausgestaltung der Lehrveranstaltung haben sie

- · ihre Befähigung zum Logischen Denken ausgebaut;
- das mathematische Interpretieren von Observationen und Daten in einem außermathematischem Kontext erlernt:
- die Transferfähigkeit von abstraktem Wissen auf reelle Situationen erworben;
- ihre Methodenkompetenz im mathematischen Bereich gestärkt.

Lehrveranstaltung: Vorlesung oder Seminar Prüfung: Klausur (90 Minuten) oder Hausarbeit (max. 10 Seiten), unbenotet 3 C

Prüfungsanforderungen:

Nachweis des Erreichens der Lernziele durch Anwendung auf ausgewählte Problemstellungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium:

62 Stunden

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Modul B.Mat.0950: Mitgliedschaft in der studakademischen Selbstverwaltung English title: Membership in the student or academic sel Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen der F. Präsentation sowie Grundkenntnisse in der Projektplanu in Rhetorik, in Selbstpräsentation und in freier Rede. Im Studierenden vertiefte Kenntnisse in den Bereichen Mod Gesprächsführung sowie Entscheidungs- und Konfliktlös Lehrveranstaltung: Gremienveranstaltung Prüfung: Hausarbeit (max. 5 Seiten), unbenotet Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähigunder Praxis mit theoretischen Wissen verknüpfen und Me	Planung, Organisation, ung. Sie erwerben Kompetenzen n Praxisteil erlangen die derationstechniken, sungsverhalten in Gruppen.	Arbeitsaufwand: Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden
Die Studierenden erwerben zentrale Kompetenzen der F Präsentation sowie Grundkenntnisse in der Projektplanu in Rhetorik, in Selbstpräsentation und in freier Rede. Im Studierenden vertiefte Kenntnisse in den Bereichen Mod Gesprächsführung sowie Entscheidungs- und Konfliktlös Lehrveranstaltung: Gremienveranstaltung Prüfung: Hausarbeit (max. 5 Seiten), unbenotet Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähigung	ung. Sie erwerben Kompetenzen n Praxisteil erlangen die derationstechniken, sungsverhalten in Gruppen. ung, dass sie Erfahrungen aus	Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden
Prüfung: Hausarbeit (max. 5 Seiten), unbenotet Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähigu	•	
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befähigu	•	
Die Studierenden erbringen den Nachweis der Befähigu	•	
können.	stroder der Nellektion anwenden	
1 1	Empfohlene Vorkenntnisse: ceine	
I -	Modulverantwortliche[r]:	
	Studiengangsbeauftragte/r	
9	Dauer: Semester	
	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Pron	notion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt		

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

Georg-August-Universität Göttingen		3 C (Anteil SK: 3
		C) 1 SWS
	IVII OTII TOTI	
Lernziele/Kompetenzen: Die Studierenden erwerben zentrale Kompetenzen of Präsentation sowie Grundkenntnisse in der Projektp in Rhetorik, in Selbstpräsentation und in freier Rede Studierenden vertiefte Kenntnisse in mathematische mindestens einem der folgenden Bereichen: • Moderationstechniken, • Gesprächsführung • Entscheidungs- und Konfliktlösungsverhalten i	lanung. Sie erwerben Kompetenzen . Im Praxisteil erlangen die er Wissensvermittlung sowie in	Arbeitsaufwand Präsenzzeit: 14 Stunden Selbststudium: 76 Stunden
Lehrveranstaltung: Projektarbeit		
Prüfung: Portfolio (max. 5 Seiten), unbenotet		3 C
Prüfungsanforderungen: Die Studierenden erbringen den Nachweis der Befä	nigung, dass sie Erfahrungen aus	
	• •	
Die Studierenden erbringen den Nachweis der Befäder Praxis mit theoretischen Wissen verknüpfen und	• •	
Die Studierenden erbringen den Nachweis der Befäder Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder	Methoden der Reflektion anwenden Empfohlene Vorkenntnisse:	
Die Studierenden erbringen den Nachweis der Befäder Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik-Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel	Methoden der Reflektion anwenden Empfohlene Vorkenntnisse:	
Die Studierenden erbringen den Nachweis der Befä der Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik- Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel 4. MatheCamp Sprache:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]:	
Die Studierenden erbringen den Nachweis der Befä der Praxis mit theoretischen Wissen verknüpfen und können. Zugangsvoraussetzungen: Ehrenamtliche Tätigkeit ohne Entgelt oder Aufwandsentschödigung, z.B. 1. bei der Durchführung der Mathematik- Olympiade oder dem Bundeswettbewerb Mathematik 2. Nachhilfe im Rahmen von sozialen Projekten 3. Mathematisches Korrespondenz-Zirkel 4. MatheCamp Sprache: Deutsch, Englisch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Studiengangsbeauftragte/r Dauer:	

Dozent/in: Studiendekan/in Mathematik oder Studienreferent/in Mathematik

3 C (Anteil SK: 3 Georg-August-Universität Göttingen C) Modul B.Mat.0952: Organisation einer mathematischen 2 SWS Veranstaltung English title: Event management in mathematics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Problemen, die Selbststudium: bei der Organisation einer mathematischen Veranstaltung entstehen, vertraut. Dabei 62 Stunden wird die Schwerpunktsetzung je nach dem zu organisierenden Veranstaltungsprojekt ausgestaltet, zu dem die Studierenden einen abgegrenzten, aktiven Beitrag leisten. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls verfügen die Studierenden über

Organisations- und Managementkompetenzen;

· Kompetenzen im Informations- und Zeitmanagement;

verschiedene Kompetenzen, je nach Ausgestaltung des Veranstaltungsprojekts

· Teamkompetenz.

erwerben sie

Lehrveranstaltung: Integratives Projekt Inhalte:	
Angebotshäufigkeit: jährlich	
Prüfung: Projektpräsentation (ca. 20 Minuten) oder Hausarbeit (max. 5 Seiten), unbenotet	3 C

Prüfungsanforderungen: Nachweis der Kompetenzen und Fähigkeiten durch einen abgegrenzten, aktiven Beitrag zu einem Veranstaltungsprojekt.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:
Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen Modul B.Mat.0970: Betriebspraktikum		8 C (Anteil SK: 8 C)	
English title: Internship			
Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden Kompetenzen in projektbezogener und forschungsorientierter Teamarbeit sowie im Projektmanagement. Sie sind mit Verfahren, Werkzeugen und Prozessen der Mathematik sowie dem organisatorischen und sozialen Umfeld der Praxis vertraut.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 240 Stunden	
Lehrveranstaltung: Prüfungskolloquium (Kolloquium)			
Prüfung: Präsentation (ca. 20 Minuten) mit schriftlicher Ausarbeitung (max. 10 Seiten), unbenotet Prüfungsvorleistungen: Bescheinigung über die erfolgreiche Erfüllung der gestellten Aufgaben gemäß Praktikumsplan		8 C	
Prüfungsanforderungen: Erfolgreiche Bearbeitung der gestellten Aufgabe Studierenden, der Lehrperson und dem Betrieb			
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine			
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Studiengangsbeauftragte/r		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4; Pror	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4; Promotion: 1 - 6	
Maximale Studierendenzahl: nicht begrenzt			

Dozent/in: Lehrpersonen der Lehreinheit Mathematik

Georg-August-Universität Göttingen

Modul B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie

English title: Measure and probability theory

9 C 6 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und Methoden der Maßtheorie sowie auch der Wahrscheinlichkeitstheorie vertraut, die die Grundlage des Schwerpunkts "Mathematische Stochastik" bilden. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen;
- verstehen grundlegende Eigenschaften sowie Existenz und Eindeutigkeitsaussagen von Maßen;
- gehen sicher mit allgemeinen Maß-Integralen um, insbesondere mit dem Lebesque-Integral;
- · kennen sich mit Lp-Räumen und Produkträumen aus;
- formulieren wahrscheinlichkeitstheoretische Aussagen mit Wahrscheinlichkeitsräumen, Wahrscheinlichkeitsmaßen und Zufallsvariablen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- beschreiben Wahrscheinlichkeitsmaße mit Hilfe von Verteilungsfunktionen bzw.
 Dichten;
- · verstehen und nutzen das Konzept der Unabhängigkeit;
- berechenen Erwartungswerte von Funktionen von Zufallsvariablen;
- verstehen die verschiedenen stochastischen Konvergenzbegriffe und ihre Beziehungen;
- · kennen charakteristische Funktionen und deren Anwendungen;
- besitzen Grundkenntnisse über bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte;
- verwenden das schwache Gesetz der großen Zahlen und den zentralen Grenzwertsatz:
- kennen einfache stochastische Prozesse wie z.B. Markov-Ketten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Mathematische Stochastik" erworben. Sie sind in der Lage,

- Maßräume und Maß-Integrale anzuwenden;
- stochastische Denkweisen einzusetzen und einfache stochastische Modelle zu formulieren:
- · stochastische Modelle mathematisch zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

durchzuführen; • grundlegende Grenzwertsätze der Wahrscheinlichkeitstheorie zu verwenden.		
Lehrveranstaltung: Maß- und Wahrscheinlichke	eitstheorie (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.1400.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C
Lehrveranstaltung: Maß- und Wahrscheinlichkeitstheorie - Übung (Übung)		2 SWS
Prüfungsanforderungen: Nachweis von Grundkenntnissen in diskreter Stochastik sowie Maß- und Wahrscheinlichkeitstheorie		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022	
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik		

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2100: Partielle Differenzialgleichungen	6 SWS
English title: Partial differential equations	

Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: 84 Stunden

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit grundlegenden Typen von Differenzialgleichungen und Eigenschaften ihrer Lösungen vertraut. Sie

- beschreiben grundlegende Eigenschaften von Lösungen der Laplace-,
 Wärmeleitungs- und Wellengleichung und zugehöriger Rand- bzw. Anfangs-Randwertprobleme;
- sind mit grundlegenden Eigenschaften von Fourier-Transformation und Sobolev-Räumen auf beschränkten und unbeschränkten Gebieten vertraut;
- analysieren die Lösbarkeit von Randwertproblemen für elliptische Differenzialgleichungen mit variablen Koeffizienten;
- analysieren die Regularität von Lösungen elliptischer Randwertprobleme im Inneren und am Rand.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- den Typ einer partiellen Differenzialgleichung zu erkennen und auf qualitative Eigenschaften ihrer Lösungen zu schließen;
- mathematisch relevante Fragestellungen zu partiellen Differenzialgleichungen zu erkennen;
- den Einfluss von Randbedingungen und Funktionenräumen auf Existenz, Eindeutigkeit und Stabilität von Lösungen zu beurteilen.

Präsenzzeit:
84 Stunden
Selbststudium:
186 Stunden

Lehrveranstaltung: Partielle Differenzialgleichungen (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.2100.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen	9 C
Lehrveranstaltung: Partielle Differenzialgleichungen - Übung (Übung)	2 SWS

Letil veranstaltung. Fartielle binerenzialgielenungen - Obung (Obung)	2 3003
Prüfungsanforderungen:	
Nachweis der Grundkenntnisse über partielle Differenzialgleichungen	
Inachweis der Grundkennthisse über partielle billerenzlatgielchungen	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: zweijährig jeweils im Wintersemester	Dauer: 1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	4 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts f\u00fcr Numerische und Angewandte Mathematik
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen Modul B.Mat.2110: Funktionalanalysis English title: Functional analysis

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit funktionalanalytischer Denkweise und den zentralen Resultaten aus diesem Gebiet vertraut. Sie

- gehen sicher mit den gängigsten Beispielen von Funktionen- und Folgenräumen wie Lp, lp und Räumen stetiger Funktionen um und analysieren deren funktionalanalytische Eigenschaften;
- wenden die grundlegenden Sätze über lineare Operatoren in Banach-Räumen an, insbesondere die Sätze von Banach-Steinhaus, Hahn-Banach und den Satz über die offene Abbildung;
- argumentieren mit schwachen Konvergenzbegriffen und den grundlegenden Eigenschaften von Dual- und Bidualräumen;
- erkennen Kompaktheit von Operatoren und analysieren die Lösbarkeit linearer Operatorgleichungen mit Hilfe der Riesz-Fredholm-Theorie;
- sind mit grundlegenden Begriffen der Spektraltheorie und dem Spektralsatz für beschränkte, selbstadjungierte Operatoren vertraut.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- in unendlich-dimensionalen Räumen geometrisch zu argumentieren;
- Aufgabenstellungen in funktionalanalytischer Sprache zu formulieren und zu analysieren;
- die Relevanz funktionalanalytischer Eigenschaften wie der Wahl eines passenden Funktionenraums, Vollständigkeit, Beschränktheit oder Kompaktheit zu erkennen und zu beschreiben.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Funktionalanalysis (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		9 C
Prüfungsvorleistungen:		
B.Mat.2110.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges		
Vorrechnen von Lösungen in den Übungen		
Laboratore Continue C		2 SWS
Lehrveranstaltung: Funktionalanalysis - Übung (Übung)		2 3 7 7 3
Prüfungsanforderungen:		
Nachweis der Grundkenntnisse über Funktionalanalysis		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Mat.0021, B.Mat.0022	
Sprache:	Modulverantwortliche[r]:	

Englisch, Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen Modul B.Mat.2120: Funktionentheorie English title: Complex analysis

Lernziele/Kompetenzen: Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der komplexen Analysis vertraut. Sie

- gehen sicher mit dem Holomorphiebegriff um und kennen gängige Beispiele von holomorphen Funktionen;
- beherrschen insbesondere die verschiedenen Definitionen für Holomorphie und erkennen deren Äquivalenz;
- verstehen den Cauchyschen Intergralsatz und den Residuensatz und wenden diese Sätze innerhalb der Funktionentheorie an:
- erarbeiten weitere ausgewählte Themen der Funktionentheorie;
- erlernen und vertiefen funktionentheoretische Herangehensweisen an mathematische Problemstellungen an Hand ausgewählter Beispiele.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sicher mit grundlegenden Methoden und Grundbegriffen aus der Funktionentheorie umzugehen;
- auf Basis funktionentheoretischer Denkweisen und Beweistechniken zu argumentieren;
- sich in verschiedene Fragestellungen im Bereich "Funktionentheorie" einzuarbeiten:
- funktionentheoretische Methoden auf weiterführende Themen aus der Funktionentheorie und verwandten Gebieten anzuwenden.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Funktionentheorie (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2120.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Lehrveranstaltung: Funktionentheorie - Übung (Übung)	2 SWS

Prüfungsanforderungen: Nachweis der Grundkenntnisse in Funktionentheorie

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:

jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1100 "Analysis auf Mannigfaltigkeiten"
 - B.Mat.2110 "Funktionalanalysis"
 - B.Mat.2120 "Funktionentheorie"
 - B.Mat.2100 "Partielle Differenzialgleichungen"
 - B.Mat.0030 "Gewöhnliche Differenzialgleichungen"

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2200: Moderne Geometrie	6 SWS
English title: Modern geometry	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Methoden und Konzepten der modernen Geometrie vertraut. Abhängig vom weiterführenden Angebot stehen Methoden der elementaren Differenzialgeometrie oder grundlegende Konzepte der algebraischen Geometrie im Mittelpunkt. Die Studierenden

- kennen die Grundlagen der Differenzialgeometrie von Kurven und Flächen;
- sind mit den inneren Eigenschaften von Flächen vertraut;
- · lernen einfache globale Ergebnisse kennen;

oder sie

- kennen grundlegende Konzepte der algebraischen Geometrie in wichtigen Beispielen;
- sind mit der Formulierung geometrischer Fragen in der Sprache der Algebra vertraut:
- arbeiten mit zentralen Begriffen und Ergebnissen der kommutativen Algebra.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren dieses Moduls verfügen die Studierenden über grundlegende Kompetenzen in der modernen Geometrie und sind auf weiterführende Veranstaltungen in der Differenzialgeometrie oder in der algebraischen Geometrie vorbereitet. Sie sind in der Lage,

- geometrische Fragestellungen mit Konzepten der Differenzialgeometrie oder der algebraischen Geometrie zu präzisieren;
- Probleme anhand von Ergebnissen der Differenzialgeometrie oder der algebraischen Geometrie zu lösen;
- mit Fragestellungen und Anwendungen des jeweiligen Gebiets umzugehen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Vorlesung (Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)	Prüfung: Klausur (120 Minuten)	
Prüfungsvorleistungen:	Prüfungsvorleistungen:	
B.Mat.2200.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges		
Vorrechnen von Lösungen in den Übungen		
Lehrveranstaltung: Übung		2 SWS
Angebotshäufigkeit: jedes Wintersemester		
Prüfungsanforderungen:		
Nachweis der Grundkenntnisse über Geometrie		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

B.Mat.0021, B.Mat.0022

Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	
Damanian and	

Dozent/in: Lehrpersonen des Mathematischen Instituts

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.2210: Zahlen und Zahlentheorie English title: Numbers and number theory Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen Selbststudium: und Methoden der elementaren Zahlentheorie vertraut. Sie 186 Stunden erwerben grundlegende Kenntnisse über Zahlentheorie: • sind insbesondere mit Teilbarkeit, Kongruenzen, arithmetischen Funktionen, Reziprozitätsgesetz, elementaren diophantischen Gleichungen vertraut; · kennen die elementare Theorie p-adischer Zahlen; • sind mit weiteren ausgewählten Themen der Zahlentheorie vertraut. Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, elementare zahlentheoretische Denkweisen und Beweistechniken zu beherrschen: • mit Grundbegriffen und grundlegenden Methoden der Zahlentheorie zu argumentieren; • mit Begriffen und Methoden aus weiterführenden Themen der Zahlentheorie zu arbeiten. 4 SWS Lehrveranstaltung: Zahlen und Zahlentheorie (Vorlesung) Prüfung: Klausur (120 Minuten) 9 C Prüfungsvorleistungen: B.Mat.2210.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen Lehrveranstaltung: Zahlen und Zahlentheorie - Übung (Übung) 2 SWS Prüfungsanforderungen: Nachweis der Grundkenntnisse der Zahlentheorie Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Mat.0021, B.Mat.0022 Sprache: Modulverantwortliche[r]: Deutsch Studiengangsbeauftragte/r Angebotshäufigkeit: Dauer: iedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 4 - 6 zweimalig Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Ausschlüsse: Dieses Modul darf nicht in dem Studiengang "Master of Education", Fach Mathematik, eingebracht werden, wenn im Bachelor-Studium bereits eines der nachstehenden Module eingebracht wurde:
 - B.Mat.1200 "Algebra"
 - B.Mat.2210 "Zahlen und Zahlentheorie"
 - B.Mat.2220 "Diskrete Mathematik"

Georg-August-Universität Göttingen	9 C
Modul B.Mat.2300: Numerische Analysis	6 SWS
English title: Numerical analysis	

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden Begriffen und Methoden im Schwerpunkt "Numerische und angewandte Mathematik" vertraut. Sie

- interpolieren vorgegebene Stützpunkte mit Hilfe von Polynomen, trigonometrischen Polynomen und Splines;
- integrieren Funktionen numerisch mit Hilfe von Newton-Cotes Formeln, Gauß-Quadratur und Romberg-Quadratur;
- modellieren Evolutionsprobleme mit Anfangswertaufgaben für Systeme von gewöhnlichen Differenzialgleichungen, lösen diese numerisch mit Runge-Kutta-Verfahren und analysieren deren Konvergenz;
- erkennen die Steifheit von gewöhnlichen Differenzialgleichungen und lösen entsprechende Anfangswertprobleme mit impliziten Runge-Kutta-Verfahren;
- lösen je nach Ausrichtung der Veranstaltung Randwertprobleme oder sind mit Computer Aided Graphic Design (CAGD), Grundlagen der Approximationstheorie oder anderen Gebieten der Numerischen Mathematik vertraut.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- · Algorithmen zur Lösung mathematischer Probleme zu entwickeln und
- deren Stabilität, Fehlerverhalten und Komplexität abzuschätzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Numerische Mathematik II - Übung	2 SWS
Lehrveranstaltung: Numerische Mathematik II	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2300.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	

Prüfungsanforderungen:

Nachweis weiterführender Kenntnisse in numerischer Mathematik

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.1300
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	4 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik	

Georg-August-Universität Göttingen Modul B.Mat.2310: Optimierung English title: Optimisation

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der Optimierung vertraut. Sie

- lösen lineare Optimierungsprobleme mit dem Simplex-Verfahren und sind mit der Dualitätstheorie der linearen Optimierung vertraut;
- beurteilen Konvergenzeigenschaften und Rechenaufwand von grundlegenden Verfahren für unrestringierte Optimierungsprobleme wie Gradienten- und (Quasi-)Newton-Verfahren;
- kennen Lösungsverfahren für nichtlineare, restringierte Optimierungsprobleme und gehen sicher mit den KKT-Bedingungen um;
- modellieren Netzwerkflussprobleme und andere Aufgaben als ganzzahlige Optimierungsprobleme und erkennen totale Unimodularität.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- Optimierungsaufgaben in der Praxis zu erkennen und als mathematische Programme zu modellieren sowie
- geeignete Lösungsverfahren zu erkennen und zu entwickeln.

Nachweis der Grundkenntnisse der Optimierung

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Übungen	2 SWS
Angebotshäufigkeit: jedes Wintersemester	
Lehrveranstaltung: Vorlesung (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.2310.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorrechnen von Lösungen in den Übungen	
Prüfungsanforderungen:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6

Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.3041: Overview on non-life insurance mathematics English title: Overview on non-life insurance mathematics

Lernziele/Kompetenzen:

Learning outcome:

After completion of the module students are familiar with basic notions and methods of non-life insurance mathematics. They

- are familiar with basic definitions and terms within non-life insurance mathematics;
- · understand central aspects of risk theory;
- know substantial pricing and reserving methods;
- · estimate ruin probabilities.

Core skills:

After successful completion of the module students have acquired basic competencies within non-life insurance. They are able to

- · apply a basic inventory of solving approaches;
- · analyse and develop pricing models which mathematically are state of the art;
- · evaluate and quantify fundamental risks.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Lecture course (Vorlesung)	2 SWS
Prüfung: Klausur (120 Minuten)	3 C

Prüfungsanforderungen:

Basic knowledge on non-life insurance mathematics

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1400
Sprache: Englisch	Modulverantwortliche[r]: Programme coordinator
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Modul B.Mat.3042: Overview on life insurance mathematics English title: Overview on life insurance mathematics

Lernziele/Kompetenzen:

Learning outcome:

After successfully completing this module students are familiar with basic notions and methods of life insurance mathematics. In particular they

- master fundamental terms and notions of life insurance mathematics;
- · know about risk theory and risk management;
- know substantial pricing and reserving methods, in particular in health insurance;
- know about legal requirements of life, health and pension insurance in Germany.

Core skills:

After successful completion of the module students have acquired basic competencies within life insurance mathematics. The student should be able to

- · apply a basic inventory of solving approaches;
- · calculate premiums and provisions in life, health and pension insurance;
- evaluate and quantify fundamental risks.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Lecture course (Vorlesung)	2 SWS
Prüfung: Klausur (120 Minuten)	3 C

Prüfungsanforderungen:

Basic knowledge on life insurance mathematics

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.1400
Sprache: Englisch	Modulverantwortliche[r]: Programme coordinator
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Instructor: Lecturers of the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module B.Mat.3043: Non-life insurance mathematics

6 C 4 WLH

Learning outcome, core skills:

Non-life insurance mathematics deals with models and methods of quantifying risks with both, the occurrence of the loss and its amount showing random patterns. In particular the following problems are to be solved:

- · determing appropriate insurance premiums;
- · calculate adequate loss reserves;
- determine how to allocate risk between policyholder and insurer resp. insurer and reinsurers.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

The aim of the module is to equip students with knowledge in four areas:

- 1. risk models;
- 2. pricing;
- 3. reserving;
- 4. risk sharing.

After having successfully completed the module, students are familiar with fundamental terms and methods of non-life insurance mathematics. They

- are familiar with and able to handle essential definitions and terms within non-life insurance mathematics:
- have an overview of the most valuable problem statements of non-life insurance;
- · understand central aspects of risk theory;
- · know substantial pricing and reserving methods;
- · estimate ruin probabilities;
- are acquainted with most important reinsurance forms and reinsurance pricing methods.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within non-life insurance. They are able to

- · evaluate and quantify fundamental risks;
- model the aggregate loss with individual or collective model;
- apply a basic inventory of solving approaches;
- analyse and develop pricing models which mathematically are state of the art;
- · apply different reserving methods and calculate outstanding losses;
- assess reinsurance contracts.

Workload:

Attendance time: 56 h Self-study time:

124 h

Course: Lecture course with exercise session

4 WLH

Examination: Written examination (120 minutes)	6 C
Examination requirements:	
Fundamental knowledge of non-life insurance mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until winter

semester 2017/18

Georg-August-Universität Göttingen

6 C 4 WLH

Module B.Mat.3044: Life insurance mathematics

Learning outcome, core skills:

This module deals with the basics of different branches in life insurance mathematics. In particular, students get to know both the classical deterministic model and the stochastic model as well as how to apply them to problems relevant in the respective branch. On this base the students describe

Workload:

Attendance time: 56 h Self-study time: 124 h

- · essential notions of present values;
- · premiums and their present values;
- · the actuarial reserve.

The German Actuarial Association (Deutsche Aktuarvereinigung e. V.) has certified this module as element of the training as an actuary ("Aktuar DAV" / "Aktuarin DAV", cf. www.aktuar.de). To this end, the course is designed in view of current legislative and regulatory provisions of the Federal Republic of Germany.

Learning outcome:

After having successfully completed the module, students are familiar with fundamental terms

and methods of life insurance mathematics. In particular they

- assess cashflows in terms of financial and insurance mathematics;
- apply methods of life insurance mathematics to problems from theory and practise;
- characterise financial securities and insurance contracts in terms of cashflows;
- have an overview of the most valuable problem statements of life insurance;
- understand the stochastic interest structure:
- master fundamental terms and notions of life insurance mathematics;
- get an overwiew of most important problems in life insurance mathematics;
- · understand mortality tables and leaving orders within pension insurance;
- know substantial pricing and reserving methods;
- know the economic and legal requirements of private health insurance in Germany;
- · are acquainted with per-head loss statistics, present value factor calculation and biometric accounting principles.

Core skills:

After having successfully completed the module, students have acquired fundamental competencies within life insurance. They are able to

- assess cashflows with respect to both collateral and risk under deterministic interest structure:
- calculate premiums and provisions in life-, health- and pension-insurance;
- understand the actuarial equivalence principle as base of actuarial valuation in life insurance:
- apply and understand the actuarial equivalence principle for calculating premiums, actuarial reserves and ageing provisions;
- calculate profit participation in life insurance;
- · master premium calculation in health insurance;

calculate present value and settlement value of pension obligations;	
find mathematical solutions to practical questions in life, health and pension	
insurance.	

Course: Lecture course with exercises	4 WLH
Examination: Written examination (120 minutes)	6 C

Examination requirements:	
Fundamental knowledge of life insurance mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: External lecturers at the Institute of Mathematical Stochastics

Accreditation: By the German Actuarial Association (Deutsche Aktuarvereinigung e. V.), valid until summer

semester 2019

Georg-August-Universität Göttingen Module B.Mat.3111: Introduction to analytic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Analytical number theory";
- · explain basic ideas of proof in the area "Analytical number theory";
- illustrate typical applications in the area "Analytical number theory".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites: B.Mat.3111.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Analytic number theory"

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module B.Mat.3112: Introduction to analysis of partial differential equations

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

be pursued. Students

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may

are familiar with the most important types of partial differential equations and know their solutions;

- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalized functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Analysis of partial different equations";
- explain basic ideas of proof in the area "Analysis of partial different equations";
- illustrate typical applications in the area "Analysis of partial different equations".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

B.Mat.3112.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	e exercise points and presentation,	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competer differential equations"	ncies in the area "Analysis of partial	
Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200	
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		-

Georg-August-Universität Göttingen Module B.Mat.3113: Introduction to differential geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, areas and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Differential geometry";
- explain basic ideas of proof in the area "Differential geometry";
- illustrate typical applications in the area "Differential geometry".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3113.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Evercise session (Evercise)	2 WI H

, ,

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Differential	
geometry"	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3114: Introduction to algebraic topology

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic topology";
- explain basic ideas of proof in the area "Algebraic topology";
- illustrate typical applications in the area "Algebraic topology".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture) 4 WLH

Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites: B.Mat.3114.Ue: Achievement of at least 50% of the exercise points and presentation,		
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Algebraic topology"		
Admission requirements:	Recommended previous known B.Mat.1100, B.Mat.1200	ledge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Module B.Mat.3115: Introduction to mathematical methods in physics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Mathematical methods of physics";
- · explain basic ideas of proof in the area "Mathematical methods of physics";
- illustrate typical applications in the area "Mathematical methods of physics".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3115.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Evereise session (Evereise)	2 /// ⊔

Course: Exercise session (Exercise) Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Mathematical methods in physics"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.1100, B.Mat.1200

Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations:	<u> </u>

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3121: Introduction to algebraic geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic geometry";
- explain basic ideas of proof in the area "Algebraic geometry";
- illustrate typical applications in the area "Algebraic geometry".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

B.Mat.3121.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Algebraic geometry"		
Admission requirements:	Recommended previous knowled B.Mat.1100, B.Mat.1200	dge:
Language: English	Person responsible for module: Programme coordinator	

Duration:

1 semester[s]

Recommended semester:Bachelor: 5 - 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

Course frequency:

not specified

not limited

Instructor: Lecturers at the Mathematical Institute

Number of repeat examinations permitted:

Module B.Mat.3122: Introduction to algebraic number theory

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic number theory";
- explain basic ideas of proof in the area "Algebraic number theory";
- illustrate typical applications in the area "Algebraic number theory".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3122.Ue:Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of knowledge and mastery of basic competencies in the area "Algebraic number		
theory"		
Admission requirements:	Recommended previous knowledge:	
none	B.Mat.1100, B.Mat.1200	
Language:	Person responsible for module) :
English	Programme coordinator	
Course frequency:	Duration:	
not specified	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		
Instructor: Lecturers at the Mathematical Institute	•	

Georg-August-Universität Göttingen Module B.Mat.3123: Introduction to algebraic structures

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- · know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Algebraic structures";
- · explain basic ideas of proof in the area "Algebraic structures";
- illustrate typical applications in the area "Algebraic structures".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3123.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of knowledge and mastery of basic compete structures"	ncies in the area "Algebraic
Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Module B.Mat.3124: Introduction to groups, geometry and dynamical systems

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Groups, geometry and dynamical systems";
- explain basic ideas of proof in the area "Groups, geometry and dynamical systems";
- illustrate typical applications in the area "Groups, geometry and dynamical systems".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	

Examination prerequisites: B.Mat.3124.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise)

Examination requirements:	
Proof of knowledge and mastery of basic competencies in the area "Groups, geometry	
and dynamical systems"	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module B.Mat.3125: Introduction to non-commutative geometry

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 84 h Self-study time:

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

geometry"

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Non-commutative geometry";
- explain basic ideas of proof in the area "Non-commutative geometry";
- · illustrate typical applications in the area "Non-commutative geometry".

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3125.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of knowledge and mastery of basic competencies in the area "Non-commutative	

Admission requirements:	Recommended previous knowledge: B.Mat.1100, B.Mat.1200
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module B.Mat.3131: Introduction to inverse problems

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computed tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Inverse problems";
- explain basic ideas of proof in the area "Inverse problems";
- illustrate typical applications in the area "Inverse problems".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20	9 C
minutes)	

Examination prerequisites: B.Mat.3131.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Inverse problems" Admission requirements: Recommended previous knowledge: B.Mat.1300 Language: Person responsible for module:

Language:	Person responsible for module:
English	Programme coordinator
Course frequency:	Duration:
not specified	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students:	
not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3132: Introduction to approximation methods

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Approximation methods";
- explain basic ideas of proof in the area "Approximation methods" for one- and multidimensional data;
- illustrate typical applications in the area of data approximation and data analysis.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture) 4 WLH

Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites:		9 C
B.Mat.3132.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic compete methods"		
Admission requirements:	Recommended previous known B.Mat.1300	vledge:
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:	<u> </u>	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3133: Introduction to numerics of partial differential equations

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Numerics of partial differential equations";
- explain basic ideas of proof in the area "Numerics of partial differential equations";
- illustrate typical applications in the area "Numerics of partial differential equations".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3133.Ue: Achievement of at least 50%	of the exercise points and presentation,
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
differential equations"	mpetencies in the area "Numerics of partial
· ·	Recommended previous knowledge: B.Mat.1300
differential equations" Admission requirements:	Recommended previous knowledge:
Admission requirements:	Recommended previous knowledge: B.Mat.1300
Admission requirements: none Language:	Recommended previous knowledge: B.Mat.1300 Person responsible for module:
Admission requirements: none Language: English	Recommended previous knowledge: B.Mat.1300 Person responsible for module: Programme coordinator
Admission requirements: none Language: English Course frequency:	Recommended previous knowledge: B.Mat.1300 Person responsible for module: Programme coordinator Duration: 1 semester[s]
Admission requirements: none Language: English Course frequency: not specified	Recommended previous knowledge: B.Mat.1300 Person responsible for module: Programme coordinator Duration: 1 semester[s]

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3134: Introduction to optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Optimisation";
- explain basic ideas of proof in the area "Optimisation";
- illustrate typical applications in the area "Optimisation".

Workload:

Attendance time: 84 h
Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten examexamination (appr. 20 minutes) Examination prerequisites: B.Mat.3134.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	,	9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Optimisation"		
Admission requirements:	Recommended previous known B.Mat.1300	wledge:
Language: Person responsible for module Programme coordinator		le:
Course frequency: not specified Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Georg-August-Universität Göttingen Module B.Mat.3137: Introduction to variational analysis

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Core skills:

Workload:

Attendance time: 84 h Self-study time: After having successfully completed the module, students will be able to discuss basic concepts of the area "Variational analysis"; • explain basic ideas of proof in the area "Variational analysis"; • illustrate typical applications in the area "Variational analysis". Course: Lecture course (Lecture) 4 WLH Examination: Written or oral examwritten examination (120 minutes) or oral 9 C examination (appr. 20 minutes) (120 minutes) **Examination prerequisites:** B.Mat.3137.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions 2 WLH Course: Exercise session (Exercise) **Examination requirements:** Proof of knowledge and mastery of basic competencies in the area "Variational analysis" Recommended previous knowledge: Admission requirements: none B.Mat.1300 Language: Person responsible for module: Programme coordinator English Course frequency: **Duration:** not specified 1 semester[s] Number of repeat examinations permitted: Recommended semester: Bachelor: 5 - 6; Master: 1 - 4 twice Maximum number of students: not limited Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3138: Introduction to image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Image and geometry processing";
- explain basic ideas of proof in the area "Image and geometry processing";
- illustrate typical applications in the area "Image and geometry processing".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	
Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes) Examination prerequisites: B.Mat.3138.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	
mage and	
d previous know	wledge:
nsible for modu ordinator	le:
d semester: ; Master: 1 - 4	
=	ematics

Module B.Mat.3139: Introduction to scientific computing / applied mathematics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

Examination requirements:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Scientific computing / applied mathematics";
- explain basic ideas of proof in the area "Scientific computing / applied mathematics";
- illustrate typical applications in the area "Scientific computing / applied mathematics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3139.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Proof of knowledge and mastery of basic competencies in the area "Scientific	
computing / applied mathematics"	

Admission requirements:	Recommended previous knowledge: B.Mat.1300
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3141: Introduction to applied and mathematical stochastics

9 C 6 WLH

84 h

186 h

Workload:

Attendance time:

Self-study time:

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems. theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- · are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- · know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Applied and mathematical stochastics";

Course: Lecture course (Lecture)	4 WLH	
illustrate typical applications in the area "Applied and mathematical stochastics".		
 explain basic ideas of proof in the area "Applied and mathematical stochastics"; 		l

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	

B.Mat.3141.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Applied and mathematical stochastics"		
Admission requirements:	Recommended previous knowl B.Mat.1400	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics		

Georg-August-Universität Göttingen Module B.Mat.3142: Introduction to stochastic processes

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

• discuss basic concepts of the area "Stochastic processes";

Workload:

Attendance time: 84 h Self-study time: 186 h

explain basic ideas of proof in the area "Stochastic processes";		
illustrate typical applications in the area "Stochastic processes".		
Course: Lecture course (Lecture)		4 WLH
Examination: Written or oral examwritten exami	nation (120 minutes) or oral	9 C
examination (appr. 20 minutes)		
Examination prerequisites:		
B.Mat.3142.Ue: Achievement of at least 50% of the	exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competencies in the area "Stochastic processes"		
Admission requirements:	Recommended previous knowl	edge:
none	B.Mat.1400	_
Language:	Person responsible for module	:
English	Programme coordinator	
Course frequency:	Duration:	
not specified 1 semester[s]		
· ·	1 Schlester[s]	
Number of repeat examinations permitted:	Recommended semester:	
·		
Number of repeat examinations permitted:	Recommended semester:	
Number of repeat examinations permitted: twice	Recommended semester:	
Number of repeat examinations permitted: twice Maximum number of students:	Recommended semester:	

Georg-August-Universität Göttingen Module B.Mat.3143: Introduction to stochastic methods of economathematics 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections:
- understand references to other mathematical areas;
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Stochastic methods of economathematics";
- explain basic ideas of proof in the area "Stochastic methods of economathematics";
- illustrate typical applications in the area "Stochastic methods of economathematics".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	
Examination prerequisites:	
B.Mat.3143.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of knowledge and mastery of basic competencies in the area "Stochastic methods	
of economathematics"	

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations:	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3144: Introduction to mathematical statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families:
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Mathematical statistics";
- explain basic ideas of proof in the area "Mathematical statistics";
- illustrate typical applications in the area "Mathematical statistics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examwritten examination (120 minutes) or oral	9 C
examination (appr. 20 minutes)	

Examination prerequisites: B.Mat.3144.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Mathematical
statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3145: Introduction to statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical modelling and inference";
- explain basic ideas of proof in the area "Statistical modelling and inference";
- illustrate typical applications in the area "Statistical modelling and inference".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written or oral examoral examination (120 minutes) or oral examination (appr. 20 minutes)	9 C
Examination prerequisites: B.Mat.3145.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
	T

Examination requirements:

Proof of knowledge and mastery of basic competencies in the area "Statistical modelling and inference"

Admission requirements:

Recommended previous knowledge:

none	B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3146: Introduction to multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Multivariate statistics";
- explain basic ideas of proof in the area "Multivariate statistics";
- illustrate typical applications in the area "Multivariate statistics".

Workload:

Attendance time: 84 h Self-study time:

186 h

Course: Lecture course (Lecture)

4 WLH

Examination: Written or oral examwritten examination (120 minutes) or oral examination (appr. 20 minutes)		9 C
Examination prerequisites:		
B.Mat.3146.Ue: Achievement of at least 50% of the exercise points and presentation,		
twice, of solutions in the exercise sessions	, , ,	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of knowledge and mastery of basic competer statistics"	ncies in the area "Multivariate	
Admission requirements:	Recommended previous knowledge: B.Mat.1400	
Language: English	Person responsible for module Programme coordinator	e:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3147: Introduction to statistical foundations of data science

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in the area of "Statistical foundations of data science". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- · discuss basic concepts of the area "Statistical foundations of data science";
- explain basic ideas of proof in the area "Statistical foundations of data science";
- illustrate typical applications in the area "Statistical foundations of data science".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH	
Examination: written examination (120 minutes) or oral examination (appr. 20 minutes)		9 C	
Examination prerequisites:			
B.Mat.3147.Ue: Achievement of at least 50% of the	e exercise points and presentation,		
twice, of solutions in the exercise sessions			
Course: Exercise session (Exercise)		2 WLH	
Examination requirements:			
Proof of knowledge and mastery of basic competer	ncies in the area "Statistical		
foundations of data science"			
Admission requirements:	Recommended previous knowledge:		
none	B.Mat.1400		
Language:	Person responsible for module) :	
English	Programme coordinator		
Course frequency:	Duration:		
not specified	1 semester[s]	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:		
twice	Bachelor: 5 - 6; Master: 1 - 4		
Maximum number of students:			
not limited			
Additional notes and regulations:			
Instructor: Lecturers at the Institute of Mathematic	cal Stochastics		

Module B.Mat.3311: Advances in analytic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

Admission requirements:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analytic number theory" confidently;
- · explain complex issues of the area "Analytic number theory";
- apply methods of the area "Analytic number theory" to new problems in this area.

Workload:

Attendance time: 84 h

• . . .

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3311.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Analytic number theory"	

Recommended previous knowledge:

none	B.Mat.3111
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3111 "Introduction to analytic number theory"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3312: Advances in analysis of partial differential equations

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analysis of partial differential equations" confidently;
- explain complex issues of the area "Analysis of partial differential equations";
- apply methods of the area "Analysis of partial differential equations" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3312.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	exercise points and presentation,	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Analysis of partial differential equations"		
Admission requirements:	Recommended previous knowled B.Mat.3112	edge:
Language: English	Person responsible for module: Programme coordinator	:
Course frequency: Usually subsequent to the module B.Mat.3112 "Introduction to analysis of partial differential equations"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:	·	

Georg-August-Universität Göttingen Module B.Mat.3313: Advances in differential geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Differential geometry" confidently;
- explain complex issues of the area "Differential geometry";
- apply methods of the area "Differential geometry" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3313.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Differential geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3113
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3113 "Introduction to differential geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3314: Advances in algebraic topology

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- · handle methods and concepts of the area "Algebraic topology" confidently;
- explain complex issues of the area "Algebraic topology";
- apply methods of the area "Algebraic topology" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C

Examination prerequisites: B.Mat.3314.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic topology"

Admission requirements: none	Recommended previous knowledge: B.Mat.3114
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3114 "Introduction to algebraic topology"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3315: Advances in mathematical methods in physics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical methods in physics" confidently;
- explain complex issues of the area "Mathematical methods in physics";
- apply methods of the area "Mathematical methods in physics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3315.Ue: Achievement of at least 50% of the exercise points and presentation,	9 C
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory	

Admission requirements: none Recommended previous knowledge: B.Mat.3115

module of the area "Mathematical methods in physics"

Language:	Person responsible for module:
English	Programme coordinator
Course frequency: on an irregular basis	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations:	<u> </u>

Georg-August-Universität Göttingen Module B.Mat.3321: Advances in algebraic geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic geometry" confidently;
- explain complex issues of the area "Algebraic geometry";
- apply methods of the area "Algebraic geometry" to new problems in this area.

Workload:

Attendance time: 84 h
Self-study time:

186 h

	Course: Lecture course (Lecture)	4 WLH
ĺ	Examination: Oral examination (approx. 20 minutes)	9 C
	Examination prerequisites:	
	B.Mat.3321.Ue: Achievement of at least 50% of the exercise points and presentation,	
	twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competer module of the area "Algebraic geometry"	ncies acquired in the introductory
Admission requirements:	Recommended previous knowledge: B.Mat.3121
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3121 "Introduction to algebraic geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Module B.Mat.3322: Advances in algebraic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic number theory" confidently;
- explain complex issues of the area "Algebraic number theory";
- apply methods of the area "Algebraic number theory" to new problems in this area.

Workload:

Attendance time: 84 h
Self-study time:

186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3322.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessionsungen		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic number theory"		
Admission requirements:	Recommended previous known B.Mat.3122	vledge:
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: Usually subsequent to the module B.Mat.3122 "Introduction to algebraic number theory"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Georg-August-Universität Göttingen Module B.Mat.3323: Advances in algebraic structures

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- · know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- · handle methods and concepts of the area "Algebraic structures" confidently;
- explain complex issues of the area "Algebraic structures";
- apply methods of the area "Algebraic structures" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3323.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic structures"

Admission requirements:	Recommended previous knowledge: B.Mat.3123
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3123 "Introduction to algebraic structures"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Module B.Mat.3324: Advances in groups, geometry and dynamical systems

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Groups, geometry and dynamical systems" confidently;
- explain complex issues of the area "Groups, geometry and dynamical systems";
- apply methods of the area "Groups, geometry and dynamical systems" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3324.Ue: Achievement of at least 50% of the etwice, of solutions in the exercise sessions	exercise points and presentation,	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competenci module of the area "Groups, geometry and dynamical"	· ·	
Admission requirements:	Recommended previous knowledge: B.Mat.3124	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3124 "Introduction to groups, geometry and dynamical systems"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:	•	

Module B.Mat.3325: Advances in non-commutative geometry

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 84 h Self-study time:

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Non-commutative geometry" confidently;
- explain complex issues of the area "Non-commutative geometry";
- apply methods of the area "Non-commutative geometry" to new problems in this
 area.

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3325.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

	l
Examination requirements:	

Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3125
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3125 "Introduction to non-commutative geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3331: Advances in inverse problems 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following

• are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;

- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;

content-related competencies may be pursued. Students

- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Inverse problems" confidently;
- explain complex issues of the area "Inverse problems";
- apply methods of the area "Inverse problems" to new problems in this area.

Workload:

186 h

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH	
Examination: Oral examination (approx. 20 minutes)	9 C	
Examination prerequisites:		

B.Mat.3331.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Inverse problems"		
Admission requirements:	Recommended previous knowledge: B.Mat.3131	
anguage: Person responsible for module: programme coordinator		

Usually subsequent to the module B.Mat.3131 "Introduction to inverse problems"	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Duration:

Additional notes and regulations:

Course frequency:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3332: Advances in approximation methods

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Approximation methods" confidently;
- · explain complex issues of the area "Approximation methods";
- apply methods of the area "Approximation methods" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3332.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Approximation methods"		
Admission requirements:	Recommended previous knowledge: B.Mat.3132	
Language: English	Person responsible for module: Programme coordinator	

Duration:

1 semester[s]

Recommended semester:

Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

Usually subsequent to the module B.Mat.3132

Number of repeat examinations permitted:

"Introduction to approximation methods"

Course frequency:

twice

not limited

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3333: Advances in numerics of partial differential equations

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Numerics of partial differential equations" confidently;
- explain complex issues of the area "Numerics of partial differential equations";

Workload:

Attendance time: 84 h Self-study time: 186 h

 apply methods of the area "Numerics of partial problems in this area. 		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min	utes)	9 C
Examination prerequisites:		
B.Mat.3333.Ue: Achievement of at least 50% of the	e exercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Numerics of partial differential equations"		
Admission requirements:	Recommended previous knowl B.Mat.3133	edge:
Language:	Person responsible for module):
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3133	1 semester[s]	
"Introduction to numerics of partial differential		
equations"		
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:	<u> </u>	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module B.Mat.3334: Advances in optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Optimisation" confidently;
- · explain complex issues of the area "Optimisation";
- apply methods of the area "Optimisation" to new problems in this area.

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3334.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Optimisation"		
Admission requirements:	Recommended previous knowledge: B.Mat.3134	
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: Usually subsequent to the module B.Mat.3134 "Introduction to optimisation"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical and Applied Mathematics		

Module B.Mat.3337: Advances in variational analysis

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in the area of "Variational analysis" and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems:
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

Attendance time: 84 h Self-study time:

186 h

After having successfully completed the module, students will be able to • handle methods and concepts of the area "Variational analysis" confidently; • explain complex issues of the area "Variational analysis"; • apply methods of the area "Variational analysis" to new problems in this area. Course: Lecture course (Lecture) 4 WLH **Examination: Oral examination (approx. 20 minutes)** 9 C **Examination prerequisites:** B.Mat.3337.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH **Examination requirements:** Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Variational analysis" Admission requirements: Recommended previous knowledge: none B.Mat.3137 Language: Person responsible for module: English Programme coordinator Course frequency: **Duration:** Usually subsequent to the module B.Mat.3137 1 semester[s] "Introduction in variational analysis" Number of repeat examinations permitted: Recommended semester:

Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

twice

not limited

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3338: Advances in image and geometry processing

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Image and geometry processing" confidently;
- · explain complex issues of the area "Image and geometry processing";

Workload:

Attendance time: 84 h Self-study time:

apply methods of the area "Image and geometry processing" to new problems in		
this area.		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minute	es)	9 C
Examination prerequisites:		
B.Mat.3338.Ue: Achievement of at least 50% of the ex	xercise points and presentation,	
twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of advancement of knowledge and competencies	es acquired in the introductory	
module of the area "Image and geometry processing"		
Admission requirements:	Recommended previous knowle	edge:
none	B.Mat.3138	
Language:	Person responsible for module:	
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3138	1 semester[s]	
"Introduction to image and geometry processing"		
Number of repeat examinations permitted:	Recommended semester:	
twice	Bachelor: 6; Master: 1 - 4	
Maximum number of students:		
not limited		
Additional notes and regulations:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3339: Advances in scientific computing / applied mathematics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / Applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Scientific computing / applied mathematics" confidently;
- explain complex issues of the area "Scientific computing / applied mathematics";
- apply methods of the area "Scientific computing / applied mathematics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites: B.Mat.3339.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Scientific computing / applied mathematics"	

Admission requirements: none	Recommended previous knowledge: B.Mat.3139
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3139 "Introduction to scientific computing / applied mathematics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice Maximum number of students: not limited	Recommended semester: Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module B.Mat.3341: Advances in applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

be pursued: Students

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may

are familiar with advanced concepts of probability theory established on measure theory and apply them independently;

- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Applied and mathematical stochastics" confidently;
- explain complex issues of the area "Applied and mathematical stochastics";
- apply methods of the area "Applied and mathematical stochastics" to new problems in this area.

Workload:

186 h

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3341.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Applied and mathematical stochastics"		
Admission requirements:	Recommended previous know B.Mat.3141	/ledge:
Language: English	Person responsible for modul Programme coordinator	e:
Course frequency: Usually subsequent to the module B.Mat.3141 "Introduction to applied and mathematical stochastics"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module B.Mat.3342: Advances in stochastic processes

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

handle methods and concepts of the area "Stochastic processes" confidently;

Workload:

Attendance time: 84 h Self-study time: 186 h

 explain complex issues of the area "Stochastic processes"; apply methods of the area "Stochastic processes" to new problems in this area. 		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: B.Mat.3342.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Stochastic processes"		
Admission requirements:	Recommended previous knowled B.Mat.3142	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: Usually subsequent to the module B.Mat.3142 "Introduction to stochastic processes"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		

Instructor: Lecturers at the Institute of Mathematical Stochastics

Additional notes and regulations:

Georg-August-Universität Göttingen Module B.Mat.3343: Advances in stochastic methods of economathematics 9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections:
- understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Stochastic methods of economathematics" confidently;
- explain complex issues of the area "Stochastic methods of economathematics";
- apply methods of the area "Stochastic methods of economathematics" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3343.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
	· 1

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	
module of the area "Stochastic methods of economathematics"	

Admission requirements: none	Recommended previous knowledge: B.Mat.3143
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration: 1 semester[s]

Usually subsequent to the module B.Mat.3143 "Introduction to stochastic methods of economathematics"	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module B.Mat.3344: Advances in mathematical statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical statistics" confidently;
- explain complex issues of the area "Mathematical statistics";
- apply methods of the area "Mathematical statistics" to new problems in this area

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

B.Mat.3344.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Mathematical statistics"		
Admission requirements:	Recommended previous knowle B.Mat.3144	dge:
Language: English	Person responsible for module: Programme coordinator	

Duration:

1 semester[s]

Recommended semester:

Bachelor: 6; Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

Usually subsequent to the module B.Mat.3144

Number of repeat examinations permitted:

"Introduction to mathematical statistics"

Course frequency:

twice

not limited

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3345: Advances in statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation:
- are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Statistical modelling and inference" confidently;
- explain complex issues of the area "Statistical modelling and inference";
- apply methods of the area "Statistical modelling and inference" to new problems in this area.

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3345.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of advancement of knowledge and competencies acquired in the introductory	

Admission requirements:

Recommended previous knowledge:

none	B.Mat.3145
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3111 "Introduction to statistical modelling and inference"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module B.Mat.3346: Advances in multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Multivariate statistics" confidently;
- explain complex issues of the area "Multivariate statistics";
- apply methods of the area "Multivariate statistics" to new problems in this area.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C

Examination prerequisites: B.Mat.3346.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH Examination requirements:

Proof of advancement of knowledge and competencies acquired in the introductory

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3146
Language:	Person responsible for module:
English	Programme coordinator
Course frequency:	Duration:
Usually subsequent to the module B.Mat.3146	1 semester[s]
"Introduction to multivariate statistics"	
Number of repeat examinations permitted:	Recommended semester:
twice	Bachelor: 6; Master: 1 - 4
Maximum number of students:	
not limited	

Additional notes and regulations:

module of the area "Multivariate statistics"

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module B.Mat.3347: Advances in statistical foundations of data science

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle ""Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area ""Statistical foundations of data science" confidently;
- explain complex issues of the area ""Statistical foundations of data sciencee";
- apply methods of the area ""Statistical foundations of data science" to new problems in this area.

Workload:

186 h

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites:		9 C
B.Mat.3347.Ue: Achievement of at least 50% of the twice, of solutions in the exercise sessions	e exercise points and presentation,	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Statistical foundations of data science"		
Admission requirements:	Recommended previous know B.Mat.3147	ledge:
Language: English	Person responsible for module Programme coordinator):
Course frequency: Usually subsequent to the module B.Mat.3147 "Introduction to statistical foundations of data science"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 6; Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations:	1	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen	9 C 4 SWS
Modul B.Phi.01: Basismodul Theoretische Philosophie English title: Basic Studies in Theoretical Philosophy	4 5005
	T
Lernziele/Kompetenzen: 1. In einem Einführungskurs (Vorlesung oder Einführungsseminar) erwerben die Studierenden Kenntnis zentraler Themen, Grundbegriffe und Theorieansätze der Theoretischen Philosophie in ihren Disziplinen Erkenntnistheorie, Wissenschaftsphilosophie, Sprachphilosophie oder Metaphysik. 2. In einem Proseminar erlangen die Studierenden grundlegende Fähigkeiten, sich mit Sachfragen der theoretischen Philosophie begrifflich präzise und argumentativ auseinanderzusetzen, insbesondere: ausgewählte Problembereiche und systematische Überlegungen der theoretischen Philosophie adäquat darzustellen, Argumentationen zu analysieren und auf elementarem Niveau in mündlicher und mindestens in Textform zu diskutieren.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 214 Stunden
Lehrveranstaltung: 1. Einführungskurs in die theoretische Philosophie (Vorlesung, Seminar) Angebotshäufigkeit: Einführungskurs bevorzugt im Wintersemester	2 SWS
Prüfung: Klausur (45 Minuten), unbenotet Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie und Fähigkeit, diese auf elementarem Niveau argumentativ verständlich darzulegen.	2 C
Lehrveranstaltung: 2. Proseminar zur theoretischen Philosophie Es muss <u>eine</u> der nachfolgenden Prüfungsformen (Klausur, Hausarbeit oder Essays) absolviert werden.	2 SWS
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf elementarem Niveau mindestens in Textform.	7 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf elementarem Niveau mindestens in Textform.	7 C

Prüfung: Klausur (120 Minuten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen:	
Verständnis zentraler Begriffe, Probleme und Theorieansätze der theoretischen	
Philosophie. Darstellung und Diskussion von Themen der theoretischen Philosophie auf	
elementarem Niveau mindestens in Textform.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christian Beyer
Angebotshäufigkeit: jedes Semester; Einführungskurs bevorzugt im Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Phi.02: Basismodul Praktische Philosophie	9 C 4 SWS
English title: Basic Studies in Practical Philosophy	
Lernziele/Kompetenzen: 1. In einem Einführungskurs (Vorlesung oder Einführungsseminar) erwerben die	Arbeitsaufwand
Studierenden Kenntnis zentraler Probleme, Grundbegriffe und Theorieansätze der Praktischen Philosophie. Sie überschauen die Teilgebiete, kennen typische Themen und Terminologien sowie einige der wichtigsten Theorieansätze in Grundzügen.	56 Stunden Selbststudium: 214 Stunden
2. In einem Proseminar (Basisseminar) erlangen die Studierenden grundlegende Fähigkeiten, sich mit Sachfragen der Praktischen Philosophie begrifflich präzise und argumentativ auseinander zu setzen, insbesondere: Grundprobleme und -positionen adäquat darzustellen, ethische Argumentationen zu analysieren und auf elementarem Niveau in mündlicher und mindestens in Textform zu diskutieren.	
Lehrveranstaltung: Einführungskurs in die Praktische Philosophie (Vorlesung, Seminar) Angebotshäufigkeit: jedes Semester; Einführungskurs bevorzugt im Wintersemester	2 SWS
Prüfung: Klausur (45 Minuten), unbenotet	2 C
Prüfungsanforderungen:	
Verständnis zentraler Begriffe, Probleme und Theorieansätze der praktischen	
Philosophie und Fähigkeit, diese auf elementarem Niveau argumentativ verständlich	
darzulegen.	
Lehrveranstaltung: Proseminar zur Praktischen Philosophie	2 SWS
Es muss <u>eine</u> der nachfolgenden Prüfungsformen (Klausur, Hausarbeit oder Essays) absolviert werden.	
Prüfung: Klausur (120 Minuten)	7 C
Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen:	
Verständnis zentraler Begriffe, Probleme und Theorieansätze der praktischen Philosophie. Darstellung und Diskussion von Themen der praktischen Philosophie auf elementarem Niveau mindestens in Textform.	
Prüfung: Essays (insgesamt max. 15 Seiten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen: Verständnis zentraler Regriffe. Probleme und Theorieansätze der praktischen	
Verständnis zentraler Begriffe, Probleme und Theorieansätze der praktischen Philosophie. Darstellung und Diskussion von Themen der praktischen Philosophie auf	
elementarem Niveau mindestens in Textform.	

Prüfungsvorleistungen:

regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.)

Prüfungsanforderungen:

Verständnis zentraler Begriffe, Probleme und Theorieansätze der praktischen Philosophie. Darstellung und Diskussion von Themen der praktischen Philosophie auf elementarem Niveau mindestens in Textform.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Holmer Steinfath
Angebotshäufigkeit: jedes Semester, Einführungskurs bevorzugt im Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen	9 C 4 SWS
Modul B.Phi.03: Basismodul Geschichte der Philosophie English title: Basic Studies in History of Philosophy	
Lernziele/Kompetenzen: 1. In einem Einführungskurs (Vorlesung oder Einführungsseminar) erwerben die	Arbeitsaufwand: Präsenzzeit:
Studierenden einen Überblick über Epochen der Philosophiegeschichte, sie machen eine erste Bekanntschaft mit jeweils zentralen Themenbereichen und einzelnen klassischen Werken.	56 Stunden Selbststudium: 214 Stunden
2. In einem Proseminar (Basisseminar) erlangen die Studierenden Verständnis klassischer Texte der Philosophie sowie Grundfertigkeiten der Analyse eines Textes unter historischen und systematischen Gesichtspunkten.	
Lehrveranstaltung: 1. Einführungskurs in die Geschichte der Philosophie (Vorlesung, Seminar)	2 SWS
Prüfung: Klausur (45 Minuten), unbenotet Prüfungsanforderungen: Überblick über Epochen der Philosophiegeschichte und elementares Verständnis zentraler Themen und klassischer philosophischer Texte sowie Fähigkeit, diese auf elementarem Niveau argumentativ verständlich darzulegen.	2 C
Lehrveranstaltung: 2. Proseminar zur Geschichte der Philosophie Es muss <u>eine</u> der nachfolgenden Prüfungsformen (Klausur, Hausarbeit oder Essays) absolviert werden.	2 SWS
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Überblick über Epochen der Philosophiegeschichte, elementares Verständnis zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.	7 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Überblick über Epochen der Philosophiegeschichte, elementares Verständnis zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme an einem Proseminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.)	7 C

Prüfungsanforderungen:

Überblick über Epochen der Philosophiegeschichte, elementares Verständnis zentraler Themen und klassischer philosophischer Texte. Darstellung und Diskussion philosophiegeschichtlicher Themen auf elementarem Niveau mindestens in Textform.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Bernd Ludwig
Angebotshäufigkeit: jedes Semester; Einführungskurs bevorzugt im SoSe	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 3
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Phi.05: Aufbaumodul Theoretische Philosophie English title: Advanced Studies in Theoretical Philosophy	10 C 4 SWS
Lernziele/Kompetenzen: Die Studierenden verfügen über fortgeschrittene Kenntnisse ausgewählter Themen und Theorien der theoretischen Philosophie sowie über die Fähigkeit der Darstellung und Diskussion systematischer Positionen und Probleme in mündlicher und mindestens in Textform.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 244 Stunden
Lehrveranstaltung: 1. Vorlesung oder Seminar zur theoretischen Philosophie	2 SWS
Lehrveranstaltung: 2. Seminar zur theoretischen Philosophie Zu beiden Lehrveranstaltungen ist je eine Prüfung zu wählen, entweder die kleine Leistung oder eine Modulprüfung in Form einer Hausarbeit, von Essays oder einer Klausur. In welcher Lehrveranstaltung die Prüfung in Form einer kleinen Leistung abgelegt wird und in welcher in Form einer Hausarbeit, von Essays oder einer Klausur, ist frei wählbar.	2 SWS
Prüfung: Kleine Leistung (max. 2 Seiten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie und Fähigkeit, diese mindestens in kurzer Textform argumentativ verständlich darzulegen.	3 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.	7 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.)	7 C

Prüfungsanforderungen:

Eingehende Kenntnis ausgewählter Probleme und Theorien der theoretischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der theoretischen Philosophie mindestens in Textform.

Zugangsvoraussetzungen: B.Phi.01	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Catrin Misselhorn
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 5
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Phi.06: Aufbaumodul Praktische Philosophie	10 C 4 SWS
English title: Advanced Studies in Practical Philosophy	
Lernziele/Kompetenzen: Die Studierenden verfügen über fortgeschrittene Kenntnisse ausgewählter Themen und Theorien der Praktischen Philosophie sowie über die Fähigkeit der Darstellung und Diskussion systematischer Positionen und Probleme in mündlicher und mindestens in Textform.	Arbeitsaufwand Präsenzzeit: 56 Stunden Selbststudium: 244 Stunden
Lehrveranstaltung: 1. Vorlesung oder Seminar zur praktischen Philosophie	2 SWS
Lehrveranstaltung: 2. Seminar zur praktischen Philosophie Zu beiden Lehrveranstaltungen ist je eine Prüfung zu wählen, entweder die kleine Leistung oder eine Modulprüfung in Form einer Hausarbeit, von Essays oder einer Klausur. In welcher Lehrveranstaltung die Prüfung in Form einer kleinen Leistung abgelegt wird und in welcher in Form einer Hausarbeit, von Essays oder einer Klausur, ist frei wählbar.	2 SWS
Prüfung: Kleine Leistung (max. 2 Seiten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der praktischen Philosophie und Fähigkeit, diese mindestens in kurzer Textform argumentativ verständlich darzulegen.	3 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der praktischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der praktischen Philosophie mindestens in Textform.	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnis ausgewählter Probleme und Theorien der praktischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der praktischen Philosophie mindestens in Textform.	7 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.)	7 C

Prüfungsanforderungen:

Eingehende Kenntnis ausgewählter Probleme und Theorien der praktischen Philosophie. Sachgemäße u. differenzierte Erörterung von Themen der praktischen Philosophie mindestens in Textform.

Zugangsvoraussetzungen: B.Phi.02	Empfohlene Vorkenntnisse:
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Holmer Steinfath
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 5
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen	10 C
Modul B.Phi.07: Aufbaumodul Geschichte der Philosophie English title: Advanced Studies in History of Philosophy	4 SWS
Lernziele/Kompetenzen: Die Studierenden verfügen über fortgeschrittene Kenntnisse klassischer Autoren aus unterschiedlichen Epochen sowie über die Fähigkeit der Darstellung und Behandlung klassischer philosophischer Positionen und Probleme unter historischen und systematischen Gesichtspunkten in mündlicher und mindestens in Textform. Sie können philosophiehistorische Texte hinsichtlich ihrer Struktur analysieren, ihre wesentlichen Aussagen und Argumente erfassen und in ihren historischen und systematischen Interpretationsrahmen einordnen.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 244 Stunden
Lehrveranstaltung: 1. Vorlesung oder Seminar zur Geschichte der Philosophie	2 SWS
Lehrveranstaltung: 2. Seminar zur Geschichte der Philosophie Zu beiden Lehrveranstaltungen ist je eine Prüfung zu wählen, entweder die kleine Leistung oder eine Modulprüfung in Form einer Hausarbeit, von Essays oder einer Klausur. In welcher Lehrveranstaltung die Prüfung in Form einer kleinen Leistung abgelegt wird und in welcher in Form einer Hausarbeit, von Essays oder einer Klausur, ist frei wählbar.	2 SWS
Prüfung: Kleine Leistung (max. 2 Seiten), unbenotet Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar Prüfungsanforderungen: Eingehende Kenntnisse klassischer philosophischer Autoren aus unterschiedlichen Epochen und Fähigkeit, philosophiegeschichtliche Themen mindestens in kurzer Textform argumentativ verständlich darzulegen.	3 C
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnisse klassischer philosophischer Autoren aus unterschiedlichen Epochen. Sachgemäße u. differenzierte Erörterung von philosophiegeschichtlichen Themen mindestens in Textform.	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform (max. 2 S.; Protokoll, Kurzreferat o.ä.) Prüfungsanforderungen: Eingehende Kenntnisse klassischer philosophischer Autoren aus unterschiedlichen Epochen. Sachgemäße u. differenzierte Erörterung von philosophiegeschichtlichen Themen mindestens in Textform.	7 C

Prüfung: Klausur (120 Minuten)	7 C
Prüfungsvorleistungen:	
regelmäßige Teilnahme, sofern Seminar; kleinere Leistung mindestens in Textform	
(max. 2 S.; Protokoll, Kurzreferat o.ä.)	
Prüfungsanforderungen:	
Eingehende Kenntnisse klassischer philosophischer Autoren aus unterschiedlichen	
Epochen. Sachgemäße u. differenzierte Erörterung von philosophiegeschichtlichen	
Themen mindestens in Textform.	

Zugangsvoraussetzungen: B.Phi.03	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Bernd Ludwig
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 5
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen		6 C 2 SWS
Modul B.Phi.18a: Vertiefte Bearbeitung philosophischer Themen für		2 5005
HörerInnen aller Fächer		
English title: Detailed Philosophical Studies		
Studierende aller Fächer erweitern ihre fachlichen Kompetenzen durch ausgewählte Themen mit allgemein philosophischem Charakter z.B. aus den Gebieten der		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden
Die Studierenden besitzen die Fähigkeit,		
 die wesentlichen Aussagen und Argumente in philosophischen Texten zu erfassen, über philosophische Probleme mit wissenschaftlicher Präzision nachzudenken und philosophische Positionen auf der Basis aktueller Fachliteratur unter Abwägung der relevanten Thesen und Argumente mindestens in Textform darzustellen und zu diskutieren. 		
Lehrveranstaltung: Vorlesung, Proseminar, Semir Es muss eine der nachfolgenden Prüfungsformen (Hawerden.	•	
Prüfung: Essays (insgesamt max. 15 Seiten) Prüfungsvorleistungen: kleinere Leistung mindestens in Textform (max. 2 Sei	ten)	6 C
<u> </u>		6 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen:		
kleinere Leistung mindestens in Textform (max. 2 Seiten)		
Prüfungsanforderungen: Verständnis zentraler Begriffe, Probleme und Theorieansätze auf einem Gebiet der Philosophie. Darstellung und Diskussion ausgewählter Probleme mindestens in Textform.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	Bei Seminaren und Hauptseminaren: hinreichende Vorkenntnisse auf dem jeweiligen Gebiet (ggf. nach Rücksprache mit dem Dozenten/der Dozentin)	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christian Beyer	
Angebotshäufigkeit:	Dauer:	
jedes Semester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	

1 - 6

zweimalig

Maximale Studierendenzahl:

nicht begrenzt	

zu präsentieren und zu diskutieren.

Georg-August-Universität Göttingen Modul B.Phi.19a: Spezielle Themen der Philosophie für HörerInnen aller Fächer English title: Special Philosophical Topics

Lernziele/Kompetenzen: Studierende aller Fächer erweitern ihre fachlichen Kompetenzen durch ausgewählte Themen mit allgemein philosophischem Charakter z.B. aus den Gebieten der Erkenntnis- und Wissenschaftstheorie, der Sprachphilosophie, der Ethik und der Politischen Philosophie. Die Studierenden besitzen die Fähigkeit, • die wesentlichen Aussagen und Argumente in philosophischen Texten zu erfassen, • über philosophische Probleme mit wissenschaftlicher Präzision nachzudenken und

Lehrveranstaltung: Vorlesung, Proseminar, Seminar oder Hauptseminar	
Prüfung: Referat (ca. 20 Min.) mit Ausarbeitung mindestens in Textform (max. 3	3 C
Seiten) oder Essay (max. 3 Seiten) oder Klausur (max. 45 Minuten), unbenotet	
Prüfungsanforderungen:	
Verständnis zentraler Begriffe, Probleme und Theorieansätze auf einem Gebiet	
der Philosophie. Fähigkeit zur strukturierten Darstellung und Diskussion eines eng	
umgrenzten Themas.	

• philosophische Positionen in knapper Form mündlich und mindestens in Textform

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Bei Seminaren und Hauptseminaren: hinreichende Vorkenntnisse auf dem jeweiligen Gebiet (ggf. nach Rücksprache mit dem Dozenten/der Dozentin)
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Catrin Misselhorn
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	8 C
Module B.Phy.1551: Introduction to Astrophysics	6 WLH

	<u> </u>
Learning outcome, core skills:	Workload:
After successful completion of the module students are familiar with the basic concepts	Attendance time:
of astrophysics in observation and theory. In particular, they	84 h
• nave gained an overview of observational techniques in astronomy	Self-study time: 156 h

Course: Lecture and exercises for introduction to astrophysics	
Examination: oral (approx. 30 minutes) or written (120 min.) exam	
Examination prerequisites:	
At least 50% of the homework of the excercises have to be solved successfully.	
Examination requirements:	
Observational techniques, Planets and exoplanets, planet formation, stellar formation,	
structure and evolution, galaxies, AGN and quasars, cosmology, structure formation	

Admission requirements:	Recommended previous knowledge: none
Language: English, German	Person responsible for module: Prof. Dr. Jens Niemeyer
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 5 - 6; Master: 1
Maximum number of students: 120	

Tooly raguot oniversitat oottingen	6 C
Modul B.WIWI-BWL.0014: Rechnungslegung der Unternehmung	4 SWS
English title: Financial Accounting	

Lernziele/Kompetenzen:

Gegenstand der Veranstaltung ist die Vermittlung der Grundlagen externer Rechnungslegung nach Maßgabe handelsrechtlicher und internationaler Vorschriften (International Financial Reporting Standards (IFRS)). Mit erfolgreichem Abschluss der Veranstaltung haben Studierende folgende Kompetenzen erworben:

- Kenntnis der Grundzüge handelsrechtlicher und internationaler Rechnungslegung sowie markanter Unterschiede und grundlegender Entwicklungslinien,
- Auswertung und Interpretation der entsprechenden Rechenwerke und Verwendung für analytische, entscheidungsunterstützende Zwecke.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Rechnungslegung der Unternehmung (Vorlesung)	2 SWS
Lehrveranstaltung: Rechnungslegung der Unternehmung (Übung)	2 SWS
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

Von Studierenden wird der Nachweis der Kenntnis der Grundlagen der Rechnungslegung nach handelsrechtlichen Grundsätzen und nach International Financial Reporting Standards im Spannungsfeld nationaler Institutionen und internationaler Konvergenzbestrebungen erwartet. Dies umfasst auch die Lösung konkreter Fallbeispiele unter Einbeziehung handelsrechtlicher oder internationaler Rechnungslegungsvorschriften.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0005 Jahresabschluss
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jörg-Markus Hitz
Angebotshäufigkeit: jedes 3. Semester; mit Wiederholungsklausur im Folgesemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 4
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-BWL.0023: Grundlagen der Versicherungstechnik English title: Actuarial Techniques

Lernziele/Kompetenzen:

Die Studierenden erwerben die folgenden Fähigkeiten und Kenntnisse:

- · Kenntnis und Verständnis der Funktionsweise der Versicherungsmärkte,
- Kenntnis und Verständnis der Geschäftsmodelle und der technischen Grundlagen in der Lebens-, Kranken-, Schadens- und Rückversicherung sowie in der Betrieblichen Altersversorgung,
- Kenntnis und Verständnis des Risikomanagements und der Solvabilitätsvorschriften incl. Methoden der Risikobewertung,
- Kenntnis und Verständnis der Finanzierungsvorgänge incl. Rückstellungsbildung in der Versicherungswirtschaft,
- Fähigkeit, der Bewertung der zentralen Unterschiede in den Geschäftsmodellen der privaten Versicherungswirtschaft, der gesetzlichen Versicherungssysteme und der Kreditwirtschaft.
- Kenntnis des Instrumentariums der Risikopolitik eines Versicherungsunternehmens, auch anhand konkreter praktischer Beispiele,
- Fähigkeit, einfache Berechnungen zur Versicherungstechnik vorzunehmen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

Lehrveranstaltung: Grundlagen der Versicherungstechnik (Vorlesung) Inhalte:

- 1. Begriffsbestimmungen, Struktur und Elemente des Risikotransfers;
- Elemente der Risikopolitik (u.a. Grundlagen der Prämienkalkulation und -differenzierung, Risikoauslese und Underwriting, Reservierungspolitik, Schadenmanagement, Rück- und Mitversicherung,);
- 3. Geschäftsmodelle der Versicherungssparten (Lebensversicherung, Krankenversicherung, Schadenversicherung, Rückversicherung);
- 4. Risikomanagement und Solvabilitätsvorschriften, insbesondere Solvency II;
- 5. Finanzierung und Kapitalanlage

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

- Nachweis von Kenntnissen der Funktion eines Versicherungsmarktes und seiner wesentlichen Determinanten und Begriffe,
- Nachweis von Kenntnissen im Risikomanagement, der Solvabilitätsanforderungen und Risikobewertung,
- Nachweis von Kenntnissen der Risikopolitik und der Geschäftsmodelle der Versicherungssparten,
- · Nachweis von Kenntnissen der Finanzierung des Risikotransfers,
- Bewertung der Rolle der Versicherungswirtschaft zum Markt der Kreditwirtschaft und der gesetzlichen Versicherungssysteme,
- Einfache Berechnungen zur Versicherungstechnik.

2 SWS

6 C

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Martin Balleer
Angebotshäufigkeit: in der Regel jedes zweite Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-BWL.0038: Supply Chain Management English title: Supply Chain Management

Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme des Moduls sind die Studierenden in der Lage, Instrumente, mit denen Distributionsaufgaben von Industrie- und Handelsunternehmen gelöst und koordiniert werden, anzuwenden, zu beurteilen und bei Bedarf anzupassen. Hierzu zählen insbesondere die gemeinsame Prognose der Nachfrage sowie die koordinierte Bestell- und Bestandspolitik von Handel und Industrie.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden

Lehrveranstaltung: Supply Chain Management (Vorlesung) *Inhalte*:

- 1. Begriffliche Grundlagen des Supply Chain Managements
- 2. Analyserahmen für die Ausgestaltung der Supply Chain
 - Der Management-Zyklus
 - Elemente und Strukturen des entscheidungsorientierten Ansatzes
 - Entscheidungsfelder des Supply Chain Managements
 - Zielgrößen des Supply Chain Managements
 - · Analyse der Einflussfaktoren
- 3. Koordination der Supply Chain
 - Begriffliche Grundlagen
 - Transaktionale versus relationale Koordination
 - · Supplier Relationship Management
 - · Beziehungsstile im Business to Business Geschäft
- 4. Standortplanung
 - Ziele, Einflussfaktoren und Optionen der Lagerstruktur
 - Methoden zur Lösung von Standortproblemen
- 5. Prognose der Nachfrage
 - Elemente eines Prognosesystems
 - Regressionsanalyse im Rahmen der Kausalanalyse
 - Grundlagen der Zeitreihenanalyse
 - Exponentielle Glättung Saisonmodell
- 6. Bestellmengenplanung
 - Bestellentscheidungen bei deterministischer Nachfrage
 - · Bestellentscheidungen bei stochastischer Nachfrage
 - · Das Joint Economic Lot Size (JELS) Modell
- 7. Technologische Voraussetzungen
 - · Elektronischer Datenaustausch
 - Standardisierung
 - RFID

Prüfung: Klausur (90 Minuten)		6 C
Prüfungsanforderungen:		
Nachweis von Fähigkeiten, Probleme der wirtschaftsstufenübergreifenden Koordination		
von Beschaffungs- und Distributionsproblemen zu analysieren. Beherrschung von		
Instrumenten, mit denen insbesondere die Schnittstelle zwischen Industrie und Handel		
abgestimmt wird. Kritische Diskussion der Ergebnisse solcher Instrumente.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-BWL.0005 Marketing
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Waldemar Toporowski
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Je nach Kapazität findet eine zusätzliche Übung mit Fallstudien statt. Informationen dazu stehen zu Beginn des Semesters im UniVz.

Georg-August-Universität Göttingen Module B.WIWI-BWL.0087: International Marketing 6 C 2 WLH

Learning outcome, core skills:

After successful attendance the students understand the foundations of international marketing as well as the diverse environments of global markets. They are able to explain and the central elements of the international decision-making process, such as country and entry mode selection. Moreover, they are able to analyze and compare the attractiveness of different countries and recommend tailored marketing program strategies.

Workload:

2 WLH

Attendance time: 28 h Self-study time: 152 h

Course: International Marketing (Lecture)

Contents:

- · Introduction to international marketing
- · Social and cultural environments
- · Political, legal, and regulatory environments
- · Assessing global marketing opportunities
- International marketing strategy (country selection, entry-modes, international marketing mix)
- · Branding across cultures

The course conveys theoretical knowledge which is enriched by case studies. Specific contents are international trade developments, culture and values (incl. approaches by Hofstede, Inglehart, & Schwartz), political risk assessment, legal environments, international marketing research, competitive analysis and strategy (incl. Porter's Five Forces), emerging markets, entry strategy (incl. Uppsala model vs. born global approach), country selection, market entry modes, international marketing mix, and the country-of-origin effect.

Examination: Written examination (90 minutes)

6 C

Examination requirements:

The written exam assesses students' understanding of the course content as well as their ability to apply their knowledge to case studies.

Examples:

- · Comparing different approaches of cultural difference assessment
- · Assessing a country's competitive environment
- · Recommending entry modes for different countries

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Yasemin Boztug
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:

twice	3 - 6
Maximum number of students:	
not limited	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0001: Mikroökonomik II English title: Microeconomics II

Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung der Veranstaltung sind Studierende in der Lage:

- verschiedene Marktformen voneinander zu unterscheiden und deren Wohlfahrtseffekte zu analysieren,
- zwischen der Gleichgewichtsanalyse eines einzelnen Marktes und der Analyse des allgemeinen Gleichgewichts aller Märkte zu unterscheiden und selbstständig anzuwenden,
- das Prinzip intertemporaler Entscheidungen der Haushalte zu verstehen und in die optimale Entscheidung der Haushalte einzubeziehen,
- die grundlegenden Zusammenhänge von Risiko und Versicherungsmärkten zu verstehen und in die optimale Entscheidung der Haushalte einzubeziehen,
- die Grundlagen simultaner und sequentieller Spieltheorie zu verstehen und selbstständig anzuwenden,
- die Konsequenzen asymmetrischer Informationen für das Verhalten der Marktteilnehmer zu analysieren.

Arbeitsaufwand:

Präsenzzeit: 70 Stunden Selbststudium:

110 Stunden

Lehrveranstaltung: Mikroökonomik II (Vorlesung)

Inhalte:

- Marktgleichgewicht bei vollkommener Konkurrenz und im Monopol: Grafische Analyse des Marktgleichgewichts und der allgemeinen Wohlfahrt in Abhängigkeit von der Marktform.
- Monopolistische Preisdifferenzierung: Analyse von Preis-, Mengen- und Wohlfahrtseffekten.
- Allgemeines Gleichgewicht: Grafische Analyse des allgemeinen Marktgleichgewichts mithilfe der Edgeworth-Box. Definition des Gesetzes von Walras sowie des ersten und zweiten Satzes der Wohlfahrtsökonomik.
- Ersparnis und Investition: Mathematische und grafische Abhandlung der intertemporalen Budgetgleichung der Haushalte sowie der optimalen Konsum- und Produktionsentscheidungen.
- Risiko und Versicherung: Mathematische und grafische Analyse der Entscheidung von Haushalten unter Unsicherheit. Einführung der Erwartungsnutzenhypothese und der von-Neumann-Morgenstern-Nutzenfunktion.
- Oligopoltheorie: Mathematische und grafische Analyse von Cournot-, Stackelbergund Bertrand-Gleichgewicht.
- Spieltheorie: Spiele in Normalform. Bestimmung dominanter Strategien und Nash-Gleichgewicht. Sequentielle Entscheidungen. Analyse sequentieller Spiele mithilfe des Entscheidungsbaumes.
- Asymmetrische Information: Analyse des Verhaltens von Marktteilnehmern im Fall von asymmetrisch verteilter Information. Moralisches Risiko (Moral hazard) und adverse Selektion.

Lehrveranstaltung: Mikroökonomik II (Tutorium)	2 SWS
Inhalte:	
In den Übungen werden die Inhalte der Vorlesung anhand von Aufgaben wiederholt und	
vertieft.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- · Aufgaben sind sowohl rechnerisch als auch grafisch und verbal intuitiv zu lösen,
- Nachweis grundlegender Kenntnisse des Wettbewerbsgleichgewichts eines Marktes und des allgemeinen Gleichgewichts, insbesondere der Rolle des Preises für die Markträumung,
- Nachweis der Fähigkeit zur grafischen und mathematischen Analyse verschiedener Marktformen und deren Wohlfahrtseffekte,
- Nachweis grundlegender Kenntnisse der Spieltheorie und Oligopoltheorie und der Fähigkeit der Bestimmung der optimalen Strategie der Marktteilnehmer,
- Nachweis der Fähigkeit zur Bewertung der Risikoeinstellung von Marktteilnehmern und der Konsequenzen für die optimale Entscheidung.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul B.WIWI-OHP.0007: Mikroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Claudia Keser, Prof. Dr. Udo Kreickemeier, Prof. Dr. Robert Schwager, Prof. Dr. Sebastian Vollmer
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0002: Makroökonomik II English title: Macroeconomics II

Lernziele/Kompetenzen:

Die Studierenden:

- können die außenwirtschaftlichen Beziehungen einer Volkswirtschaft systematisch erfassen,
- sind in der Lage, ein gesamtwirtschaftliches Modell durch die Beziehungen zum Ausland zu erweitern und anhand dieses Modells die Wirkung verschiedener wirtschaftspolitischer Maßnahmen in einer offenen Volkswirtschaft zu diskutieren,
- kennen die Eigenschaften verschiedener Währungssysteme und können deren Vor- und Nachteile unter Einbeziehung ihres Einflusses auf die Wirkung wirtschaftspolitischer Maßnahmen beurteilen,
- verstehen die wesentlichen Herausforderungen der modernen Geld- und Fiskalpolitik und k\u00f6nnen wirtschaftspolitische Entscheidungsprozesse modelltheoretisch abbilden,
- sind mit den Grundlagen der Wachstumsökonomik vertraut und können das Solow-Modell zur Bewertung von langfristigen Zusammenhängen und der Analyse der Quellen des Wirtschaftswachstums heranziehen,
- können Mithilfe verschiedener Modellrahmen makroökonomische Argumente nachvollziehen und selbständig analysieren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

Lehrveranstaltung: Makroökonomik II (Vorlesung)	2 SWS
Inhalte:	
Die Vorlesung erweitert die makroökonomischen Grundmodelle der Vorlesung	
Makroökonomik I entlang drei Dimensionen. Einerseits wird die Annahme einer	
geschlossenen Volkswirtschaft gelockert und die makroökonomischen Prozesse um	
Außenhandel und Wechselkursdynamiken in einer offenen Volkswirtschaft erweitert.	
In diesem Kontext werden auch unterschiedliche Wechselkurssysteme diskutiert	
und die Auswirkungen wirtschaftspolitischer Interventionen analysiert. Des Weiteren	
werden ausgewählte wirtschaftspolitische Fragestellungen vertiefend analysiert,	
insbesondere die Interaktionen zwischen wirtschaftspolitischen Entscheidungsträgern	
und Wirtschaftsakteuren, sowie ausgewählte Fragestellungen der Fiskal- und	
Geldpolitik. Die Makroökonomik der langen Frist wird durch eine Einführung in die	
Wachstumstheorie analysiert, wobei insbesondere die Quellen volkswirtschaftlichen	
Wachstums modelltheoretisch dargestellt werden.	
Lehrveranstaltung: Makroökonomik II (Übung)	2 SWS
Inhalte:	
Im Rahmen der begleitenden Übung/Tutorium vertiefen die Studierenden die Kenntnisse	
aus der Vorlesung anhand ausgewa hlter theoretischer Fragestellungen und üben die	
eigenständige Anwendung von Modellen.	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- Nachweis von Kenntnissen über die systematische Erfassung der außenwirtschaftlichen Beziehungen einer Volkswirtschaft und von Kenntnissen über deren Bedeutung für die Analyse des gesamtwirtschaftlichen Gleichgewichts und wirtschaftspolitischer Maßnahmen,
- Nachweis von Kenntnissen über verschiedene Wechselkurssysteme und deren Bedeutung für die Analyse des gesamtwirtschaftlichen Gleichgewichts und wirtschaftspolitischer Maßnahmen,
- Nachweis von Kenntnissen über ausgewählte vertiefende Fragen der Fiskal- und Geldpolitik,
- Nachweis von Kenntnissen des Grundmodells der Wachstumsökonomik und volkswirtschaftlicher Zusammenhänge in der langen Frist,
- die Studierenden zeigen, dass sie in der Lage sind, mit verschiedenen gesamtwirtschaftlichen Modellen analytisch und grafisch zu arbeiten, die dahinterstehenden Annahmen zu reflektieren sowie die sich ergebenden Unterschiede hinsichtlich der Wirkung wirtschaftspolitischer Maßnahmen darstellen und kritisch würdigen zu können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0008 Makroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger, Prof. Dr. Andreas Fuchs, Prof. Dr. Krisztina Kis-Katos, Dr. Katharina Werner
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen English title: Foundations of International Economic Relations

Lernziele/Kompetenzen:

Die Studierenden:

- kennen verschiedene Ursachen für die Teilnahme eines Landes an der internationalen Arbeitsteilung,
- können verschiedene Ursachen für den relativen Preisvorteil eine Landes theoretisch fundieren und deren wirtschaftspolitische Konsequenzen darstellen,
- ind mit den Wohlfahrtswirkungen von Außenhandel vertraut und können deren gesellschaftlichen Folgen reflektieren,
- kennen mögliche staatliche Instrumente zur Beeinflussung von Im- und Exporten und können die sich daraus ergebenden gesellschaftlichen Konsequenzen einzelstaatlich und weltwirtschaftlich bewerten.
- sind mit den Voraussetzungen und den Motiven einer multinationalen Unternehmertätigkeit vertraut,
- haben einen Überblick über die verschiedenen Erscheinungsformen von Devisenmärkten und den Motiven der dort handelnden Akteure und können die dabei bestehenden Zusammenhänge darstellen,
- sind vertraut mit verschiedenen Determinanten von Wechselkursen und können deren Relevanz kritisch reflektieren,
- verstehen die Auswirkungen von Wechselkursveränderungen für eine Volkswirtschaft,
- sind vertraut mit verschiedenen Wechselkursregimen und deren spezifischen Eigenschaften.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

2 SWS

Lehrveranstaltung: Grundlagen der internationalen Wirtschaftsbeziehungen (Vorlesung)

Inhalte:

Die Vorlesung besteht aus zwei Teilen. Teil 1 gibt einen Überblick über die Ursachen und die Folgen der internationalen Arbeitsteilung. Dabei werden verschiedene Theorien des Internationalen Handels analysiert und deren volkswirtschaftliche Konsequenzen dargestellt. Auch die Gründe für staatliche Interventionen in den Welthandel sowie deren ökonomische Konsequenzen werden analysiert. In Teil 2 werden die verschiedenen Erscheinungsformen von Devisenmärkten und die dort praktizierten Geschäfte untersucht und die Bestimmungsfaktoren von Wechselkursen diskutiert und theoretisch vertieft. Darüber hinaus wird die Validität der Theorien mittels empirischer Studien überprüft.

Lehrveranstaltung: Grundlagen der internationalen Wirtschaftsbeziehungen 2 SWS

(Übung) *Inhalte*:

Im Rahmen der begleitenden Übung vertiefen die Studierenden die Kenntnisse aus der Vorlesung anhand ausgewählter theoretischer Fragestellungen.

Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen: Nachweis von:	
 Kenntnissen der Gründe für die internationale Arbeitsteilung sowie über Theorien zur Bestimmung relativer Preisvorteile eines Landes und über die ökonomischen Folgen des Außenhandels, 	
Kenntnissen über die Erscheinungsformen von Devisenmärkten und die dort	

praktizierten Geschäfte sowie der Bestimmungsfaktoren von Wechselkursen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0007 Mikroökonomik I, B.WIWI-OPH.0008 Makroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger Prof. Dr. Udo Kreickemeier
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Coord August Universität Cättingen	6.0
Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.WIWI-VWL.0006: Wachstum und Entwicklung	
English title: Economic Growth and Development	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach Abschluss dieses Moduls haben die Studierenden ein grundlegendes Verständnis	Präsenzzeit:
für die Ursachen und Konsequenzen von langfristigem Wirtschaftswachstum bekommen. Sie machen sich mit den Standardmodellen der Wachstumstheorie vertraut.	56 Stunden Selbststudium:
bewerten empirische Tests dieser, ziehen wirtschaftspolitische Implikationen und	124 Stunden
reflektieren diese kritisch.	
Lehrveranstaltung: Wachstum und Entwicklung (Vorlesung) Inhalte:	2 SWS
1) Faktorakkumulation	
i) Kapitalakkumulation	
ii) Das Modell überlappender Generationen.	
iii) Bevölkerungswachstum und Wirtschaftswachstum	
iv) Der Demographische Übergang	
v) Humankapital: Gesundheit und Ausbildung	
vi) Warum fließt Kapital nicht von reichen zu armen Ländern?	
2) Produktivität	
i) Wachstumszerlegung	
ii) Erfindungen und Ideen	
iii) Technologischer Fortschritt und Wachstum vor dem 18. Jahrhundert	
iv) Technologischer Fortschritt und Wachstum heute	
3) Deep Determinants	
Lehrveranstaltung: Wachstum und Entwicklung (Übung)	2 SWS
Inhalte: In der begleitenden Übung sollen die Studierenden anhand von Übungsaufgaben ihr	
Wissen zu den in der Vorlesung behandelten Themen vertiefen und erweitern.	
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen: Nachweis:	
 fundierter Kenntnisse über die Ursachen und Konsequenzen langfristiger Einkommensunterschiede, von grundlegendem Verständnis der behandelten Wachstumsmodelle, von der Fähigkeit zum selbstständigen Lösen von Anwendungsbeispielen im Themenbereich der Vorlesung (theoretisch, graphisch und verbal). 	

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	B.WIWI-OPH.0008 Makroökonomik I B.WIWI-OPH.0006 Statistik
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Holger Strulik Dr. Katharina Werner
Angebotshäufigkeit: jedes zweite Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-VWL.0007: Einführung in die Ökonometrie English title: Introduction to Econometrics		6 C 6 SWS
Lernziele/Kompetenzen: Das Modul gibt eine umfassende Einführung in die ökonometrische Analyse ökonomischer Fragestellungen. Die Studierenden erlernen mit Hilfe der Methoden linearer Regressionsanalyse erste eigene empirische Studien durchzuführen. Die vermittelten Kompetenzen beinhalten die Spezifikation von ökonometrischen Modellen, die Modellselektion und –schätzung. Darüber hinaus werden Studierende mit ersten Problemen im Bereich der linearen Regression wie beispielsweise Heteroskedastizität und Autokorrelation vertraut gemacht. Dieses Modul bildet das Fundament für weiterführende Ökonometrie Veranstaltungen.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
 Lehrveranstaltung: Einführung in die Ökonometrie (Vorlesung) Inhalte: Einführung in lineare multiple Regressionsmodelle, Modellspezifikation, KQ-Schätzung, Prognose und Modellselektion, Multikollinearität und partielle Regression. Lineares Regressionsmodell mit normalverteilten Störtermen, Maximum-Likelihood-Schätzung, Intervallschätzung, Hypothesentests Asymptotische Eigenschaften des KQ- und GLS Schätzers Lineares Regressionsmodell mit verallgemeinerter Kovarianzmatrix, Modelle mit autokorrelierten und heteroskedastischen Fehlertermen, Testen auf Autokorrelation und Heteroskedastizität. 		2 SWS
Lehrveranstaltung: Einführung in die Ökonometrie (Übung) Inhalte: Die Großübung vertieft die Inhalte der Vorlesung anhand von Rechenaufgaben mit ökonomischen Fragestellungen und Datensätzen. Weiterhin werden theoretische Konzepte aus der Vorlesung detailliert hergeleitet.		2 SWS
Lehrveranstaltung: Einführung in die Ökonometrie (Tutorium) Inhalte: Das Tutorium vertieft die Inhalte der Vorlesung und Großübung anhand von Rechenaufgaben. Ein großer Teil beinhaltet das Schätzen von ökonometrischen Modellen mit realen Daten und mit Hilfe des Softwareprogramms Eviews.		2 SWS
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsanforderungen: Die Studierenden zeigen, dass sie einfache ökonometrische Konzepte verstanden haben. Darüber hinaus sind sie in der Lage, diese auf reale wirtschaftliche Fragestellungen anzuwenden.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik B.WIWI-OPH.0006 Statistik	

Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Helmut Herwartz
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-VWL.0008: Geldtheorie und Geldpolitik English title: Money and International Finance Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Absolvierung der Veranstaltung sind Studierende in der Lage: Präsenzzeit: 56 Stunden grundlegende makroökonomische Zusammenhänge zwischen der Geldpolitik und Selbststudium: der Realwirtschaft zu verstehen, 124 Stunden · die Funktionen des Finanzsystems, die Bedeutung von Zinsen und der Kreditvergabe zu verstehen, • die Transmissionskanäle der Geldpolitik zu verstehen, • die klassischen und neueren Instrumente der Zentralbanken zur Durchführung der Geldpolitik zu analysieren, • die Besonderheiten der Geldpolitik in der Eurozone zu verstehen. Lehrveranstaltung: Geldtheorie und Geldpolitik (Vorlesung) 2 SWS Inhalte: 1. Finanzmärkte 2. Finanzmarktinstitutionen 3. Zentralbanken 4. Geldtheorie Lehrveranstaltung: Geldtheorie und Geldpolitik (Übung) 2 SWS Inhalte: In den Übungen werden die Inhalte der Vorlesung anhand von Aufgaben wiederholt und vertieft. Prüfung: Klausur (90 Minuten) 6 C Prüfungsvorleistungen: Bis zu drei Einsendehausaufgaben; Länge jeweils bis zu drei maschinengeschriebenen Seiten (Bedingung zur Zulassung zur Klausur ist das Erreichen von 60% der insgesamt erreichbaren Punkte). Prüfungsanforderungen: · Nachweis fundierter Kenntnisse der Begriffe im Bereich der Geldtheorie und Geldpolitik durch intuitive und analytische Beantwortung von Fragen, · Nachweis der Fähigkeit zur grafischen und mathematischen Analyse der Geldtheorie und Geldpolitik. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.WIWI-OPH.0008 Makroökonomik I Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Tino Berger

Dauer:

1 Semester

Empfohlenes Fachsemester:

Angebotshäufigkeit: iedes Sommersemester

Wiederholbarkeit:

zweimalig	3 - 6
Maximale Studierendenzahl:	
nicht begrenzt	

Georg-August-Universität Göttingen

Modul B.WIWI-VWL.0010: Einführung in die Institutionenökonomik

English title: Foundations of Institutional Economics

6 C 2 SWS

Lernziele/Kompetenzen:

Die Studierenden:

- kennen verschiedene Definitionen von internen und externen Institutionen, sowie deren Relevanz in der wirtschaftspolitischen Normsetzung,
- kennen die Rolle von Eigentumsrechten und deren Durchsetzung in der ökonomischen Theorie und Praxis,
- · kennen Konzepte von Transaktionskosten und deren Wirkung auf die
- · Interaktion von Individuen und Firmen auf dem Markt,
- kennen die Rolle des Staates bei der Einführung und Durchsetzung externer Institutionen,
- kennen Grundlagen der Neuen Politischen Ökonomik und deren Theorie der Demokratie, Bürokratie und Interessengruppe,
- kennen institutionenökonomische Analysekonzepte wie die Prinzipal-Agenten-Theorie oder Moral Hazard, sowie experimentelle Forschungsergebnisse zur Institutionenanalyse.
- kennen die Rolle und den Wandel von Verhaltensmodellen als wirtschaftspolitisches Instrument.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

Lehrveranstaltung: Einführung in die Institutionenökonomik (Vorlesung) Inhalte:

Diese Vorlesung soll die theoretischen Grundlagen der Institutionenökonomik vermitteln und verschiede (Anwendungs-)Bereiche aufzeigen.

Die Vorlesung ist inhaltlich in drei Blöcke unterteilt. Im ersten wird die institutionenökonomische Theorie vermittelt. Dabei wird mit der Abgrenzung zwischen internen und externen Institutionen, sowie ihrer Entwicklung und Bedeutung für das gesellschaftliche Zusammenleben begonnen. Dabei wird auch auf ihre Relevanz in der wirtschaftspolitischen Normsetzung und die Durchsetzungsmechanismen eingegangen. Im Anschluss werden Verfügungsrechte als eine der zentralen externen Institutionen bezüglich Konzept und Umsetzungsform erläutert und analysiert. Die Governancestrukturen sollen mithilfe der drei Akteure Unternehmen, Markt sowie Staat und politischer Prozess vermittelt werden. Dabei werden Theorie und Anwendungsmöglichkeiten von Transaktionskosten und deren Wirkung auf die Interaktion von Individuen und Firmen erörtert. Die Prinzipal-Agenten-Theorie und Moral Hazard dienten dabei als institutionenökonomische Analysekonzepte. Zudem sind die Rolle des Staates bei der Einführung und Durchsetzung externer Institutionen, sowie die Grundlagen der Neuen Politischen Ökonomik und deren Theorien der Demokratie, Bürokratie und Interessengruppen Gegenstand der Vorlesung.

Der zweite Block konzentriert sich auf kulturvergleichende Institutionenökonomik. Der Fokus liegt auf dem Varieties of Capitalism-Ansatz von Hall & Soskice. Zudem wird

der Zusammenhang von Institutionen mit wirtschaftlichem Wachstum und Entwicklung vermittelt.

Der dritte Block thematisiert behavioral Governance und damit die Anwendungsmöglichkeiten von Institutionenökonomik. Beginnend mit der Rolle und dem Wandeln von ökonomischen Verhaltensmodellen und ihrer Relevanz für die Institutionenökonomik wird unter anderem das Verhaltensmodell des homo oeconomicus institutionalis vermittelt. Daran anschließend wird das Regulatory Choice Problem Gegenstand der Vorlesung. Zum Schluss werden das Konzept des Nudging und die bisherigen vielfältigen Anwendungen in der Politik vorgestellt und diskutiert. In diesem Block gibt es einen kurzen Einstieg in die experimentelle Ökonomik als ein Tool der institutionenökonomischen Analyse.

Neben der Vermittlung der oben genannten Theorien und Konzepte ist in jeder Vorlesung Platz für die kritische Diskussion mit den Studierenden. Zur weiteren kritischen Auseinandersetzung mit dem vermittelten Inhalt werden zwei Hausaufgaben gestellt. In diesen sollen zum einen bestimmte Konzepte wiedergegeben werden und zum anderen sollen diese in den aktuellen Forschungskontext einbezogen werden.

Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen:

6 C

Bearbeitung von zwei Hausaufgaben, von denen mindestens eine bestanden werden muss.

Prüfungsanforderungen:

In der Klausur sollen die erlernten theoretischen Konzepte wiedergegeben, erklärt und kritische diskutiert bzw. reflektiert werden. Darüber hinaus müssen die Studierenden den Nachweis erbringen in der Lage zu sein diese theoretischen Konzepte auf aktuelle wirtschaftspolitische Fragestellungen anzuwenden.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0007 Mikroökonomik I, B.WIWI-OPH.0008 Makroökonomik I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Kilian Bizer
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.WIWI-VWL.0059: Internationale Finanzmärkte English title: International Financial Markets Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Nach erfolgreicher Absolvierung der Veranstaltung sind Studenten in der Lage: 56 Stunden grundlegende makroökonomische Zusammenhänge auf dem Devisenmarkt zu Selbststudium: verstehen und intuitiv wiederzugeben, 124 Stunden • das Zusammenspiel von verschiedenen Makrovariablen und ihre Wirkung auf den Wechselkurs zu verstehen, • optimale Investitionsentscheidungen der Investoren selbstständig zu ermitteln, • Bedingungen zu bewerten, unter denen Industrie- und Entwicklungsländer auf dem internationalen Finanzmarkt zusammenarbeiten. 2 SWS Lehrveranstaltung: Internationale Finanzmärkte (Vorlesung) Inhalte: 1. Monetärer Ansatz auf lange Sicht Einfaches monetäres Modell. Die Art und Weise wie Preisanpassungen zu einem langfristigen Gleichgewicht führen. Realzins und Wechselkurs. 2. Asset-Ansatz auf kurze Sicht Kurzfristiges Gleichgewicht am Geldmarkt und am Devisenmarkt. Die Beziehung zwischen Inlandsrenditen, Auslandsrenditen und dem Wechselkurs einschließlich Überschreitung. 3. Zahlungsbilanz Bruttonationaleinkommen, Bruttoinlandsausgaben, Ersparnis und Investitionen in einer geschlossenen / offenen Wirtschaft. Leistungsbilanz und seine Komponenten. Globales Ungleichgewicht und reale Beispiele dafür. 4. Gewinne der finanziellen Globalisierung Das Konzept des externen Reichtums und wie man es berechnet. Die langfristige Budgetbeschränkung und ihre Anwendung für Industrie- und Schwellenländer. Konsumglättung, effiziente Investition, finanzielle Offenheit und Risikostreuung. 5. Fixe und flexible Wechselkurssysteme Feste Wechselkurse, Crawling Peg und flexible Wechselkurse: Vor- und Nachteile. Wirtschaftliche Ähnlichkeit und Kosten asymmetrischer Schocks. Kooperative und nicht kooperative Anpassungen der Zinssätze. 6. Währungsunionen Das Mundell-Fleming-Modell, Geld- und Fiskalpolitik. Die Theorie optimaler Währungsräume. Die Anwendung dieser Theorie auf die Eurozone und Zusammenhang mit der Eurokrise.

Lehrveranstaltung: Internationale Finanzmärkte (Übung)

Inhalte:

In den Übungen werden die Inhalte der Vorlesung anhand von Aufgaben wiederholt und vertieft.	
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Nachweis fundierter Kenntnisse der Begriffe im Bereich der internationalen	
Finanzen durch intuitive und analytische Beantwortung von Fragen,	
Nachweis der Fähigkeit zur mathematischen Herleitung der gewinnoptimierenden	
Entscheidung von hypothetischen Investoren oder Zentralbanken,	
Nachweis der Fähigkeit zur grafischen und mathematischen Analyse der	
finanziellen Globalisierung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0008 Makroökonomik I, B.WIWI-VWL.0005: Grundlagen der internationalen Wirtschaftsbeziehungen
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tino Berger
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	6 C
Modul B.WIWI-VWL.0075: Dynamische Methoden in der Ökonomie	4 SWS
English title: Economic Dynamics	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach Abschluss dieses Moduls:	Präsenzzeit:
 haben die Studierenden ein grundlegendes Verständnis der dynamischen Prozesse in der Ökonomie, 	56 Stunden Selbststudium:
 sie machen sich mit den mathematischen Methoden vertraut, wenden diese zur Lösung ökonomischer Fragestellungen an und reflektieren kritisch die Methoden und Resultate. 	124 Stunden
Lehrveranstaltung: Dynamische Methoden in der Ökonomie (Vorlesung)	2 SWS
Inhalte: 1) Differentialgleichungen	
i. Existenz, Eindeutigkeit und weitere Eigenschaften von Lösungen	
ii. Lineare Differentialgleichungen erster Ordnung	
iii. Lösungsverfahren für Differentialgleichungen (u.a. Trennung der Variablen, Variation der Konstanten)	
iv. Systeme linearer Differentialgleichungen	
v. Differentialgleichungen höherer Ordnung	
vi. Stabilität	
2) Dynamische Optimierung: Variationsrechnung und optimale Kontrolle	
i. Notwendige und hinreichende Optimalitätsbedingungen	
ii. Transversalitätsbedingungen	
iii. Endlicher und unendlicher Zeithorizont	
iv. Anwendungen in der Ökonomie (u.a. neoklassisches Wachstumsmodell, Extraktion von Ressourcen)	
Lehrveranstaltung: Dynamische Methoden in der Ökonomie (Übung)	2 SWS
Inhalte: In der begleitenden Übung sollen die Studierenden anhand von Übungsaufgaben ihr Wissen zu den in der Vorlesung behandelten Themen vertiefen und erweitern.	
Prüfung: Mündliche Prüfung (20 Minuten) oder Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Nachweis:	
 fundierter Kenntnisse der dynamischen Methoden in der Ökonomie, von grundlegendem Verständnis der behandelten Modelle, von der Fähigkeit zum selbständigen Lösen von Anwendungsbeispielen im 	
Themenbereich der Vorlesung (theoretisch, graphisch und verbal).	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0002 Mathematik
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Katharina Werner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Studierende, die das Modul B.WIWI-VWL.0075 absolviert haben, können im Masterstudiengang das Modul M.WIWI-VWL.0160 nicht belegen.

Georg-August-Universität Göttingen

Modul B.WIWI-WIN.0001: Management der Informationssysteme

English title: Management of Business Information Systems

6 C 3 SWS

Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage:

- die Phasen einer Anwendungssystementwicklung zu beschreiben sowie dortige Instrumente erläutern und anwenden zu können,
- Vorgehensweisen, Ansätze und Werkzeuge zur Entwicklung von Anwendungssystemen zu beschreiben, gegenüberzustellen und vor dem Hintergrund gegebener Problemstellungen zu bewerten,
- Elemente von Modellierungstechniken und Gestaltungsmöglichkeiten von Anwendungssystemen zu beschreiben und zu erläutern,
- ausgewählte Methoden zur Modellierung von Anwendungssystemen selbstständig anwenden zu können,
- Prinzipien der Anwendungssystementwicklung auf gegebene Problemstellungen transferieren zu können,
- Modellierungsaufgaben im Themenfeld der Vorlesung eigenständig zu bearbeiten, zu reflektieren und konstruktiv zu bewerten.

Arbeitsaufwand:

Präsenzzeit: 38 Stunden Selbststudium: 142 Stunden

Lehrveranstaltung: Management der Informationssysteme (Vorlesung) *Inhalte*:

Die Veranstaltung Management der Informationssysteme (MIS) beschäftigt sich mit der produktorientierten Gestaltung der betrieblichen Informationsverarbeitung. Unter Produkt wird hier das Anwendungssystem bzw. eine ganze Landschaft aus Anwendungssystemen verstanden, die es zu gestalten, zu modellieren und zu organisieren gilt. Der Fokus der Veranstaltung liegt auf der Vermittlung von Vorgehensweisen sowie Methoden und konkreten Instrumenten, welche es erlauben, Anwendungssysteme logisch-konzeptionell zu gestalten.

- Grundlagen der Systementwicklung
 - Herausforderungen bei der Einführung einer neuen Software
 - Vorgehensweisen zur Systementwicklung (z. B. Prototyping)
 - Grunds. Ansätze der Systementwicklung (z. B. Geschäftsprozessorientierter Ansatz)
- Planung- und Definitionsphase
 - Methoden zur Systemplanung (z. B. Portfolio-Analyse)
 - Methoden zur System-Wirtschaftlichkeitsberechnung (z. B. Kapitalwertmethode)
 - Lastenhefte
 - Pflichtenhefte
- Entwurfsphase
 - Geschäftsprozessmodell (z. B. Ereignisgesteuerte Prozessketten)
 - Funktionsmodell (z. B. Anwendungsfall-Diagramm)
 - Datenmodell (z. B. Entity-Relationship-Modell)

• Objektmodell (z. B. Klassendiagramm) • Gestaltung der Benutzungsoberfläche (Prinzipien / Standards) · Datenbankmodelle - Implementierungsphase • Prinzipien des Programmierens • Arten von Programmiersprachen Übersetzungsprogramme • Werkzeuge (z. B. Anwendungsserver) Abnahme- und Einführungsphase Qualitätssicherung (z. B. Systemtests) · Prinzipien der Systemeinführung - Wartungs- und Pflegephase Wartungsaufgaben · Portfolio-Analyse Lehrveranstaltung: Management der Informationssysteme (Tutorium) 1 SWS Inhalte: · Vorstellung des grundlegenden Funktionsumfangs ausgewählter Modellierungssoftware, · Einführung in die Grundlagen des Modellierens, • Tutorielle Begleitung bei der Bearbeitung von Fallstudien. Prüfung: Klausur (90 Minuten) 6 C Prüfungsvorleistungen: Erfolgreiche Bearbeitung von drei Modellierungsfallstudien und Bewertung von Lösungen im Rahmen eines kollegialen Peer-Review-Verfahrens. Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie: die in der Vorlesung vermittelten Aspekte der Anwendungssystementwicklung erläutern und beurteilen können, • Projekte zur Anwendungssystementwicklung in die vermittelten Phasen einordnen können, • Vorgehensweisen, Ansätze und Werkzeuge zur Entwicklung von Anwendungssystemen auf praktische Problemstellungen transferieren können, komplexe Aufgabenstellungen mit Hilfe der vermittelten Inhalte analysieren und Lösungsansätze selbstständig aufzeigen können, • Vermittelte Methoden zur Modellierung von Anwendungssystemen notationskonform anwenden können und • in der Vorlesung vermittelten Ansätze auf vergleichbare Problemstellungen im Umfeld betrieblicher Anwendungssysteme übertragen können. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:**

keine

Modul B.WIWI-OPH.0003: Informations- und

Kommunikationssysteme

Sprache:	Modulverantwortliche[r]:
Deutsch	Dr. Sebastian Hobert
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Im Wintersemester werden die Vorlesungsinhalte mittels Videos vermittelt.

6 C Georg-August-Universität Göttingen 6 SWS Modul B.WIWI-WIN.0002: Management der Informationswirtschaft English title: Fundamentals of Information Management Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden: Präsenzzeit: 84 Stunden • kennen und verstehen strategische, operative und technische Aspekte des Selbststudium: Informationsmanagements im Unternehmen, 96 Stunden · kennen und verstehen verschiedene theoretische Modelle und Forschungsfelder des Informationsmanagements, • kennen und verstehen die Aufgaben des strategischen IT-Managements, der IT-Governance, des IT Controllings und des Sicherheits- sowie IT-Risk-Managements, · kennen und verstehen die Konzepte und Best-Practices im Informationsmanagement von Gastreferenten in deren Unternehmen, analysieren und evaluieren Journal- und Konferenzbeiträge hinsichtlich wissenschaftlicher Fragestellungen, • analysieren und evaluieren praxisorientierte Fallstudien hinsichtlich des Beitrags des Informationsmanagements für den wirtschaftlichen Erfolg eines Unternehmens. 2 SWS Lehrveranstaltung: Management der Informationswirtschaft (Vorlesung) Inhalte: · Modelle des Informationsmanagements • Grundlagen der Informationswirtschaft • Strategisches IT-Management & IT-Governance IT-Organisation Sicherheitsmanagement & IT- Risk Management • Außenwirksame IS & e-Commerce • IT-Performance Management · Umsetzung & Betrieb, Green IT Projektmanagement · Highlights / Q&A Lehrveranstaltung: Methodische Übung Management der Informationswirtschaft 2 SWS (Übung) 2 SWS Lehrveranstaltung: Inhaltliche Übung Management der Informationswirtschaft (Übung) 6 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Nachweis von Kenntnissen über Grundlagen der Informationswirtschaft. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Orientierungsphase

Sprache:

Modulverantwortliche[r]:

Deutsch	Prof. Dr. Lutz M. Kolbe
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Angebotshäufigkeit

Das Modul wird in jedem Semester angeboten. Im Wintersemester wird die Vorlesung und Übung regulär gehalten. Im Sommersemester findet nur die Übung statt. Die Vorlesung ist im Selbststudium zu erarbeiten. Grundlage dafür ist die aufgezeichnete Vorlesung des jeweils vorhergehenden Wintersemesters.

Georg-August-Universität Göttingen Modul M.Che.1311: Schwingungsspektroskopie und zwischenmolekulare Dynamik English title: Vibrational Spectroscopy and Intermolecular Dynamics Lernziele/Kompetenzen: Die Absolvent*innen dieses Moduls haben vertiefte theoretische Kenntnisse zur Präsenzzeit:

- Die Absolvent*innen dieses Moduls haben vertiefte theoretische Kenntnisse zur Schwingungsspektroskopie und zwischenmolekularen Dynamik, sowie deren Ausstrahlung auf andere Gebiete der Naturwissenschaften erworben und sind in der Lage, quantitative Fragestellungen dazu zu erfassen und zu lösen.
- Insbesondere verstehen sie harmonische und anharmonische Kopplungen, Intensitätseffekte, fortgeschrittene Symmetrieaspekte und experimentelle Techniken der Schwingungsspektroskopie.
- Sie k\u00f6nnen zwischenmolekulare Wechselwirkungen beschreiben, die sich daraus ergebenden Potentialhyperfl\u00e4chen, Aggregatstrukturen und dynamischen Ph\u00e4nomene analysieren und experimentelle Methoden der Spektroskopie von Molek\u00e4laggregaten vergleichen.

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Vorlesung mit Übung: Schwingungsspektroskopie und zwischenmolekulare Dynamik

Prüfung: Klausur (180 Minuten)

6 C

Prüfungsanforderungen:

Erfassung und quantitative Lösung von exemplarischen Fragestellungen aus dem Forschungsgebiet mit begrenzten Hilfsmitteln in vorgegebener Zeit, mindestens 50% der Sollpunktzahl.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Martin Suhm
Angebotshäufigkeit: i.d.Regel alle zwei jahre	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: 64	

Bemerkungen:

Die aktive Teilnahme an den angebotenen Übungsstunden wird dringend empfohlen.

Georg-August-Universität Göttingen		6 C
Modul M.Che.1313: Elektronische Spektroskopie und		4 SWS
Reaktionsdynamik		
English title: Electronic Spectroscopy and Read	ction Dynamics	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Absolvent*innen dieses Moduls haben verti	iefte theoretische Kenntnisse zur	Präsenzzeit:
elektronischen Spektroskopie und Reaktionsdy	namik sowie deren Ausstrahlung auf	56 Stunden
andere Gebiete der Naturwissenschaften erwor	rben und sind in der Lage, quantitative	Selbststudium:
Fragestellungen dazu zu erfassen und zu löser	1.	124 Stunden
Lehrveranstaltung: Vorlesung mit Übung: Elektronische Spektroskopie und Reaktionsdynamik		
Prüfung: Klausur (180 Minuten)		6 C
Prüfungsanforderungen: Erfassung und quantitative Lösung von exemplarischen Fragestellungen aus dem Forschungsgebiet mit begrenzten Hilfsmitteln in vorgegebener Zeit, mindestens 50% der Sollpunktzahl.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Alec Wodtke	
Angebotshäufigkeit:	Dauer:	
i.d.Regel alle 2 jahre	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	1 - 2	
Maximale Studierendenzahl:		
64		
Bemerkungen:		
Die aktive Teilnahme an den angebotenen Übungsstunden wird dringend empfohlen.		

Georg-August-Universität Göttingen Modul M.Che.1314: Biophysikalische Chemie English title: Biophysical Chemistry 6 C 5 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Abschluss des Moduls ...

- sollen die Studierenden in der Lage sein, die wesentlichen physikochemischen Zusammenhänge biologischer Materie zu verstehen
- die generellen Triebkräfte biologischer Reaktionen kennen
- Spektroskopische Methoden zur Strukturbestimmung biologischer Makromoleküle verstehen und anwenden können
- die Grundzüge moderner optischer Mikroskopie sowie der Sondenmikroskopie verstanden haben
- die Mechanik und Dynamik biologischer Systeme ausgehend vom Einzelmolekül bis zur einzelnen Zelle erörtern können

Arbeitsaufwand:

Präsenzzeit: 70 Stunden Selbststudium:

110 Stunden

Lehrveranstaltung: Vorlesung mit Übungen Biophysikalische Chemie	5 SWS
Prüfung: Klausur (180 Minuten)	6 C

Prüfungsanforderungen:

- Übertragung genereller physikochemischer Prinzipien, wie zum Beispiel der Reaktionsdynamik, (statistischen) Thermodynamik und Quantentheorie auf die Beschreibung biologischer Phänomene
- Beschreibung biologisch relevanter Wechselwirkungskräfte, stochastischer Prozesse wie Diffusion, physikalischer Biopolymer-Modelle, der Eigenschaften von Biomembranen und der Visikoelastizität von weicher Materie.
- Kenntnisse der wesentlichen Methoden, wie z.B. UV-Vis, Circulardichroismus, Rasterkraftmikroskopie, optische Fallen, Fluoreszenz, und optische Mikroskopie.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Janshoff
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: 64	

Georg-August-Universität Göttingen		6 C
Module M.Che.1315: Chemical Dynamics at Surfaces		4 WLH
Learning outcome, core skills:		Workload:
The students of this module will achieve a deeper theoretical knowledge of chemical		Attendance time:
dynamics on surfaces as well as their influence on		56 h
order that they will be able to approach and solve p	problems regarding the quantitative	Self-study time:
questions in this field.		124 h
Course: Lecture Combined with Tutorial: Chem	ical Dynamics at Surfaces	
Examination: Written examination (180 minutes)	6 C
Examination requirements: By Understanding and solving exemplary questions regarding this research field with the help of limited reference material in predetermined time will count as minimum 50 % of the required score		9
Admission requirements: none Recommended previous knowled none		edge:
Language: English	Person responsible for module Prof. Dr. Alec Wodtke	:
Course frequency: normally every 2 years	Duration: 1 semester[s]	
Number of repeat examinations permitted: three times Recommended semester: 1 - 2		
Maximum number of students: 64		
Additional notes and regulations: Active participation in provided tutorial is recommand	nded.	

Angebotshäufigkeit:

Wiederholbarkeit:

Maximale Studierendenzahl:

unregelmäßig

zweimalig

30

Georg-August-Universität Göttingen Modul M.Inf.1112: Effiziente Algorithmen English title: Efficient Algorithms		5 C 3 SWS
		3 5005
Lernziele/Kompetenzen: Erwerb fortgeschrittener Kenntnisse und Fähigkeiten zur Entwicklung und Analyse effizienter Algorithmen und zur Untersuchung der Komplexität von Problemen in unterschiedlichen Anwendungsbereichen.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Vorlesung/Übung Inhalte: Zum Beispiel: Randomisierte und Approximationsalgorithmen, Graphalgorithmen, Onlinealgorithmen, Netzwerkalgorithmen, Neurocomputing, Pattern-Matching-Algorithmen.		3 SWS
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.). Prüfungsanforderungen: Fähigkeit zum Entwurf von effizienten Algorithmen für gegebene Probleme. Beurteilungskompetenz von deren inherenter Komplexität in den Bereichen der Kerninformatik und ggf. ihren Anwendungen.		5 C
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm, Prof. Dr. Prof. Dr. Florentin Andreas Wörgd	

Dauer:

1 Semester

Empfohlenes Fachsemester:

Georg-August-Universität Göttingen Modul M.Inf.1141: Semistrukturierte Daten und XML English title: Semistructured Data and XML

Lernziele/Kompetenzen:

Die Studierenden kennen die Konzepte semistrukturierter Datenmodelle und die Parallelen sowie Unterschiede zum "klassischen" strukturierten, relationalen Datenmodell. Sie können damit für eine Anwendung abschätzen, welche Technologien gegebenenfalls zu wählen und zu kombinieren sind. Die Studierenden verfügen über praktische Grundkenntnisse in den üblichen Sprachen dieses Bereiches. Sie haben einen Überblick über die historische Entwicklung von Modellen und Sprachen im Datenbankbereich und können daran wissenschaftliche Fragestellungen und Vorgehensweisen nachvollziehen.

Arbeitsaufwand: Präsenzzeit:

56 Stunden
Selbststudium:
124 Stunden

6 C

Lehrveranstaltung: Semistrukturierte Daten und XML (Vorlesung, Übung)

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.) Prüfungsanforderungen:

Konzepte semistrukturierter Datenmodelle und die Parallelen sowie Unterschiede zum "klassischen" strukturierten, relationalen Datenmodell; Fähigkeit zur Beurteilung, welche Technologien in einer konkreten Anwendung zu wählen und zu kombinieren sind; praktische Grundkenntnisse in den üblichen Sprachen dieses Bereiches; Überblick über die historische Entwicklung von Modellen und Sprachen im Datenbankbereich; Fähigkeit zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.

Zugangsvoraussetzungen: Datenbanken	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Module M.Inf.1151: Specialisation Softwareengineering: Data Science and Big Data Analytics 5 C 3 WLH

Workload: Learning outcome, core skills: The students Attendance time: 42 h · can define the terms data science, data scientist and big data, and acquire Self-study time: knowledge about the principle of data science and big data analytics 108 h · become acquainted with the life cycle of data science projects and know how the life cycle can be applied in practice gain knowledge about a statistical and machine learning modelling system • gain knowledge about basic statistical tests and how to apply them · gain knowledge about clustering algorithms and how to apply them gain knowledge about association rules and how to apply them · gain knowledge about regression techniques and how to apply them gain knowledge about classification techniques and how to apply them · gain knowledge about text analysis techniques and how to apply them · gain knowledge about big data analytics with MapReduce · gain knowledge about advanced in-database analytics

Course: Data Science and Big Data Analytics (Lecture, Exercise)	3 WLH
Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	5 C
Examination prerequisites:	
Successful completion of 50% of each exercise and the conduction of a small analysis	
project.	
Examination requirements:	
Data science, big data, analytics, data science life cycle, statistical tests, clustering,	
association rules, regression, classification, text analysis, in-database analytics.	

Admission requirements:	Recommended previous knowledge: Foundations of statistics and stochastic.
Language: English	Person responsible for module: Prof. Dr. Jens Grabowski
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen Module M.Inf.1171: Cloud and Service Computing 5 C 3 WLH

Learning outcome, core skills:

Successfully completing the module, students understand

- · hybrid clouds, consisting of private and public clouds
- basic web technologies (transfer protocols, markup languages, markup processing, RESTful and SOAP web services)
- · virtualization technologies (server, storage, and network virtualization)
- data services (sharing, management, and analysis)
- continuous integration/continuous delivery
- container and orchestration in clouds (e.g. Kubernetes, OpenStack Heat)
- · monitoring of cloud infrastructures
- interoperability in clouds (e.g. Helm)
- · portability and security
- · microservices
- · cloud computing workloads

On completion of this module students will have a good understanding of the fundamental and up-to-date concepts used in the context cloud computing. This basic knowledge can be leveraged by students to design, implement, and manage service-oriented cloud infrastructures by themselves.

Workload:

Attendance time:

42 h

Self-study time: 108 h

Course: Cloud and Service Computing (Lecture, Exercise)

Contents:

Cloud Computing is a method of providing shared computing resources, such as applications, computing, storage, networking, development, and deployment platforms. In cloud computing these resources can be delivered as service to the user. Such Service-oriented infrastructures are the backbone of modern IT systems. They pool resources, enable collaboration between people, and provide complex services to endusers. Everybody who uses today's web applications implicitly relies on sophisticated service-oriented infrastructures. The same is true for users of mobile devices such as tablet computers and smart phones, which provide most of their benefits leveraging services.

The key challenges of cloud computing infrastructures are related to scaling services. More specifically large cloud-computing infrastructures require scalability of IT management, programming models, and power consumption. The challenges to scale services lie in the inherent complexity of hardware, software, and the large amount of user requests, which large-scale services are expected to handle. This module teaches methods that address and solve those challenges in practice. Key aspects of the module are the management of IT infrastructures, the management of service landscapes, and programming models for distributed applications.

The module covers the virtualization of computing, storage, and network resources as the fundament for scaling. IT management is covered by the discussion of deployment 3 WLH

models, service level agreements. Programming models are covered by discussing RESTful and SOAP web-services.

Both, lectures and exercises, keep a close connection to the practical application of the discussed topics. The practical value of service-oriented infrastructures is highlighted in the context of enterprises as well as in the context of science. The methods taught in this module benefit from the lecturers' experiences at GWDG and thus provide exclusive insights into the topic. After successfully attending these modules students will understand the most important aspects to design, implement, and manage internet-scale cloud computing infrastructures.

Examination: Written exam (90 min) or oral exam (approx. 30 min) Examination requirements:

- · Hybrid and Multi cloud infrastructures
- · RESTful and SOAP web services
- · Compute, storage, and network virtualisation
- Infrastructure-as-a-service, platform-as-a-service, software-as-a-service
- Characteristics of Cloud computing (NIST)
- · Service life cycle
- · Service level agreements
- · Cloud computing workloads (e.g. batch, SaaS, big data, back-end)

Admission requirements: none	Recommended previous knowledge: Basic programming skills Basic knowledge of Linux operating systems
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: 50	

5 C

Georg-August-Universität Göttingen 5 C 3 WLH Module M.Inf.1172: Using Research Infrastructures Learning outcome, core skills: Workload: Successfully completing the module, students Attendance time: 42 h · understand what methods and services are available in state-of-the-art research Self-study time: infrastructures and direction of future development 108 h · understand the infrastructures for eScience and eResearch · know basics of data management and data analysis know the fundamental of technologies like cloud computing and grids understand the real-world problems from different domains (e.g., high energy physics, humanities, medical science, etc.) which are tackled by research infrastructures · understand certain aspects, methods and tools of these infrastructures for different use cases from different domains will be motivated to take part in other related modules (e.g., Specialization in Distributed Systems, Parallel Computing, etc.) Course: Using Research Infrastructures - Examples from Humanities and 3 WLH Sciences (Lecture, Exercise) Contents: Successfully completing the lecture, students understand the role and importance of the research infrastructure and their general building blocks · know the basics of grid computing · know the basics of cloud computing · learn basics on system virtualization · learn fundamental ideas of data management and analysis understand the real-world problems from different domains (e.g., high energy physics, humanities, medical science/life science, etc.) which are tackled by research infrastructures · understand certain aspects, methods and tools of these infrastructures for different use cases from different domains • will be motivated to take part in other related modules (e.g., Specialization in Distributed Systems, Parallel Computing, etc.) get familiar with real-world challenges through talks from experts who will present their current research activities and the role of research infrastructures on their research **Examination: Written examination (90 minutes)** 5 C **Examination requirements:** Grid computing; cloud computing; system virtualization; data management; data analysis; application of eResearch infrastructure in high energy physics; eResearch in

medicine and life science; eResearch in humanities

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen Module M.Inf.1185: Sensor Data Fusion 5 C 4 WLH

Learning outcome, core skills:

This module is concerned with fundamental principles and algorithms for the processing and fusion of noisy (sensor) data. Applications in the context of navigation, object tracking, sensor networks, robotics, Internet-of-Things, and data science are discussed.

After successful completion of the module, students are able to

- · define the notion of data fusion and distinguish different data fusion levels
- formalize data fusion problems as state estimation problems
- develop distributed and decentralized data fusion architectures
- describe the basic concepts of linear estimation theory
- · explain the fundamental formulas for the fusion of noisy data
- deal with unknown correlations in data fusion
- · understand the Bayesian approach to data fusion and estimation
- formulate dynamic models for time-varying phenomena
- describe the concept of a recursive Bayesian state estimator
- · explain and apply the Kalman filter for state estimation in dynamic systems
- explain and apply basic nonlinear estimation techniques such as the Extended Kalman filter (EKF) and Unscented Kalman filter (UKF)
- assess the properties, advantages, and disadvantages of the discussed (nonlinear) estimators
- explain different approaches to deal with uncertainty such as probability theory, fuzzy theory, and Dempster–Shafer theory
- identify data fusion applications and assess the benefits of data fusion

Workload:

Attendance time: 56 h

Self-study time: 94 h

Course: Sensor Data Fusion (Lecture, Exercise)	4 WLH
Examination: Written exam (90 min.) or oral exam (approx. 20 min.)	5 C
Examination requirements:	
Definition of data fusion; data fusion levels; formalization of data fusion problems;	
distributed and decentralized fusion architectures; linear estimation theory; fundamental	
fusion formulas; dynamic state estimation; Kalman filter; Extended Kalman filter (EKF);	
Unscented Kalman filter (UKF), algorithms for dealing with unknown correlations; fuzzy	
theory; Dempster-Shafer theory	

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Marcus Baum
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	

Maximum number of students:	
50	

Georg-August-Universität Göttingen Module M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics 5 C 2 WLH

Module M.Inf.1186: Seminar Hot Topics in	Data Fusion and Analytics	
Learning outcome, core skills:		Workload:
After successful completion of the modul students are able to		Attendance time:
 get acquainted with a specific research topic in the area of data fusion and data analytics explain the considered problem in the chosen research topic collect, evaluate, and summarize related work describe solution approaches for the considered problem discuss advantages and disadvantages of the proposed approaches give an outlook to future research directions prepare and give a presentation about the chosen research topic write a scientific report about the chosen research topic follow recent research in data fusion and data analytics 		28 h Self-study time: 122 h
Course: Hot Topics in Data Fusion and Analytics (Seminar)	2 WLH
Examination: Presentation (approx. 45 minutes) ar	nd written report (max. 20	5 C
pages) Examination prerequisites:		
Attendance in 80% of the seminar presentations		
Examination requirements:		
Advanced knowledge of a specific research topic in the field of data fusion and data analytics; written scientific report; oral presentation		
Admission requirements:	Recommended previous knowle	dge:
none	none	
l anguage:	Person responsible for module.	

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Marcus Baum
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 15	

Sample Consensus (RANSAC)

Process (MDP)

Georg-August-Universität Göttingen Module M.Inf.1188: Mobile Robotics 5 C 4 WLH

Workload: Learning outcome, core skills: This module is concerned with fundamental principles and algorithms for mobile robot Attendance time: navigation and perception. After completion, the students are able to 56 h Self-study time: model the locomotion of wheeled mobile robots 94 h · understand the concept of dead reckoning · describe the most common sensors for mobile robots, e.g., inertial sensors and beam-based sensors · employ probabilistic state estimation methods such as Kalman filters and sequential Monte Carlo methods (particle filters) for robot navigation and perception · describe and distinguish different concepts for localization such as trilateration and triangulation implement and evaluate basic algorithms for localization • understand the robot mapping problem and explain different map representations such as occupancy grids describe the problem of Simultaneous Localization and Mapping (SLAM) · implement and evaluate basic algorithms for SLAM such as graph-based approaches and Rao-Blackwellized particle filters · implement and evaluate basic feature extraction methods such as Random

Course: Mobile Robotics (Lecture, Exercise)	4 WLH
Examination: Written exam (90 min.) or oral exam (approx. 20 min.)	5 C
Examination requirements:	
Motion models for wheeled robots; dead reckoning; mobile robot sensors; Kalman	
filter; particle filter; localization concepts and algorithms; robot mapping; Simultaneous	
Localization and Mapping (SLAM); feature extraction methods; planning algorithms	

design basic planning algorithms for mobile robots using, e.g., a Markov Decision

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Marcus Baum
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: not limited	

5 C Georg-August-Universität Göttingen 2 SWS Modul M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte English title: Seminar on Algorithmic Methods and Theoretical Concepts in Computer Science Lernziele/Kompetenzen: Arbeitsaufwand: Erwerb von Kompetenzen bei der selbständigen Erarbeitung und Präsentation Präsenzzeit: von speziellen, forschungsbezogenen Themen zur Theoretischen Informatik und 28 Stunden den Algorithmischen Methoden. Beispiele sind Probabilistische Datenmodelle, ihre Selbststudium: mathematischen Grundlagen und ihre algorithmische Unterstützung, theoretische 122 Stunden Grundlagen der Anwendung Informationstheoretischer Methoden in der Informatik, Methoden der Mustererkennung und des algorithmischen Lernens und ihrer Anwendungen. Überblick über die Modulinhalte: Aktuelle Originalarbeiten aus dem Bereich der theoretischen Informatik und algorithmischer Methoden. Lehrveranstaltung: Algorithmische Methoden und theoretische Konzepte 2 SWS (Seminar) Inhalte: Aktuelle Originalarbeiten aus dem Bereich der theoretischen Informatik und algorithmischer Methoden. Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten) 6 C Prüfungsanforderungen: Nachweis über den Erwerb von Kompetenzen bei der selbständigen Erarbeitung und Präsentation von forschungsbezogenen Themen zu den Algorithmischen Methoden und fortgeschrittenen theoretischen Konzepten in der Informatik oder einer der Angewandten Informatiken. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm) Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

14

Georg-August-Universität Göttingen Modul M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen English title: Probabilistic Data Models and Applications

Lernziele/Kompetenzen: Arbeitsaufwand: In dem Modul erwerben Studierende spezialisierte Kenntnisse zu Auswahl, Entwurf und Präsenzzeit: Anwendungen von Modellen, für die die (parametrisierte) Zufälligkeit der Daten eine 56 Stunden wesentliche Komponente der Modellierung ist. Selbststudium: 124 Stunden Überblick über die Modulinhalte: Zu verarbeitende Daten in verschiedensten Anwendungsbreichen (z. B. Bioinformatik) unterliegen meist statistischen Gesetzmäßigkeiten. Das Modul ist fokussiert auf Methoden zur Erkennung und algorithmischen Ausnutzung solcher typischen Muster durch geeignete probabilistische Modellierung der Daten und auf die Schätzung der Modellparameter. z. B. Vorlesung Algorithmisches Lernen, Vorlesung Datenkompression und Informationstheorie, Probabilistische Datenmodelle in der Angewandten Informatik.

Lehrveranstaltung: Vorlesungen, Übungen und Seminare zu den vorgenannten Themen	
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsanforderungen: Nachweis über den Erwerb spezialisierter Kenntnisse und Fähigkeiten zu probabilistischen Datenmodellen, der Komplexität ihrer algorithmischen Unterstützung und ggf. ihrer Anwendung in einer der Angewandten Informatiken oder einem Anwendungsbereich.	6 C

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Prof. Dr. Stephan Waack
	(Prof. Dr. Carsten Damm)
Angebotshäufigkeit:	Dauer:
unregelmäßig	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
30	

Coora August Universität Cättingen		6 C
Georg-August-Universität Göttingen Modul M.Inf.1213: Algorithmisches Lernen und Mustererkennung English title: Algorithmic Learning and Pattern Recognition		4 SWS
Lernziele/Kompetenzen: Es werden spezialisierte Kompetenzen im Bereich des algorithmischen Lernens und		Arbeitsaufwand: Präsenzzeit:
der Mustererkennung vermittelt. Verständnis der theoretischen Grundlagen und der Probleme bei praktischen Anwendungen.		56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Algorithmisches Lernen (Vorlesung, Übung) Inhalte:		4 SWS
Es werden die Grundlagen des Algorithmischen Lernens vermittelt, prinzipielle Schranken und Möglichkeiten aufgezeigt und einige spezielle Ansätze diskutiert wie z. B. Grundlagen des PAC-Lernens und des PAC-Lernens mit Rauschen auf der Klassifikation. Schlüsselbegriffe wie VC Dimension und Rademacher-Komplexität von Hypothesenklassen die es ermöglichen, sowohl Möglichkeiten als auch Grenzen der Lernbarkeit zu verstehen.		
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsanforderungen: Nachweis über den Erwerb spezialisierter anwendungsorientierter Kenntnisse und Kompetenzen aus dem Bereich des algorithmischen Lernens und der Mustererkennung.		6 C
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm)	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen

Modul M.Inf.1216: Datenkompression und Informationstheorie

English title: Data Compression and Information Theory

6 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden

- kennen den schematischen Aufbau von Kommunikationssystemen und verstehen ihre stochastischen/algorithmischen Beschreibungen
- kennen die Grundbegriffe und Sätze der Shannonschen und der algorithmischen Informationstheorie und können sie in konkreten Situationen anwenden
- kennen grundlegende verlustfreie Quellencodes (Huffman, Shannon, Lauflängen) und Erweiterungen sowie arithmetische Codes und können ihre Eignung in Anwendungssituationen bewerten
- verstehen das Prinzip der Codeadaptionen und seine Implementierung anhand ausgewählter Codes
- kennen allgemeine Entwurfsprinzipien für Quellencodes und verstehen ihre Umsetzung in konkreten Implementierungen
- kennen die Schritte der verlustbehafteten Datenkompression und k\u00f6nnen ihre Leistungsparameter analysieren
- kennen die Grundzüge der Ratenverzerrungstheorie und können sie in konkreten Situationen anwenden
- kennen wichtige Beispiele verlustbehafteter Datenkompression, k\u00f6nnen sie analysieren und in Anwendungssituationen bewerten

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

6 C

Lehrveranstaltung: Datenkompression und Informationstheorie (Vorlesung, Übung) 4 SWS

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen:

Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen

Prüfungsanforderungen:

In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Verständnis der Zusammenhänge durch Umschreibung in eigenen Worten nachweisen
- Konstruktion von Codes nach Vorgabe stochastischer Parameter
- Schätzung stochastischer Parameter von Quellen und Kanälen
- begründete Auswahl von Codierungsverfahren in hypothetischer Anwendungssituation
- Codeparameter, Kanalkapazität etc. berechnen
- (teilweise) programmtechnische Umsetzung von Quellen (de-)codierern
- modulare Beschreibung konkreter Kommunikationssysteme darlegen
- Leistungsparameter konkreter Quellencodierverfahren analysieren

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	Beherrschung einer Programmiersprache
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.Inf.1231: Specialisation in Distributed Systems Learning outcome, core skills: Workload: Successfully completing the module, students Attendance time: 56 h · have in-depth knowledge about one specific topical area of distributed systems Self-study time: • understand the challenges of designing this specific part of a distributed system 124 h and integrating it into a larger infrastructure • understand the tasks to operate this specific part of a distributed system within a modern data centre • can apply their knowledge to evaluate application scenarios and make decisions regarding the applicability of certain technical solutions Examples for specific topics are distributed architectures or distributed data and information management. Course: Distributed Storage and Information Management (Lecture, Exercise) 4 WLH Contents: Successfully completing the module, students understand how data and information can be stored and managed · know the generic components of a modern data centre understand how to protect data using RAID and what RAID level to apply to what · know about "intelligent" storage systems, including concepts like caching understand various storage networking technologies like Fibre Channel, iSCSI, and FCoE · know about network-attached, object and unified storage basically understand how to achieve business continuity of storage systems · understand the different backup and archiving technologies · understand data replication have a basic understanding of storage virtualization know how to manage and how to secure storage infrastructures Remark With this lecture, we provide a preparation for the exam for the EMC Information Storage and Management Certificate. The Institute of Computer Science of the University of Göttingen is a Proven Professional of the EMC Academic Alliance. References S. Gnanasundaram, A. Shrivastava (eds.), Information Storage and Management, John Wiley & Sons, 2012. ISBN:978-1-118-09483-9 6 C Examination: Written exam (90 min.) or oral exam (ca. 20 min.)

Solving and presenting at least one exercise (written solution and presentation), as well

Examination prerequisites:

as active participation during the exercises.

Examination requirements:

Information Storage; Data Centre Environment and Components; RAID; Caching; Storage Provisioning; Fibre Channel; IP SAN; FCoE; Network-Attached Storage; Object-Based and Unified Storage; Backup and Archiving; Replication; Storage Cloud; Security in Storage Infrastructures; Management of Storage Infrastructures

Admission requirements: none	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour (Dr. Philipp Wieder)
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen Module M.Inf.1232: Parallel Computing

6 C 4 WLH

Learning outcome, core skills:

Successfully completing the module, students are able to:

- · define and describe the benefit of parallel computing
- specify the classification of parallel computers (Flyn classification)
- analytically evaluate the performance of parallel computing approaches (scaling/ performance models)
- know the parallel hardware and performance improvement approaches (cache coherence, pipeline, etc.)
- · know the interconnects and networks and their role in parallel computing
- understand and develop sample parallel programs using different paradigms and development environments (e.g., shared memory and distributed models)
- expose to some applications of Parallel Computing through hands-on exercises

Workload:

Attendance time: 56 h

Self-study time:

124 h

Course: Parallel Computing (Lecture, Exercise)

Contents:

Successfully completing the lecture, students are able to:

- define and describe the benefit of parallel computing and identify the role of software and hardware in parallel computing
- specify the Flynn classification of parallel computers (SISD, SIMD, MIMD)
- analytically evaluate the performance of parallel computing approaches (Scaling/ Performance models)
- understand the different architecture of parallel hardware and performance improvement approaches (e.g., caching and cache coherence issues, pipeline, etc.)
- · define Interconnects and networks for parallel computing
- architecture of parallel computing (MPP, Vector, Shared memory, GPU, Many-Core, Clusters, Grid, Cloud)
- design and develop parallel software using a systematic approach
- parallel computing algorithms and development environments (i.e. shared memory and distributed memory parallel programming)
- write parallel algorithms/programs using different paradigms and environments (e.g., POSIX Multi-threaded programming, OpenMP, MPI, OpenCL/CUDA, MapReduce, etc.)
- get exposed to some applications of Parallel Computing through exercises

References

- An Introduction to Parallel Programming, Peter S. Pacheco, Morgan Kaufmann (MK), 2011, ISBN: 978-0-12-374260-5.
- Designing and Building Parallel Programs, Ian Foster, Addison-Waesley, 1995, ISBN 0-201-57594-9 (Available online).

4 WLH

 Advanced Computer Architecture: Parallelism, Scalability, Programmability, Kai Hwang, Int. Edition, McGraw Hill, 1993, ISBN: 0-07-113342-9. In addition to the mentioned text book, tutorial and survey papers will be distributed in some lectures as extra reading material. 	
Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	6 C
Examination requirements:	
Parallel programming; Shared Memory Parallelism; Distributed Memory Parallelism,	
Single Instruction Multiple Data (SIMD); Multiple Instruction Multiple Data (MIMD);	
Hypercube; Parallel interconnects and networks; Pipelining; Cache Coherence;	
Parallel Architectures; Parallel Algorithms; OpenMP; MPI; Multi-Threading (pthreads); Heterogeneous Parallelism (GPGPU, OpenCL/CUDA)	

Admission requirements: • Data structures and algorithms • Programming in C/C++	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 50	

Georg-August-Universität Göttingen Module M.Inf.1244: Seminar on optimal transport 5 C 2 WLH

Learning outcome, core skills:	Workload:
By using original references students will familiarize themselves with advanced aspects	Attendance time:
of optimal transport theory or its applications in modern data analysis and machine	28 h
learning and present their findings to the other participants.	Self-study time:
 read and understand original research papers or graduate-level textbooks collect background material on a given topic and its context order and prioritize this material for a presentation prepare a structured presentation with a corresponding handout give an accessible presentation answer questions from the audience that may go slightly beyond the presentation 	122 h
material • leading and participating in a scientific discussion	

Course: Seminar on optimal transport (Seminar)	2 WLH
Examination: Presentation (approx. 45 min.), follow-up discussion, and handout	5 C
(max. 5 pages)	
Examination requirements:	
Advanced knowledge on a specific topic in optimal transport research; structured	
presentation; handout	

Admission requirements: none	Recommended previous knowledge: Lecture "Computational optimal transport" or some course on optimization are strongly recommended.
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 15	

Georg-August-Universität Göttingen Modul M.Inf.1268: Informationstheorie English title: Information Theory 6 C 4 SWS

English title: Information Theory	
Lernziele/Kompetenzen: Die Studierenden • kennen die mathematische Grundlagen der Informationstheorie • beherschen die grundlegenden Begriffe der Informationstheorie • beherrschen die zentralen Begriffe und Verfahren der Datenkompression • kennen grundlegende Begriffe und Aussagen zur Kanalkapazität • kennen grundlegende Begriffe und Aussagen zur Kolmogorov-Komplexität	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Elements of Information Theory (Vorlesung, Übung)	4 SWS
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen: Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen Prüfungsanforderungen: In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z B	6 C

Prüfungsanforderungen:
In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

• Kenntnisse von Grundbegriffen wie Entropie, relative Entropie, wechselseitige Information

• asymptotische Äquipartitionseigenschaft und Typtheorie

• Entropierate stochastischer Prozesse

• Grundlagen der Datenkompression einschließlich ihrer Bezüge zur Spieltheorie

• Kanalkapazität und Kanalcodierungssatz

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Stephan Waack
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	

• Grundbegriffe der Kolmogorov-Komplexität

Georg-August-Universität Göttingen Modul M.Inf.1802: Praktikum XML English title: Practical Course on XML

Lernziele/Kompetenzen:

Die Studierenden verfügen über vertiefte Kenntnisse und Erfahrungen mit Konzepten und Sprachen aus dem Bereich XML. Sie wissen, welche Sprachen und Werkzeuge ggf. bei Problemstellungen anwendbar sind und können Projekte in diesem Bereich umsetzen. Sie sind mit der Grundidee der W3C-Standards vertraut und können sich selber benötigte Informationen im Web zusammensuchen.

Vermittlung von praktischen Fähigkeiten aus dem Bereich XML, XPath, XQuery, XSLT, Web Services und weiteren Sprachen und Werkzeugen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Praktikum XML (Praktikum)

Prüfung: Praktische Prüfung (ca. 4 Übungs- und Programmieraufgaben) und
6 C
mündliche Prüfung (ca. 20 Min.)
Prüfungsanforderungen:
Vertiefte Kenntnisse und Erfahrungen in Sprachen aus dem Bereich XML. Kenntnisse darüber, welche Sprachen und Werkzeuge ggf. bei Problemstellungen anwendbar sind; Fähigkeit zum Umsetzen von Projekten in diesem Bereich; Kenntnisse der W3C-Standards.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul M.Inf.1806: Projektseminar Datenb Informationssysteme English title: Seminar and Project Databases	anken und	6 C 2 SWS
Lernziele/Kompetenzen: Die Studierenden können sich in ein Spezialgebiet moderner Datenbank- und Informationssysteme einarbeiten, Quellen und Dokumentationen im Web suchen und in Beziehung zu dem behandelten Gebiet setzen, Werkzeuge evaluieren sowie in einer Diskussion darstellen und bewerten.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden
Lehrveranstaltung: Projektseminar Datenbanken	und Informationssysteme	
Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Au Prüfungsanforderungen: Nachweis über den Erwerb vertiefter Kenntnisse und moderner Datenbank- und Informationssysteme. Inst. Bewertung von Quellen, Dokumentationen und Werk Präsentation einer Fallstudie.	Fähigkeiten in einem Spezialgebiet besondere zur Darstellung und	6 C
Zugangsvoraussetzungen: Datenbanken	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen 6 C 4 WLH Module M.Inf.1808: Practical Course on Parallel Computing Workload: Learning outcome, core skills: Successfully completing the module, students are able to: Attendance time: 56 h practically work with a cluster of computers (e.g., using a batch system) Self-study time: practically utilize grid computing infrastructures and manage their jobs (e.g., 124 h Globus toolkit) • apply distributed memory architectures for parallelism through practical problem solving (MPI programming) • utilize shared memory architectures for parallelism (e.g., OpenMP and pthreads) · utilize heterogenous parallelism (e.g., OpenCL, CUDA and general GPU programming concepts) · utilize their previous knowledge in data structures and algorithms to solve problems using their devised (or enhanced) parallel algorithms Course: Practical Course on Parallel Computing (Practical course) 4 WLH Contents: As a practical course, the focus will be on the hands-on session and problem solving. Students will get a brief introduction to the topic and then will use the laboratory equipment to solve assignments of each section of the course. 6 C Examination: Oral examination (approx. 20 minutes), not graded **Examination requirements:** understand how to manage computing jobs using a cluster of computers or using grid computing facilities understand the configuration of a PBS cluster through practical assignments practically use LRM clusters and POVRay examples · understand cluster computing related topics (error handling, performance management, security) in more depth and using hands-on experience and practically using Globus toolkit · design and implement solutions for parallel programs using distributed memory architectures (using MPI) · design and implement solutions for parallel programs using shared memory parallelism (using OpenMP, pthreads) • practically work with MapReduce programming framework and problem solving using MapReduce practically work with heterogenous parallelism environment (GPGPU, OpenCL, CUDA, etc.)

Admission requirements:

- Data structures and algorithms
- Programming in C(/C++)

Recommended previous knowledge:

- · Parallel Computing
- Computer architecture
- Basic knowledge of computer networks
- · Basic know-how of computing clusters

Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

6 C Georg-August-Universität Göttingen 4 WLH Module M.Inf.2102: Advanced Statistical Learning for Data Science Learning outcome, core skills: Workload: Students will Attendance time: 56 h learn concepts of advanced statistical methods and their scope of applications. Self-study time: These methods comprise the EM algorithm, Markov models, Hidden Markov 124 h Models, Markov chain Monte Carlo. • gain a solid understanding of ensemble learning algorithms. In particular, we will address additive tree approaches like boosting and Random Forest algorithms, as well as methods for ensemble optimization · learn strategies for model assessment and selection such as nested crossvalidation, Monte Carlo validation, or permutation tests. Moreover, this will comprise measures of model quality and robustness. · acquire practical experience in the interpretation of machine learning models and learn required methods for feature selection, importance, stability, and robustness · learn techniques of statistical network inference, their implementation as well as their application to high-dimensional data. 2 WLH **Course: Advanced Statistical Learning for Data Science** (Lecture) Hastie, et al. Elements of Statistical Learning https://web.stanford.edu/~hastie/ ElemStatLearn/ Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml 6 C Examination: Written exam (90 min) or oral exam (approx. 20 min) **Examination prerequisites:** M.Inf.2102.Ex: At least 50% of homework exercises solved. **Examination requirements:** Knowledge of advanced statistical methods, ensemble learning, model assessment, and

Course: Statistical Learning in Data Science Exercise (Exercise) 2 WLH		2 WLH
Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent	
Language: English	Person responsible for module: Dr. Anne-Christin Hauschild; Dr. Michael Altenbuchinger	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: 1 - 3	

interpretation as well as statistical network inference. Evaluate their advantages and disadvantages and the ability to implement and interpret the results of these techniques.

Maximum number of students:	
not limited	

Georg-August-Universität Göttingen Module M.Inf.2201: Probabilistic Machine Learning 6 C 4 WLH

Learning outcome, core skills:	Workload:
After successful completion of the module, students	Attendance time:
 know the basic principles and tools of probabilistic reasoning have gained a deeper knowledge about popular algorithms and techniques in probabilistic machine learning have gained an intuitive and mathematical understanding of algorithmic reasoning with uncertainty have acquired a basic toolbox of algorithms and methods for various problem classes become proficient in implementing and debugging probabilistic algorithms 	56 h Self-study time: 124 h

Course: Probabilistic Machine Learning (Lecture)	2 WLH
Examination: Written examination (90 min), in case of low number of participants	6 C
oral exam (approx. 20 min)	
Examination prerequisites:	
M.Inf.2201.Ex: At least 50% of exercises solved	
Examination requirements:	
Knowledge of the principles, algorithms, and methods of probabilistic reasoning	

Course: Probabilistic Machine Learning – Exercise (Exercise) 2 WLH
--

Admission requirements: none	Recommended previous knowledge: B.Inf.1236 Machine Learning Basic knowledge of linear algebra, calculus, and probability
Language: English	Person responsible for module: Prof. Dr. Fabian Sinz Dr. Johannes Söding
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 4
Maximum number of students: 50	

Additional notes and regulations:

The course can be taken in parallel to B.Inf.1237 Deep Learning.

100019 / tagaot om voi onat oottinigon	5 C
Module M.Inf.2241: Current Topics in Machine Learning	2 WLH

Learning outcome, core skills:	Workload:
After successful completion of the module, students	Attendance time:
have gained a deeper knowledge in specific topics within the field of machine	28 h
learning	Self-study time:
have improved their oral presentation skills	122 h
 know how to methodically read and analyse scientific research papers 	
• know how to write an analysis of a specific research field based on their analysis of	
state-of-the-art research	
 have improved their ability to work independently in a pre-defined context 	

Course: Current Topics in Machine Learning (Seminar)	2 WLH
Examination: Oral presentation (approx. 30 min.) and term paper (max. 5000	5 C
words)	
Examination requirements:	
Knowledge in a specific field of machine learning; ability to present the acquired	
knowledge in a both orally and in a written report.	

Admission requirements: none	Recommended previous knowledge: B.Inf.1236 Machine Learning B.Inf.1237 Deep Learning (the seminar can accompany lecture in the same term)
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 4
Maximum number of students: 15	

10 C Georg-August-Universität Göttingen 4 WLH Module M.Mat.0731: Advanced practical course in scientific computing

Workload: Learning outcome, core skills: Attendance time: Learning outcome: 56 h After having successfully completed the module, students are familiar with the analysis Self-study time: of problems in the area "Scientific computing" arising in practice. They 244 h

- develop large programming projects doing individual or group work;
- · analyse complex
- · use special num
- · are experienced problems;
- · are familiar with context of scient

Core skills:

After having successf experience in the area

- · identify mathem mathematical m
- · implement nume
- structure comple group work.

ex data sets and process them; merical libraries; d with advanced methods for the numerical solution of applied	
h basic principles of modular and structured programming in the ntific computing.	
sfully completed the module, students possess advanced practical ea "Scientific computing". They will be able to	
matical problems in applied problems and convert them into a model;	
nerical algorithms in a programming language or a user system; lex programming tasks such that they can be efficiently done by	

Course: Advanced practical course in scientific computing (Internship)	4 WLH
Examination: Term Papermax. 50 pages (not counted appendices), alternatively,	10 C
presentation (appr. 30 minutes)	
Examination prerequisites:	
Regular participation in the practical course	

Regular participation in the practical course	
Examination requirements:	
analysis and systematisation of applied problems;	
knowledge in special methods of optimisation;	
good programming skills.	

Admission requirements:	Recommended previous knowledge:
none	B.Mat.2300
	Proficiency in object oriented programming
Language:	Person responsible for module:
English	Programme coordinator
Course frequency:	Duration:
winter or summer semester, on demand	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:

twice	Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations:	
Instructor: Lecturers at the Institute of Numerical and Applied Mathematics	

Joong August Sinvoisitat Sottingon	10 C 6 WLH
Module M.Mat.0741: Advanced practical course in stochastics	O VVLH

Learning outcome, core skills: Learning outcome:

After having successfully completed the module, students have deepened and expanded their knowledge of a stochastical simulation and analysis software that they acquired in the module "Practical course in stochastics". They have acquired advanced knowledge in project work in stochastics. They

autonomously implement and interpret more complex stochastical problems using suitable software;

- · autonomously write more complex programs using suitable software;
- master some advanced methods of statistical data analysis and stochastical simulation like e. g. kernel density estimation, the Bootstrap method, the creation of random numbers, the EM algorithm, survival analysis, the maximum-penalizedlikelihood estimation and different test methods.

Core skills:

After having successfully completed the module, students will be able to

- handle practical problems with the aid of advanced stochastical methods and the suitable stochastical simulation and analysis software and present the obtained results well:
- use advanced visualisation methods for statistical data (e. g. of spatial data);
- apply different algorithms to the suitable stochastical problem.

Course: Advanced practical course in stochastics (Internship) Examination: Presentation (appr. 30 minutes) and term paper (max. 50 pages not counted appendices) Examination prerequisites: Regular participation in the practical course

Examination requirements: Special knowledge in stochastics, especially mastery of complex stochastical simulation and analysis software as well as methods for data analysis

Admission requirements:	Recommended previous knowledge: M.Mat.3140
Language: English	Person responsible for module: Programme coordinator
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3

Workload:

84 h

216 h

Attendance time:

Self-study time:

Maximum number of students: not limited	
Additional notes and regulations:	
Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module M.Mat.0971: Internship		10 C (incl. key comp.: 10 C)
Learning outcome, core skills: After having successfully completed the module, students have competencies in project- oriented and research-oriented team work as well as in project management. They are familiar with methods, tools and processes of mathematics as well as the organisational and social environment in practice.		Workload: Attendance time: 0 h Self-study time: 300 h
Course: Examination colloquium (Colloquium)		
Examination: Presentation (appr. 20 minutes) and written report (max. 10 pages), not graded Examination prerequisites: Certificate of the successful completion of the posed duties in accordance with the internship contract		10 C
Examination requirements: Successfully handling of the posed duties according to the internship contract between the student and the enterprise.		
Admission requirements:	Recommended previous knowle	edge:
Language: English	Person responsible for module: Programme coordinator	
Course frequency: each semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4; Promotion: 1 - 6	
Maximum number of students: not limited		
Additional notes and regulations:		

Instructor: Lecturers of the Unit Mathematics

Soor g / tagast Sint Stonat Sottings:	9 C 6 WLH
Module M.Mat.3110: Higher analysis	O VVLIT

Learning outcome, core skills: Learning outcome:

Weighted differently depending on the current course offer, after having successfully passed the module, students are familiar with basic principles of functional analysis respectively the description of linear elliptical differential equations in functional analysis. They

- are familiar with the most known examples of function and sequence spaces like spaces of continuous functions, Lp, Ip and Sobolev spaces on bounded and unbounded areas;
- identify compactness of operators and analyse the solvability of general linear operator equations, especially of boundary value problems for linear elliptical differential equations with variable coefficients with the aid of the Riesz Fredholm theory;
- analyse the regularity of solutions of elliptical boundary value problems inside the domain in question and on its boundary;
- use basic theorems of linear operators in Banach spaces, especially the Banach-Steinhaus theorem, the Hahn-Banach theorem and the open mapping theorem;
- discuss weak convergence concepts and basic characteristics of dual and doubledual spaces;
- are familiar with basic concepts of spectral theory and the spectral theorem for bounded, self-adjoint operators.

Core skills:

After having successfully completed the module, students will be able to

- formulate and analyse differential equations and other problems in the language of functional analysis;
- identify and describe the relevance of characteristics of functional analysis like choice of a suitable function space, completeness, boundedness or compactness;
- evaluate the influence of boundary conditions and function spaces for existence, uniqueness and stability of solutions of differential equations.

Attendance time:
84 h
Self-study time:
186 h

Workload:

Course: Functional analysis / Partial differential equations (Lecture)	4 WLH
Examination: Written examination (120 minutes) Examination prerequisites: M.Mat.3110.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Functional analysis / Partial differential equations - exercise session (Exercise)	2 WLH
Examination requirements:	

Proof of the advanced knowledge about functional analysis or partial differential	
equations	

Admission requirements:	Recommended previous knowledge:
none	B.Mat.0021, B.Mat.0022, B.Mat.1100
Language: English	Person responsible for module: Programme coordinator
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4
Maximum number of students: not limited	

- Instructor: Lecturers at the Mathematical Institute or at the Institute of Numerical and Applied Mathematics
- Written examination: This module can be completed by taking a lecture course counting towards the
 modules B.Mat.2100 or B.Mat.2110. Compared to the exams of the modules B.Mat.2100 respectively
 B.Mat.2110, exams of the module "Higher analysis" have a higher level of difficulty and test advanced
 knowledge.
- Exclusions: The module "Higher analysis" cannot be completed by taking a lecture course that has already been accounted in the Bachelor's studies.

Georg-August-Universität Göttingen Module M.Mat.3130: Operations research

Learning outcome, core skills:

Learning outcome:

The successful completion of the module enables students to learn methods, concepts, theories and applications in the area of the theory of operations research. Depending on the current course offer the following content-related competencies may be pursued. Students

- are able to identify problems of operations research in application-oriented problems and formulate them as optimisation problems;
- know methods for the modelling of application-oriented problems and are able to apply them;
- evaluate the target function included in a model and the side conditions on the basis of their particular important characteristics;
- analyse the complexity of the particular resulting optimisation problem;
- are able to develop optimisation methods for the solution of a problem of operation research or adapt general methods to special problems;
- know methods with which the quality of optimal solutions can be estimated to the upper and lower and apply them to the problem in question;
- differentiate between accurate solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing time;
- interpret the found solutions for the underlying practical problem and evaluate the model and solution method on this basis.

Core skills:

Admission requirements:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Operations research";
- explain basic ideas of proof in the area "Operations research";
- · identify typical applications in the area "Operations research".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examinationappr. 20 minutes, alternatively written examination,	9 C
120 minutes	
Examination prerequisites:	
M.Mat.3130.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Successful proof of the acquired skills and competencies in the area "Operations	
research"	

Recommended previous knowledge:

none	B.Mat.2310
Language: English	Person responsible for module: Programme coordinator
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.3140: Mathematical statistics

Learning outcome, core skills: Learning outcome:

After having successfully completed the module "Mathematical statistics", students are familiar with the basic concepts and methods of mathematical statistics. They

- understand most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and are able to use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely, amongst others via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- · are familiar with basic statistical distribution models;
- are familiar with references of mathematical statistics to other mathematical areas.

Core skills:

After having successfully completed the module, students have acquired basic competencies in mathematical statistics. They will be able to

- apply statistical ways of thinking as well as basic mathematical methods of statistics;
- formulate statistical models mathematical precisely;
- analyse practical statistical problems mathematically precisely with the learned methods.

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Written examination120 minutes, alternatively, oral examination,	9 C
appr. 20 minutes	
Examination prerequisites:	
M.Mat.3140.Ue: Achievement of at least 50% of the exercise points and presentation,	
twice, of solutions in the exercise sessions	

Course: Exercise session (Exercise) Examination requirements: Successful proof of the acquired skills and competencies in the area "Mathematical statistics"

	Recommended previous knowledge: B.Mat.1400
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

once a year	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module M.Mat.4511: Specialisation in analytic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- · know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- · master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- · enhance concepts and methods for special problems and applications in the area "Analytic number theory";
- prepare substantial ideas of proof in the area "Analytic number theory"

Workload:

Attendance time: 84 h

Self-study time: 186 h

prepare substantial ideas of proof in the area "Analytic number theory".		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the maste "Analytic number theory"		
Admission requirements: Recommended previous knowled		edge:

none	B.Mat.3311
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3311 "Advances in analytic number theory"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Georg-August-Universität Göttingen

Module M.Mat.4512: Specialisation in analysis of partial differential equations

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area
 "Analysis of partial differential equations";
- prepare substantial ideas of proof in the area "Analysis of partial differential equations".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Achievement of at least 50% of the exercise points in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Analysis of partial differential equations"		
Admission requirements:	Recommended previous knowledge: B.Mat.3312	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3312 "Advances in analysis of partial differential equations"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	

Maximum number of students:

not limited

Georg-August-Universität Göttingen Module M.Mat.4513: Specialisation in differential geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Differential geometry";
- · prepare substantial ideas of proof in the area "Differential geometry".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	9 C
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	

Proof of the acquisition of special skills and the mastery of special knowledge in the area "Differential geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3313
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3313 "Advances in variational analysis"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4514: Specialisation in algebraic topology

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Algebraic topology";
- prepare substantial ideas of proof in the area "Algebraic topology".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH	
Examination: Oral examination (approx. 20 minutes)	9 C	

"Algebraic topology"

Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area	

Admission requirements:	Recommended previous knowledge: B.Mat.3314
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3314 "Advances in algebraic topology"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4515: Specialisation in mathematical methods in physics

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

none

Language:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Mathematical methods of physics";
- prepare substantial ideas of proof in the area "Mathematical methods of physics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Mathematical methods in physics"		
Admission requirements: Recommended previous knowle		edge:

B.Mat.3315

Person responsible for module:

English	Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3315 "Advances in mathematical methods in physics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Georg-August-Universität Göttingen Module M.Mat.4521: Specialisation in algebraic geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups:
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- · get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Algebraic geometry"";
- · prepare substantial ideas of proof in the area "Algebraic geometry"".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	

Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mass "Algebraic geometry"	stery of special knowledge in the area	
Admission requirements:	on requirements: Recommended previous knowledge: B.Mat.3321	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3321 "Advances in algebraic geometry"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Georg-August-Universität Göttingen

Module M.Mat.4522: Specialisation in algebraic number theory

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- · know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- · are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues:
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- · discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests:
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- · discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- · enhance concepts and methods for special problems and applications in the area "Algebraic number theory";
- prepare substantial ideas of proof in the area "Algebraic number theory".

Workload:

Attendance time: 84 h Self-study time:

186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Algebraic number theory"		
Admission requirements:	Recommended previous knowled B.Mat.3322	edge:
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3322 "Advances in algebraic number theory"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute		

Georg-August-Universität Göttingen Module M.Mat.4523: Specialisation in algebraic structures

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Algebraic structures";
- prepare substantial ideas of proof in the area "Algebraic structures".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:

Proof of the acquisition of special skills and the mastery of special knowledge in the area "Algebraic structures"

Admission requirements:	Recommended previous knowledge: B.Mat.3323
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3323 "Advances in algebraic structures"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen

Module M.Mat.4524: Specialisation in groups, geometry and dynamical systems

9 C 6 WLH

186 h

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Groups, geometry and dynamical systems";
- prepare substantial ideas of proof in the area "Groups, geometry and dynamical systems".

Workload: Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	

Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Groups, geometry and dynamical systems"		
Admission requirements:	Recommended previous knowled B.Mat.3324	dge:
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module B.Mat.3324 "Advances in groups, geometry and dynamical systems"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		
Additional notes and regulations:		

Georg-August-Universität Göttingen

Module M.Mat.4525: Specialisation in non-commutative geometry

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 84 h Self-study time:

186 h

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Non-commutative geometry";
- prepare substantial ideas of proof in the area "Non-commutative geometry".

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH

Examination requirements:
Proof of the acquisition of special skills and the mastery of special knowledge in the area
"Non-commutative geometry"

	•
Admission requirements:	Recommended previous knowledge: B.Mat.3325
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3325 "Advances in non-commutative geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4531: Specialisation in inverse problems

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Inverse problems";
- prepare substantial ideas of proof in the area "Inverse problems".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Inverse problems"	

Admission requirements:	Recommended previous knowledge: B.Mat.3331
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3331 "Advances in inverse problems"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4532: Specialisation in approximation methods

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Approximation methods";
- prepare substantial ideas of proof in the area "Approximation methods".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Admission requirements: Recommended previous knowledge:		Aque.
area "Approximation methods"		
Examination requirements: Proof of the acquisition of special skills and the mass		
Course: Exercise session (Exercise)		2 WLH
Achievement of at least 50% of the exercise points in the exercise sessions	and presentation, twice, of solutions	

Admission requirements:	Recommended previous knowledge: B.Mat.3332
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3332 "Advances in approximation methods"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4533: Specialisation in numerical methods of partial differential equations

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

 enhance concepts and methods for special problems and applications in the area "Numerics of partial differential equations";

Workload:

Attendance time: 84 h Self-study time: 186 h

		1		
prepare substantial ideas of proof in the area "Ne equations".				
Course: Lecture course (Lecture)	4 WLH			
Examination: Oral examination (approx. 20 minutes)		9 C		
Examination prerequisites:				
Achievement of at least 50% of the exercise points and presentation, twice, of solutions				
in the exercise sessions				
Course: Exercise session (Exercise)		2 WLH		
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Numerical methods of partial differential equations"				
"Numerical methods of partial differential equations"				
"Numerical methods of partial differential equations" Admission requirements: none	Recommended previous knowled	edge:		
Admission requirements:	<u>-</u>	edge:		
Admission requirements: none Language:	B.Mat.3333 Person responsible for module:	edge:		
Admission requirements: none Language: English	B.Mat.3333 Person responsible for module: Programme coordinator	edge:		
Admission requirements: none Language: English Course frequency:	B.Mat.3333 Person responsible for module: Programme coordinator Duration:	edge:		
Admission requirements: none Language: English Course frequency: Usually subsequent to the module B.Mat.3333	B.Mat.3333 Person responsible for module: Programme coordinator Duration:	edge:		
Admission requirements: none Language: English Course frequency: Usually subsequent to the module B.Mat.3333 "Advances in numerical methods of partial differential	B.Mat.3333 Person responsible for module: Programme coordinator Duration:	edge:		
Admission requirements: none Language: English Course frequency: Usually subsequent to the module B.Mat.3333 "Advances in numerical methods of partial differential equations"	B.Mat.3333 Person responsible for module: Programme coordinator Duration: 1 semester[s]	edge:		
Admission requirements: none Language: English Course frequency: Usually subsequent to the module B.Mat.3333 "Advances in numerical methods of partial differential equations" Number of repeat examinations permitted:	B.Mat.3333 Person responsible for module: Programme coordinator Duration: 1 semester[s] Recommended semester:	edge:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4534: Specialisation in optimisation

9 C 6 WLH

186 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Optimisation";
- prepare substantial proof ideas in the area "Optimisation".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)	4 WLH	
Examination: Oral examination (approx. 20 min Examination prerequisites: Achievement of at least 50% of the exercise points in the exercise sessions	9 C	
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the ma "Optimisation"	stery of special knowledge in the area	
Admission requirements:	Recommended previous knowled B.Mat.3334	edge:
Language: English	Person responsible for module: Programme coordinator	:
Course frequency: Usually subsequent to the module B.Mat.3334 "Advances in optimisation"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Georg-August-Universität Göttingen Module M.Mat.4537: Specialisation in variational analysis

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

186 h

Attendance time: 84 h Self-study time: After having successfully completed the module, students will be able to · enhance concepts and methods for special problems and applications in the area "Variational analysis"; • prepare substantial ideas of proof in the area "Variational analysis". Course: Lecture course (Lecture) 4 WLH 9 C **Examination: Oral examination (approx. 20 minutes) Examination prerequisites:** Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions Course: Exercise session (Exercise) 2 WLH **Examination requirements:** Proof of the acquisition of special skills and the mastery of special knowledge in the area 'Variational analysis" Admission requirements: Recommended previous knowledge: none B.Mat.3337 Language: Person responsible for module: Programme coordinator English Course frequency: **Duration:** Usually subsequent to the module B.Mat.3337 1 semester[s] "Advances in variational analysis" Recommended semester: Number of repeat examinations permitted: twice Master: 1 - 3 Maximum number of students: not limited Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4538: Specialisation in image and geometry processing

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods;
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Image and geometry processing";
- prepare substantial ideas of proof in the area "Image and geometry processing".

Workload:

Attendance time: 84 h Self-study time:

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 min	nutes)	9 C
Examination prerequisites:		
Achievement of at least 50% of the exercise points	s and presentation, twice, of solutions	
in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements:		
Proof of the acquisition of special skills and the ma	astery of special knowledge in the	
area "Image and geometry processing"		
Admission requirements:	Recommended previous knowl	edge:
none	B.Mat.3338	
Language:	Person responsible for module	:
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3338	1 semester[s]	
"Advances in image and geometry processing"		
Number of repeat examinations permitted:	Recommended semester:	
twice	Master: 1 - 3	
Maximum number of students:		
not limited		
not limited Additional notes and regulations:		

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4539: Specialisation in scientific computing / applied mathematics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- · are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- · use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Scientific computing / applied mathematics";
- prepare substantial ideas of proof in the area "Scientific computing / applied mathematics".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of the acquisition of special skills and the mastery of special knowledge in the	
area "Scientific computing / applied mathematics	

Admission requirements:	Recommended previous knowledge: B.Mat.3339
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3339 "Advances in scientific computing / applied mathematics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4541: Specialisation in applied and mathematical stochastics

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economicsciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Applied and mathematical stochastics";
- prepare substantial ideas of proof in the area "Applied and mathematical stochastics".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Admission requirements:	Recommended previous knowledge:	
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Applied and mathematical stochastics"		
Course: Exercise session (Exercise)		2 WLH
Achievement of at least 50% of the exercise points are in the exercise sessions	nd presentation, twice, of solutions	

Admission requirements:	Recommended previous knowledge: B.Mat.3341
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3341 "Advances in applied and mathematical stochastics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4542: Specialisation in stochastic processes

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

Workload:

Attendance time: 84 h Self-study time: 186 h

enhance concepts and methods for special p "Stochastic processes";		
prepare substantial ideas of proof in the area "Stochastic processes".		
Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 mir	Examination: Oral examination (approx. 20 minutes)	
Examination prerequisites:		
Achievement of at least 50% of the exercise points	s and presentation, twice, of solutions	
in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the maarea "Stochastic processes"	astery of special knowledge in the	
Admission requirements:	Recommended previous knowledge B.Mat.3342	edge:
Language:	Person responsible for module	:
English	Programme coordinator	
Course frequency:	Duration:	
Usually subsequent to the module B.Mat.3342	1 semester[s]	
"Advances in stochastic processes		
Number of repeat examinations permitted:	Recommended semester:	
Training of the political		
twice	Master: 1 - 3	
-	Master: 1 - 3	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4543: Specialisation in stochastic methods in economathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- · understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Stochastic methods of economathematics":
- prepare substantial ideas of proof in the area "Stochastic methods of economathematics".

Workload:

Attendance time: 84 h

0 - 16 - 6 - 1

Self-study time: 186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
Achievement of at least 50% of the exercise points and presentation, twice, of solutions	
in the exercise sessions	

Course: Exercise session (Exercise)	2 WLH
Examination requirements:	
Proof of the acquisition of special skills and the mastery of special knowledge in the	
area "Stochastic methods in economathematics"	

· · · · · · · · · · · · · · · · · · ·	Recommended previous knowledge: B.Mat.3343
	Person responsible for module: Programme coordinator
Course frequency:	Duration: 1 semester[s]

Usually subsequent to the module B.Mat.3343 "Advances in stochastic methods in economathematics"	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module M.Mat.4544: Specialisation in mathematical statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Variational analysis";
- prepare substantial ideas of proof in the area "Variational analysis".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Mathematical statistics"		
Admission requirements:	Recommended previous knowledge: B.Mat.3344	
Language: English	Person responsible for module: Programme coordinator	

Duration:

1 semester[s]

Master: 1 - 3

Recommended semester:

Additional notes and regulations:

Maximum number of students:

"Advances in mathematical statistics"

Usually subsequent to the module B.Mat.3344

Number of repeat examinations permitted:

Course frequency:

twice

not limited

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module M.Mat.4545: Specialisation in statistical modelling and inference

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

none

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Statistical modelling and inference";
- prepare substantial ideas of proof in the area "Statistical modelling and inference".

Workload:

Attendance time:

84 h

Self-study time:

186 h

Course: Lecture course (Lecture)		4 WLH
Examination: Oral examination (approx. 20 minutes) Examination prerequisites: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions		9 C
Course: Exercise session (Exercise)		2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Statistical modelling and inference"		а
Admission requirements: Recommended previous knowle		ledae:

B.Mat.3345

Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3345 "Advances in statistical modelling and inference"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4546: Specialisation in multivariate statistics

9 C 6 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area "Multivariate statistics";
- prepare substantial ideas of proof in the area "Multivariate statistics".

Workload:

Attendance time: 84 h

Self-study time:

186 h

Course: Lecture course (Lecture)	4 WLH
Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	

Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	
Course: Exercise session (Exercise)	2 WLH
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area "Multivariate statistics"	

Admission requirements:	Recommended previous knowledge: B.Mat.3346
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3346 "Advances in multivariate statistics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module M.Mat.4547: Specialisation in statistical foundations of data science

9 C 6 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- enhance concepts and methods for special problems and applications in the area
 "Statistical foundations of data science":
- prepare substantial ideas of proof in the area "Statistical foundations of data science".

Workload:

Attendance time: 84 h Self-study time:

186 h

Course: Lecture course (Lecture)

4 WLH

Examination: Oral examination (approx. 20 minutes)		9 C	
Examination prerequisites:			
	Achievement of at least 50% of the exercise points and presentation, twice, of solutions		
in the exercise sessions			
Course: Exercise session (Exercise)		2 WLH	
Examination requirements: Proof of the acquisition of special skills and the mastery of special knowledge in the area			
"Statistical foundations of data science"			
dmission requirements: Recommended previous knowle		edge:	
none	B.Mat.3347		
Language:	Person responsible for module:		
English	Programme coordinator		
Course frequency:	Duration:		
Usually subsequent to the module B.Mat.3347	1 semester[s]		
"Advances in statistical foundations of data science"			
Number of repeat examinations permitted: Recommended semester:			
twice	Master: 1 - 3		
Maximum number of students:			
not limited			
Additional notes and regulations:			

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4611: Aspects of analytic number theory 6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Analytic number theory";
- carry out scientific work under supervision in the area "Analytic number theory".

Workload:

Attendance time: 56 h

Self-study time:

124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Analytic number theory"

·	Recommended previous knowledge: B.Mat.3311
	Person responsible for module: Programme coordinator
Course frequency:	Duration:

Usually subsequent to the module M.Mat.4511 "Specialisation in analytic number theory"	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen Module M.Mat.4612: Aspects of analysis of partial differential equations 6 C 4 WLH equations

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalized functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Analysis of partial differential equations";
- carry out scientific work under supervision in the area "Analysis of partial differential equations".

Workload: Attendance time:

56 h Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Analysis of partial differential equations"

Admission requirements:	Recommended previous knowledge: B.Mat.3312
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4512 "Specialisation in analysis of partial differential equations"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4613: Aspects of differential geometry 6 C 4 W

4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- · master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, areas and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Differential geometry";
- · carry out scientific work under supervision in the area "Differential geometry".

Workload:

Attendance time: 56 h

Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Differential geometry"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3313
Language:	Person responsible for module:

English	Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4513 "Specialisation in differential geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 1 - 3

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4614: Aspects of algebraic topology

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic topology";
- carry out scientific work under supervision in the area "Algebraic topology".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with	4 WLH
exercises/seminar (2 WLH)	
Examination: Oral examination (approx. 20 minutes)	6 C

Workload:

Attendance time: 56 h

Self-study time:

124 h

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Algebraic topology"

Admission requirements:	Recommended previous knowledge: B.Mat.3314
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4514 "Specialisation in algebraic topology"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

6 C 4 WLH

Georg-August-Universität Göttingen Module M.Mat.4615: Aspects of mathematical methods in physics

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Mathematical methods of physics";
- carry out scientific work under supervision in the area "Mathematical methods of physics".

Workload:

Attendance time: 56 h

Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements:Proof of the acquisition of special skills and the mastery of advanced competencies in

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3315
Language:	Person responsible for module:
English	Programme coordinator
Course frequency:	Duration:
	1 semester[s]

the area "Mathematical methods in physics"

Usually subsequent to the module M.Mat.4515 "Specialisation in mathematical methods in physics"	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	-

Georg-August-Universität Göttingen Module M.Mat.4621: Aspects of algebraic geometry

6 C 4 WLH

Workload:

56 h

124 h

Attendance time:

Self-study time:

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- · get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic geometry";
- carry out scientific work under supervision in the area "Algebraic geometry"".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)

4 WLH

Examination: Oral examination (approx. 20 minutes)

6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Algebraic geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3321
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4521 "Specialisation in algebraic geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4622: Aspects of algebraic number theory

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic number theory";
- · carry out scientific work under supervision in the area "Algebraic number theory".

Workload:

Attendance time: 56 h

Self-study time: 124 h Instructor: Lecturers at the Mathematical Institute

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	
Examination: Oral examination (approx. 20 minutes)	
Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Algebraic number theory"	
Recommended previous knowledge: B.Mat.3322	
Person responsible for mode Programme coordinator	ule:
Duration: 1 semester[s]	
Recommended semester: Master: 1 - 3	
	Recommended previous known B.Mat.3322 Person responsible for moder programme coordinator Duration: 1 semester[s] Recommended semester:

Georg-August-Universität Göttingen Module M.Mat.4623: Aspects of algebraic structures

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- know important examples of Lie algebras and algebras;
- · know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- · conduct scholarly debates about problems of the area "Algebraic structures";
- · carry out scientific work under supervision in the area "Algebraic structures".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with
exercises/seminar (2 WLH)

Examination: Oral examination (approx. 20 minutes)

6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Algebraic structures"

Admission requirements:

Recommended previous knowledge:

Workload:

124 h

Attendance time: 56 h Self-study time:

none	B.Mat.3323
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4523 "Specialisation in Variational Analysis"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen

Module M.Mat.4624: Aspects of groups, geometry and dynamical systems

6 C 4 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Groups, geometry and dynamical systems";
- carry out scientific work under supervision in the area "Groups, geometry and dynamical systems".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) Examination: Oral examination (approx. 20 minutes) 6 C

Examination requirements:

Workload:

Attendance time: 56 h

Self-study time: 124 h Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Groups, geometry and dynamical systems"

Admission requirements:	Recommended previous knowledge: B.Mat.3324
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4524 "Specialisation in groups, geometry and dynamical systems"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4625: Aspects of non-commutative geometry

6 C 4 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 56 h Self-study time: 124 h

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Non-commutative geometry";
- carry out scientific work under supervision in the area "Non-commutative geometry".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3325
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4525 "Specialisation in non-commutative geometry"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Coorg / tagaot Cinvoloitat Cottingon	6 C
Module M.Mat.4631: Aspects of inverse problems	4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- · analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Inverse problems";
- · carry out scientific work under supervision in the area "Inverse problems".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) Examination: Oral examination (approx. 20 minutes) 6 C

Workload:

Attendance time: 56 h
Self-study time:

124 h

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Inverse problems"

Admission requirements:	Recommended previous knowledge: B.Mat.3331
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4531 "Specialisation in inverse problems"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4632: Aspects of approximation methods

6 C 4 WLH

124 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Approximation methods";
- carry out scientific work under supervision in the area "Approximation methods".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) Examination: Oral examination (approx. 20 minutes) 6 C

Workload:

Attendance time: 56 h Self-study time:

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Approximation methods"

Admission requirements:	Recommended previous knowledge: B.Mat.3332
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4532 "Specialisation in approximation methods"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen

Module M.Mat.4633: Aspects of numerical methods of partial differential equations

6 C 4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- · are familiar with the basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- · know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- · apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application of numerical solution strategies in a special area of partial differential equations, e. g. in variation problems with constraints, singularly perturbed problems or of integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

 conduct scholarly debates about problems of the area "Numerics of partial differential equations";

Workload:

Attendance time: 56 h Self-study time:

124 h

carry out scientific work under supervision in the area "Numerics of partial differential equations".		
Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)		4 WLH
Examination: Oral examination (approx. 20 minu	tes)	6 C
Examination requirements: Proof of the acquisition of special skills and the mast the area "Numerical methods of partial differential examples."		
Admission requirements:	Recommended previous knowledge: B.Mat.3333	
Language: English	Person responsible for module Programme coordinator	:
Course frequency: Usually subsequent to the module M.Mat.4533 "Specialisation in numerical methods of partial differential equations"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4634: Aspects of optimisation

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Optimisation";
- · carry out scientific work under supervision in the area "Optimisation".

Workload:

Attendance time: 56 h
Self-study time:

124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C
Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Optimisation"	

Admission requirements:	Recommended previous knowledge: B.Mat.3334
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4534 "Specialisation in optimisation"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4637: Aspects of variational analysis

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems:
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

124 h

Attendance time: 56 h Self-study time: After having successfully completed the module, students will be able to • conduct scholarly debates about problems of the area "Variational analysis"; • carry out scientific work under supervision in the area "Variational analysis". 4 WLH Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) 6 C **Examination: Oral examination (approx. 20 minutes) Examination requirements:** Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Variational analysis". Admission requirements: Recommended previous knowledge: none B.Mat.3337 Language: Person responsible for module: Programme coordinator English Course frequency: **Duration:** Usually subsequent to the module M.Mat.4537 1 semester[s] "Specialisation in Variational Analysis" Number of repeat examinations permitted: Recommended semester: Master: 1 - 3 twice Maximum number of students: not limited

Additional notes and regulations:

Georg-August-Universität Göttingen

Module M.Mat.4638: Aspects of image and geometry processing

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Image and geometry processing";
- carry out scientific work under supervision in the area "Image and geometry processing".

Workload:

124 h

Attendance time: 56 h
Self-study time:

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)		4 WLH
Examination: Oral examination (approx. 20 min	utes)	6 C
Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Image and geometry processing"		n
Admission requirements:	Recommended previous known B.Mat.3338	owledge:
Language: English	Person responsible for mode Programme coordinator	ule:
Course frequency: Usually subsequent to the module M.Mat.4538 "Specialisation in image and geometry processing"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Georg-August-Universität Göttingen Module M.Mat.4639: Aspects of scientific computing / applied mathematics 6 C 4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Scientific computing / Applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Scientific computing / Applied mathematics";
- carry out scientific work under supervision in the area "Scientific computing / Applied mathematics".

Workload:

Attendance time: 56 h

Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C
	ļ.

Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Scientific computing / applied mathematics"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3339
Language:	Person responsible for module:

English	Programme coordinator
Course frequency:	Duration:
Usually subsequent to the module M.Mat.4539	1 semester[s]
"Specialisation in scientific computing / applied	
mathematics"	
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 1 - 3
Maximum number of students:	
not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4641: Aspects of applied and mathematical stochastics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Applied and mathematical stochastics":
- carry out scientific work under supervision in the area "Applied and mathematical stochastics".

Workload:

Attendance time: 56 h
Self-study time:

Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with
exercises/seminar (2 WLH)

Examination: Oral examination (approx. 20 minutes)

6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Applied and mathematical stochastics"

Admission requirements:	Recommended previous knowledge: B.Mat.3341
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4541 "Specialisation in applied and mathematical stochastics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice Maximum number of students: not limited	Recommended semester: Master: 1 - 3

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4642: Aspects of stochastic processes

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

· conduct scholarly debates about problems of the area "Stochastic processes";

Workload:

Attendance time: 56 h Self-study time: 124 h

carry out scientific work under supervision in the			
Course: Lecture course (4 WLH); alternatively lecexercises/seminar (2 WLH)	4 WLH		
Examination: Oral examination (approx. 20 minutes)		6 C	
Examination requirements: Proof of the acquisition of special skills and the maste the area "Stochastic processes"			
Admission requirements:	Recommended previous knowledge: B.Mat.3342		
Language: English	Person responsible for module: Programme coordinator		
Course frequency: Usually subsequent to the module M.Mat.4542 "Specialisation in stochastic processes"	Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3		
Maximum number of students: not limited			
Additional notes and regulations:			

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4643: Aspects of stochastics methods of economathematics 6 C 4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- · understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Stochastic methods of economathematics";
- carry out scientific work under supervision in the area "Stochastic methods of economathematics".

Workload:

Attendance time: 56 h

Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with	4 WLH
exercises/seminar (2 WLH)	
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Stochastics methods of economathematics"

Admission requirements:	Recommended previous knowledge: B.Mat.3343
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4543 "Specialisation in stochastics methods of economathematics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3

Maximum number of students:	
not limited	
Additional notes and regulations:	
Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module M.Mat.4644: Aspects of mathematical statistics 6 C 4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Mathematical statistics";
- carry out scientific work under supervision in the area "Mathematical statistics".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) Examination: Oral examination (approx. 20 minutes) 6 C

Workload:

Attendance time: 56 h Self-study time: 124 h

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Mathematical statistics"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3344
Language:	Person responsible for module:
English	Programme coordinator
Course frequency:	Duration:
Usually subsequent to the module M.Mat.4544	1 semester[s]
"Specialisation in mathematical statistics"	
Number of repeat examinations permitted:	Recommended semester:
twice	Master: 1 - 3
Maximum number of students:	
not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4645: Aspects of statistical modelling and inference

6 C 4 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Statistical modelling and inference":
- carry out scientific work under supervision in the area "Statistical modelling and inference".

Workload:

Attendance time: 56 h

Self-study time:

124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)	4 WLH
Examination: Oral examination (approx. 20 minutes)	6 C

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Statistical modelling and inference"

Admission requirements:	Recommended previous knowledge: B.Mat.3345
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

Usually subsequent to the module M.Mat.4545 "Specialisation in statistical modelling and inference"	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations:	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4646: Aspects of multivariate statistics

6 C 4 WLH

124 h

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Multivariate statistics";
- carry out scientific work under supervision in the area "Multivariate statistics".

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH) Examination: Oral examination (approx. 20 minutes) 6 C

Workload:

Attendance time: 56 h Self-study time:

Examination requirements:

Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Multivariate statistics"

Admission requirements:	Recommended previous knowledge: M.Mat.4546
Language: English	Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module M.Mat.4546 "Specialisation in multivariate statistics"	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module M.Mat.4647: Aspects of statistical foundations of data science

6 C 4 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Statistical foundations of data science":
- carry out scientific work under supervision in the area "Statistical foundations of data science".

Workload:

Attendance time: 56 h Self-study time: 124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)		4 WLH
Examination: Oral examination (approx. 20 minutes)		6 C
Examination requirements: Proof of the acquisition of special skills and the mastery of advanced competencies in the area "Statistical foundations of data science"		
Admission requirements:	Recommended previous knowledge: M.Mat.4547	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: Usually subsequent to the module M.Mat.4547 "Specialisation in statistical foundations of data science"	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Instructor: Lecturers at the Institute of Mathematical Stochastics

3 C 2 WLH

Georg-August-Universität Göttingen Module M.Mat.4711: Special course in analytic number theory

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Analytic number theory";
- become acquainted with special problems in the area "Analytic number theory" to carry out scientific work for it.

Workload:

Attendance time: 28 h

20 ..

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced	
competencies in the area "Analytic number theory"	

Course frequency:	Duration:
English	Programme coordinator
Language:	Person responsible for module:
none	B.Mat.3311
Admission requirements:	Recommended previous knowledge:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen

Module M.Mat.4712: Special course in analysis of partial differential equations

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

Examination requirements:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Analysis of partial differential equations";
- become acquainted with special problems in the area "Analysis of partial differential equations" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C
	7

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Analysis of partial differential equations"

Admission requirements:	Recommended previous knowledge: B.Mat.3312
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4713: Special course in differential geometry

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- · conduct scholarly debates about problems of the area "Differential geometry";
- become acquainted with special problems in the area "Differential geometry" to carry out scientific work for it.

Workload:

Attendance time: 28 h

2011

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C
Examination requirements:	

Examination requirements:	
Proof of the acquisition of further special skills and the mastery of advanced	
competencies in the area "Differential geometry"	

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3313

Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional nates and namedations.	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4714: Special course in algebraic topology

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic topology";
- become acquainted with special problems in the area "Algebraic topology" to carry out scientific work for it.

Workload:

Attendance time:

28 h

Self-study time:

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Algebraic topology"

Admission requirements:	Recommended previous knowledge: B.Mat.3314
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4715: Special course in mathematical methods in physics

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Mathematical methods of physics";
- become acquainted with special problems in the area "Mathematical methods of physics" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Mathematical methods in physics"

Admission requirements:	Recommended previous knowledge: B.Mat.3315
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]

Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen Module M.Mat.4721: Special course in algebraic geometry

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups:
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic geometry";
- become acquainted with special problems in the area "Algebraic geometry" to carry out scientific work for it.

Workload:

Attendance time: 28 h

2011

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C
Examination requirements:	
Proof of the acquisition of further special skills and the mastery of advanced	
competencies in the area "Algebraic geometry"	

Admission requirements:	Recommended previous knowledge: B.Mat.3321
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module M.Mat.4722: Special course in algebraic number theory

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory;
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests:
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Algebraic number theory";
- become acquainted with special problems in the area "Algebraic number theory" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 min	utes) 3 C
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Algebraic number theory	
Admission requirements:	Recommended previous knowledge: B.Mat.3322
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen Module M.Mat.4723: Special course in algebraic structures

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- · conduct scholarly debates about problems of the area "Algebraic structures";
- become acquainted with special problems in the area "Algebraic structures" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C
	Τ
Examination requirements:	
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced	

Admission requirements:	Recommended previous knowledge: B.Mat.3323
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module M.Mat.4724: Special course in groups, geometry and dynamical systems

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- · know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- · know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Groups, geometry and dynamical systems";
- become acquainted with special problems in the area "Groups, geometry and dynamical systems" to carry out scientific work for it.

Course: Lecture course (Lecture) 2 WLH Examination: Oral examination (approx. 20 minutes) 3 C

Examination requirements:

Workload:

Attendance time:

28 h

Self-study time:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Groups, geometry and dynamical systems"

Admission requirements:	Recommended previous knowledge: B.Mat.3324
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

3 C 2 WLH

Module M.Mat.4725: Special course in non-commutative geometry

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- · apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 28 h Self-study time:

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Non-commutative geometry";
- become acquainted with special problems in the area "Non-commutative geometry" to carry out scientific work for it.

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3325
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4731: Special course in inverse problems

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Inverse problems";
- become acquainted with special problems in the area "Inverse problems" to carry out scientific work for it.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Inverse problems"

Admission requirements:	Recommended previous knowledge: B.Mat.3331
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4732: Special course in approximation methods

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Approximation methods";
- become acquainted with special problems in the area "Approximation methods" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Approximation methods"

Admission requirements:	Recommended previous knowledge: B.Mat.3332
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Module M.Mat.4733: Special course in numerical methods of partial differential equations

3 C 2 WLH

62 h

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Variational analysis";
- become acquainted with special problems in the area "Variational analysis" to carry out scientific work for it.

Workload:

Attendance time: 28 h
Self-study time:

Course: Lecture course (Lecture) Examination: Oral examination (approx. 20 minutes)		2 WLH
Admission requirements:	Recommended previous known B.Mat.3333	vledge:
Language: English	Person responsible for modul Programme coordinator	le:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitte twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4734: Special course in optimisation

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Optimisation";
- become acquainted with special problems in the area "Optimisation" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Lecture course (Lecture)		2 WLH
Examination: Oral examination (approx. 20 minutes)		3 C
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Optimisation"		
Admission requirements:	Recommended previous knowledge: B.Mat.3334	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: on an irregular basis	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4737: Special course in variational analysis

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems;
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Core skills:

Workload:

Attendance time: 28 h

Self-study time: 62 h After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Variational analysis";
- become acquainted with special problems in the area "Variational analysis" to carry out scientific work for it.

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:	
Proof of the acquisition of further special skills and the mastery of advanced	
competencies in the area "Variational analysis"	

Admission requirements:	Recommended previous knowledge: B.Mat.3337
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Module M.Mat.4738: Special course in image and geometry processing

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods;
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

 conduct scholarly debates about problems of the area "Image and geometry processing";

Workload:

Attendance time: 28 h Self-study time:

become acquainted with special problems in the area "Image and geometry processing" to carry out scientific work for it.			
Course: Lecture course (Lecture)		2 WLH	
Examination: Oral examination (approx. 20 minu	ites)	3 C	
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Image and geometry processing"			
Admission requirements:	Recommended previous knowledge: B.Mat.3338		
Language: English	Person responsible for module: Programme coordinator		
Course frequency: not specified	Duration: 1 semester[s]		
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3		
Maximum number of students: not limited			
Additional notes and regulations:			

Module M.Mat.4739: Special course in scientific computing / applied mathematics

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Scientific computing / applied mathematics":
- become acquainted with special problems in the area "Scientific computing / applied mathematics" to carry out scientific work for it.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Scientific computing / applied mathematics"

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3339
Language:	Person responsible for module:
English	Programme coordinator

Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Module M.Mat.4741: Special course in applied and mathematical stochastics

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

are familiar with advanced concepts of probability theory established on measure theory and apply them independently;

- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- · analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

Examination requirements:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Applied and mathematical stochastics";
- become acquainted with special problems in the area "Applied and mathematical stochastics" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Applied and mathematical stochastics"

Admission requirements:	Recommended previous knowledge: B.Mat.3341
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen Module M.Mat.4742: Special course in stochastic processes

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

• are familiar with advanced concepts of probability theory established on measure theory and apply them independently;

- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

· conduct scholarly debates about problems of the area "Stochastic processes";

Workload:

62 h

Attendance time: 28 h Self-study time:

become acquainted with special problems in carry out scientific work for it.	the area "Stochastic processes" to	
Course: Lecture course (Lecture)		2 WLH
Examination: Oral examination (approx. 20 minutes)		3 C
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Stochastic processes"		
Admission requirements:	Recommended previous knowledge: B.Mat.3342	
Language: English	Person responsible for mode Programme coordinator	lule:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		
Additional notes and regulations:	·	

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen Module M.Mat.4743: Special course in stochastic methods of economathematics 3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- · understand references to other mathematical areas;
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Stochastic methods of economathematics";
- become acquainted with special problems in the area "Stochastic methods of economathematics" to carry out scientific work for it.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Stochastic methods of economathematics"

Admission requirements:	Recommended previous knowledge: B.Mat.3343
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen Module M.Mat.4744: Special course in mathematical statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families:
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Mathematical statistics";
- become acquainted with special problems in the area "Mathematical statistics" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Mathematical statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.3344
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen Module M.Mat.4745: Special course in statistical modelling and inference

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Statistical modelling and inference":
- become acquainted with special problems in the area "Statistical modelling and inference" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Statistical modelling and inference"

Admission requirements:	Recommended previous knowledge: B.Mat.3345
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Statistics	

Georg-August-Universität Göttingen Module M.Mat.4746: Special course in multivariate statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Multivariate statistics";
- become acquainted with special problems in the area "Multivariate statistics" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time:

Course: Lecture course (Lecture)	2 WLH
Examination: Oral examination (approx. 20 minutes)	3 C

Examination requirements:

Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Multivariate statistics"

Admission requirements:	Recommended previous knowledge: B.Mat.3346
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen

Module M.Mat.4747: Special course in statistical foundations of data science

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;
- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area "Statistical foundations of data science":
- become acquainted with special problems in the area "Statistical foundations of data science" to carry out scientific work for it.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Lecture course (Lecture)		2 WLH
Examination: Oral examination (approx. 20 mi	nutes)	3 C
Examination requirements: Proof of the acquisition of further special skills and the mastery of advanced competencies in the area "Statistical foundations of data science"		
Admission requirements:	Recommended previous knowl B.Mat.3347	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 3	
Maximum number of students: not limited		

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Statistics

Georg-August-Universität Göttingen Module M.Mat.4811: Seminar on analytic number theory

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

none

Language:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Analytic number theory" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time: 62 h

Course: Seminar (Seminar)		2 WLH
Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the seminar		3 C
Examination requirements: Autonomous permeation and presentation of complex mathematical issues in the area "Analytic number theory"		
Admission requirements:	Recommended previous knowle	edge:

B.Mat.3311

Person responsible for module:

English	Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen 3 C 2 WLH Module M.Mat.4812: Seminar on analysis of partial differential equations

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- · are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- · know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

Examination prerequisites: Participation in the seminar

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Analysis of partial differential equations" and present it in a talk;
- · conduct scholarly debates in a familiar context.

2 WLH Course: Seminar (Seminar) 3 C **Examination: Oral Presentation (approx. 75 minutes)**

Workload:

Attendance time: 28 h

Self-study time: 62 h

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues in the area "Analysis of partial differential equations"

Admission requirements: none	Recommended previous knowledge: B.Mat.3312
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4813: Seminar on differential geometry

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered)
 the theory of transformation groups and symmetries as well as the analysis on
 manifolds, the theory of manifolds with geometric structures, complex differential
 geometry, gauge field theory and their applications as well as the elliptical
 differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

'Differential geometry"

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Differential geometry" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

المالا مدينا

Self-study time: 62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the area	

Admission requirements: Recommended previous knowledge:

none	B.Mat.3313
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4814: Seminar on algebraic topology

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Algebraic topology" and present it in a talk;
- conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time:

Course: Seminar (Seminar)	2 WLH	l
Examination: Oral Presentation (approx. 75 minutes)	3 C	ı

Examination prerequisites: Participation in the seminar Examination requirements: Autonomous permeation and presentation of complex mathematical issues in the area "Algebraic topology"

Admission requirements:	Recommended previous knowledge: B.Mat.3314
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4815: Seminar on mathematical methods in physics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Mathematical methods of physics" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Examination requirements: Autonomous permeation and presentation of complex mathematical issues in the area "Mathematical methods in physics"

<u>-</u>	Recommended previous knowledge: B.Mat.3315
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]

Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen Module M.Mat.4821: Seminar on algebraic geometry

Learning outcome, core skills: Learning outcome:

the scope of a Master's thesis.

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- · are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Algebraic geometry" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Workload:

Attendance time: 28 h

Self-study time:

Autonomous permeation and presentation of complex mathematical issues in the area "Algebraic geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3321
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen

3 C 2 WLH

Module M.Mat.4822: Seminar on algebraic number theory

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- · are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests:
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Variational analysis" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Seminar (Seminar)		2 WLH
Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the seminar		3 C
Examination requirements: Autonomous permeation and presentation of complex mathematical issues in the area "Algebraic number theory"		
Admission requirements:	Recommended previous knowled	edge:
Language: English	Person responsible for module: Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	;	

Georg-August-Universität Göttingen Module M.Mat.4823: Seminar on algebraic structures

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- know important examples of Lie algebras and algebras;
- · know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Algebraic structures" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues in the area "Algebraic structures"

Admission requirements:	Recommended previous knowledge: B.Mat.3323
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4824: Seminar on groups, geometry and dynamical systems

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- · know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- · know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Groups, geometry and dynamical systems" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

_			
ı – vam	ination	requirem	ante:
ьлан	manon	i cuuli cili	CIILO.

Workload:

Attendance time:

28 h

Self-study time:

Autonomous permeation and presentation of complex mathematical issues in the area "Groups, geometry and dynamical systems"

Admission requirements:	Recommended previous knowledge: B.Mat.3324
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4825: Seminar on non-commutative geometry

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued.

Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- model the symmetries of non-commutative spaces;
- apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;

Workload:

Attendance time: 28 h

Self-study time: 62 h

- define the invariants of algebras and modules with chain complexes and their homology and calculate these;
- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Non-commutative geometry" and present it in a talk;
- conduct scholarly debates in a familiar context.

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues in the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: B.Mat.3325
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Georg-August-Universität Göttingen Module M.Mat.4831: Seminar on inverse problems

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse problems of partial differential equations where the unknown is e. g. a coefficient, an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Inverse problems" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time:

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	

Participation in the seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the area	
"Inverse problems"	

Admission requirements:	Recommended previous knowledge: B.Mat.3331
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4832: Seminar on approximation methods

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Approximation methods" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	

Participation in the seminar		
Examination requirements: Autonomous permeation and presentation area "Approximation methods"	on of complex mathematical issues in the	
Admission requirements:	Recommended previous knowledge: B.Mat.3332	
Language:	Person responsible for module:	

none	B.Mat.3332
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4833: Seminar on numerical methods of partial differential equations

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- · are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- · know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- · apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application of numerical solution strategies in a special area of partial differential equations, e. g. in variation problems with constraints, singularly perturbed problems or of integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Numerics of partial differential equations" and present it in a talk;
- conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time:

Course: Seminar (Seminar)		2 WLH	
Examination: Oral Presentation (approx. 75 minutes)		3 C	
Examination prerequisites:			
Participation in the seminar			
Examination requirements: Autonomous permeation and presentat area "Numerical methods of partial diffe	cion of complex mathematical issues in the erential equations"		
Admission requirements:	Recommended previous B.Mat.3333	Recommended previous knowledge: B.Mat.3333	
Language: English	Person responsible for more re	Person responsible for module: Programme coordinator	
Course frequency:	Duration: 1 semester[s]		

Recommended semester:

Master: 1 - 4

Additional notes and regulations:

Maximum number of students:

twice

not limited

Number of repeat examinations permitted:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4834: Seminar on optimisation

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Optimisation" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the seminar	
plex mathematical issues in the	
Recommended previous knowledge: B.Mat.3334	
Person responsible for module: Programme coordinator	
Duration: 1 semester[s]	
Recommended semester: Master: 1 - 4	
	Recommended previous knomen. B.Mat.3334 Person responsible for modur programme coordinator Duration: 1 semester[s] Recommended semester:

Georg-August-Universität Göttingen Module M.Mat.4837: Seminar on variational analysis

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems;
- master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems:
- understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that
 e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- · know basic concepts and methods of stochastic optimisation.

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

Core skills:

Workload:

Attendance time: 28 h

Self-study time:

After having successfully completed the module, students will be able to · become acquainted with a mathematical topic in the area "Variational analysis" and present it in a talk; · conduct scholarly debates in a familiar context. Course: Seminar (Seminar) 2 WLH 3 C **Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites:** Participation in the seminar **Examination requirements:** Autonomous permeation and presentation of complex mathematical issues in the area "Variational analysis" Admission requirements: Recommended previous knowledge: none B.Mat.3337 Language: Person responsible for module: English Programme coordinator Course frequency: **Duration:** not specified 1 semester[s] Number of repeat examinations permitted: Recommended semester: twice Master: 1 - 4 Maximum number of students: not limited

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen

Module M.Mat.4838: Seminar on image and geometry processing

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- · know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods:
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Image and geometry processing" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Seminar (Seminar)		2 WLH
Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the seminar		3 C
Examination requirements: Autonomous permeation and presentation of comp "Image and geometry processing"	olex mathematical issues in the area	
Admission requirements:	Recommended previous knowledge B.Mat.3338	edge:
Language: English	Person responsible for module Programme coordinator	:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Georg-August-Universität Göttingen

Module M.Mat.4839: Seminar on scientific computing / applied mathematics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / Applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Scientific computing / applied mathematics" and present it in a talk;
- · conduct scholarly debates in a familiar context.

area "Scientific computing / applied mathematics"

Workload:

Attendance time:

28 h

Self-study time:

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the	

Admission requirements:	Recommended previous knowledge:
none	B.Mat.3339
Language:	Person responsible for module:
English	Programme coordinator

Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4841: Seminar on applied and mathematical stochastics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- · analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

Examination prerequisites: Participation in the seminar

After having successfully completed the module, students will be able to

 become acquainted with a mathematical topic in the area "Applied and mathematical stochastics" and present it in a talk;

conduct scholarly debates in a familiar context. Course: Seminar (Seminar) 2 WLH Examination: Oral Presentation (approx. 75 minutes) 3 C

Workload:

Attendance time: 28 h

Self-study time:

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues in the area "Applied and mathematical stochastics"

Admission requirements: none	Recommended previous knowledge: B.Mat.3341
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4842: Seminar on stochastic processes

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

Workload:

62 h

Attendance time: 28 h Self-study time:

• become acquainted with a mathematical topic in the area "Variational an	alysis" and	
present it in a talk;		

• conduct scholarly debates in a familiar context.

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the	
area "Stochastic processes"	

Admission requirements:	Recommended previous knowledge: B.Mat.3342
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4843: Seminar on stochastic methods of economathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- understand references to other mathematical areas;
- get to know possible applications in theory and practice;
- · gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Stochastic methods of economathematics" and present it in a talk;
- conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues in the area "Stochastic methods of economathematics"

Admission requirements:	Recommended previous knowledge: B.Mat.3343
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4844: Seminar on mathematical statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families:
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Mathematical statistics" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

2011

Self-study time: 62 h

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	

Participation in the seminar	
Examination requirements: Autonomous permeation and presentation area "Mathematical statistics"	on of complex mathematical issues in the
Admission requirements:	Recommended previous knowledge: B.Mat.3344
Language:	Person responsible for module:

Admission requirements.	Recommended previous knowledge.
none	B.Mat.3344
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4845: Seminar on statistical modelling and inference

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Statistical modelling and inference" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time:

28 h

Self-study time:

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the seminar	
Examination requirements:	

Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the area	
"Statistical modelling and inference"	

Admission requirements: none	Recommended previous knowledge: B.Mat.3345
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Institute of Mathematical Stochastics	

Georg-August-Universität Göttingen Module M.Mat.4846: Seminar on multivariate statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Multivariate statistics" and present it in a talk;
- · conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

2011

Self-study time:

Course: Seminar (Seminar)	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C

Examination prerequisites: Participation in the seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues in the	
area "Multivariate statistics"	

Admission requirements:	Recommended previous knowledge: B.Mat.3346
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module M.Mat.4847: Seminar on statistical foundations of data science

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;

- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- become acquainted with a mathematical topic in the area "Statistical foundations of data science" and present it in a talk;
- conduct scholarly debates in a familiar context.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Seminar (Seminar) 2 WLH

Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the seminar	
Examination requirements: Autonomous permeation and presentation of complex mathematical issues in the area "Statistical foundations of data science"	
Recommended previous knowledge: B.Mat.3347	
Person responsible for module: Programme coordinator	
Duration: 1 semester[s]	
Recommended semester: Master: 1 - 4	
	Recommended previous knowled B.Mat.3347 Person responsible for module: Programme coordinator Duration: 1 semester[s] Recommended semester:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen

Module M.Mat.4911: Advanced seminar on analytic number theory

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Analytic number theory" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time:

28 h

Self-study time: 62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements: Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Analytic number theory"

Admission requirements:	Recommended previous knowledge:
none	M.Mat.4511
Language:	Person responsible for module:

English	Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4912: Advanced seminar on analysis of partial differential equations

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial different equations;
- use different theorems of function theory for solving partial different equations;
- master different asymptotic techniques to study characteristics of the solutions of partial different equations;
- are paradigmatically familiar with broader application areas of linear theory of partial different equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial different equations;
- know the importance of partial different equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Analysis of partial differential equations" in a talk;
- conduct scholarly debates with reference to current research.

Course: Advanced seminar 2 WLH Examination: Oral Presentation (approx. 75 minutes) 3 C Examination prerequisites: Participation in the advanced seminar

Workload:

Attendance time: 28 h

Self-study time: 62 h

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Analysis of partial differential equations"

Admission requirements:	Recommended previous knowledge: M.Mat.4512
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen 3 C Module M.Mat.4913: Advanced seminar on differential geometry

2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- · develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- · develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered) the theory of transformation groups and symmetries as well as the analysis on manifolds, the theory of manifolds with geometric structures, complex differential geometry, gauge field theory and their applications as well as the elliptical differential equations of geometry and gauge field theory;
- · develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Differential geometry" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Differential geometry"

Admission requirements:

Recommended previous knowledge:

none	M.Mat.4513
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4914: Advanced seminar on algebraic topology

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know the basic concepts of set-theoretic topology and continuous mappings;
- · construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- · apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems:
- · calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- · become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Algebraic topology" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time:

28 h

Self-study time:

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C

Examination prerequisites: Participation in the advanced seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Algebraic topology"	

Admission requirements:	Recommended previous knowledge: M.Mat.4514
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4915: Advanced seminar on mathematical methods in physics

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Mathematical methods of physics" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	
	,

Examination requirements: Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Mathematical methods in physics"

Admission requirements:	Recommended previous knowledge: M.Mat.4515
Language: English	Person responsible for module: Programme coordinator
Course frequency:	Duration:

not specified	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	

Georg-August-Universität Göttingen Module M.Mat.4921: Advanced seminar on algebraic geometry

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups:
- · use divisors for classification questions;
- · study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Algebraic geometry" in a talk;
- · conduct scholarly debates with reference to current research.

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:

Workload:

Attendance time: 28 h

2011

Self-study time:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Algebraic geometry"

Admission requirements:	Recommended previous knowledge: M.Mat.4521
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen

Module M.Mat.4922: Advanced seminar on algebraic number theory

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- · know Noetherian and Dedekind rings and the class groups;
- · are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- · work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory:
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests:
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- · calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Algebraic number theory" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time:

Course: Advanced seminar		2 WLH 3 C
Examination: Oral Presentation (approx. 75 mines Examination prerequisites: Participation in the advanced seminar		
Examination requirements: Autonomous permeation and presentation of compresearch literature in the area "Algebraic number to		
Admission requirements:	Recommended previous knowledge: M.Mat.4522	
Language: English	Person responsible for module: Programme coordinator	
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Mathematical Institute	3	

Georg-August-Universität Göttingen Module M.Mat.4923: Advanced seminar on algebraic structures

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- · know basic concepts like rings, modules, algebras and Lie algebras;
- · know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- · apply basic concepts of category theory to algebras and modules;
- · know group actions and their basic classifications;
- · apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Algebraic structures" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Algebraic structures"

Admission requirements:	Recommended previous knowledge: M.Mat.4523
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen

Module M.Mat.4924: Advanced seminar on groups, geometry and dynamical systems

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts of groups and group homomorphisms;
- · know important examples of groups;
- · know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- · know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- know the basics of the representation theory of compact Lie groups.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Groups, geometry and dynamical systems" in a talk;
- conduct scholarly debates with reference to current research.

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

		requirer	
Lvami	nation	radilirat	mantei
LAAIIII	паноп	i euuli ei	HEHLS.

Workload:

Attendance time:

28 h

Self-study time:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Groups, geometry and dynamical systems"

Admission requirements:	Recommended previous knowledge: M.Mat.4524
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Module M.Mat.4925: Advanced seminar on non-commutative geometry

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

In the modules of the cycle "Non-commutative geometry" students get to know the conception of space of non-commutative geometry and some of its applications in geometry, topology, mathematical physics, the theory of dynamical systems and number theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Non-commutative geometry uses concepts of analysis, algebra, geometry and mathematical physics and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of non-commutative geometry that supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with the basic characteristics of operator algebras, especially with their representation and ideal theory;
- construct groupoids and operator algebras from different geometrical objects and apply non-commutative geometry to these domains;
- know the spectral theory of commutative C*-algebras and analyse normal operators in Hilbert spaces with it;
- know important examples of simple C*-algebras and deduce their basic characteristics;
- apply basic concepts of category theory to C*-algebras;
- · model the symmetries of non-commutative spaces;
- apply Hilbert modules in C*-algebras;
- know the definition of the K-theory of C*-algebras and their formal characteristics and calculate the K-theory of C*-algebras for important examples with it;
- apply operator algebras for the formulation and analysis of index problems in geometry and for the analysis of the geometry of greater length scales;
- compare different analytical and geometrical models for the construction of mappings between K-theory groups and apply them;
- classify and analyse quantisations of manifolds via Poisson structures and know a few important methods for the construction of quantisations;
- classify W*-algebras and know the intrinsic dynamic of factors;
- apply von Neumann algebras to the axiomatic formulation of quantum field theory;
- use von Neumann algebras for the construction of L2 invariants for manifolds and groups;
- understand the connection between the analysis of C*- and W*-algebras of groups and geometrical characteristics of groups;
- define the invariants of algebras and modules with chain complexes and their homology and calculate these;

Workload:

Attendance time: 28 h

2011

Self-study time:

62 h

- interpret these homological invariants geometrically and correlate them with each other;
- abstract new concepts from the fundamental characteristics of K-theory and other homology theories, e. g. triangulated categories.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Noncommutative geometry" in a talk;
- conduct scholarly debates with reference to current research.

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements: Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Non-commutative geometry"

Admission requirements:	Recommended previous knowledge: M.Mat.4525
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute

Georg-August-Universität Göttingen Module M.Mat.4931: Advanced seminar on inverse problems

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors:
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse
 problems of partial differential equations where the unknown is e. g. a coefficient,
 an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Inverse problems" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

2011

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Inverse problems"

Admission requirements: none	Recommended previous knowledge: M.Mat.4531
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module M.Mat.4932: Advanced seminar on approximation methods

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data:
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area
 "Approximation methods" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	

Participation in the advanced seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Approximation methods"	

Admission requirements:	Recommended previous knowledge: M.Mat.4532
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module M.Mat.4933: Advanced seminar on numerical methods of partial differential equations

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- · know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically:
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application
 of numerical solution strategies in a special area of partial differential equations,
 e. g. in variation problems with constraints, singularly perturbed problems or of
 integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Numerics of partial differential equations" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h
Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the advanced seminar	3 C
Examination requirements: Autonomous permeation and presentation of complex mathematical issues of current	

Admission requirements:	Recommended previous knowledge: M.Mat.4533
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

research literature in the area "Numerical methods of partial differential equations"

Georg-August-Universität Göttingen Module M.Mat.4934: Advanced seminar on optimisation

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised:
- · analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- · develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;
- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Optimisation" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Advanced seminar		2 WLH
Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites: Participation in the advanced seminar		3 C
Examination requirements: Autonomous permeation and presentation of compresearch literature in the area "Optimisation"	olex mathematical issues of current	
Admission requirements:	Recommended previous know M.Mat.4534	rledge:
Language: English	Person responsible for module Programme coordinator	e:
Course frequency: not specified	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4	
Maximum number of students: not limited		
Additional notes and regulations: Instructor: Lecturers at the Institute of Numerical	and Applied Mathematics	

Module M.Mat.4937: Advanced seminar on variational analysis

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Variational analysis" enables students to learn methods, concepts, theories and applications in variational analysis and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- understand basic concepts of convex and variational analysis for finite- and infinitedimensional problems:
- · master the characteristics of convexity and other concepts of the regularity of sets and functions to evaluate the existence and regularity of the solutions of variational problems:
- · understand basic concepts of the convergence of sets and continuity of set-valued functions;
- understand basic concepts of variational geometry;
- · calculate and use generalised derivations (subderivatives and subgradients) of non-smooth functions;
- · understand the different concepts of regularity of set-valued functions and their effects on the calculation rules for subderivatives of non-convex functionals;
- analyse constrained and parametric optimisation problems with the help of duality theory;
- calculate and use the Legendre-Fenchel transformation and infimal convulutions;
- · formulate optimality criteria for continuous optimisation problems with tools of convex and variational analysis;
- apply tools of convex and variational analysis to solve generalised inclusions that e. g. originate from first-order optimality criteria;
- understand the connection between convex functions and monotone operators;
- examine the convergence of fixed point iterations with the help of the theory of monotone operators;
- · deduce methods for the solution of smooth and non-smooth continuous constrained optimisation problems and analyse their convergence;
- apply numerical methods for the solution of smooth and non-smooth continuous constrained programs to current problems;
- · model application problems with variational inequations, analyse their characteristics and are familiar with numerical methods for the solution of variational inequations;
- know applications of control theory and apply methods of dynamic programming;
- use tools of variational analysis in image processing and with inverse problems;
- know basic concepts and methods of stochastic optimisation.

Workload:

Attendance time: 28 h

Self-study time: 62 h

After having successfully completed the module, students will be able to • present a mathematical topic of current research interest in the area "Variational analysis" in a talk; • conduct scholarly debates with reference to current research. Course: Advanced seminar 2 WLH 3 C **Examination: Oral Presentation (approx. 75 minutes) Examination prerequisites:** Participation in the advanced seminar **Examination requirements:** Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Variational analysis" Admission requirements: Recommended previous knowledge: none M.Mat.4537 Language: Person responsible for module: English Programme coordinator Course frequency: **Duration:** not specified 1 semester[s] Number of repeat examinations permitted: Recommended semester: twice Master: 1 - 4 Maximum number of students: not limited

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module M.Mat.4938: Advanced seminar on image and geometry processing

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- know basic concepts and methods of topology;
- · are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods;
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time:
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Image and geometry processing" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time: 62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Image and geometry processing"	

Admission requirements:	Recommended previous knowledge: M.Mat.4538
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module M.Mat.4939: Advanced seminar on scientific computing / applied mathematics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Scientific computing / applied mathematics" enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Scientific computing / applied mathematics" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Scientific computing / applied mathematics"

Language:	Person responsible for module:
none	M.Mat.4539
Admission requirements:	Recommended previous knowledge:

English	Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Module M.Mat.4941: Advanced seminar on applied and mathematical stochastics

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics:
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Applied and mathematical stochastics" in a talk;
- conduct scholarly debates with reference to current research.

Course: Advanced seminar 2 WLH Examination: Oral Presentation (approx. 75 minutes) 3 C Examination prerequisites: Participation in the advanced seminar

Workload:

Attendance time: 28 h

Self-study time:

62 h

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Applied and mathematical stochastics"

Admission requirements:	Recommended previous knowledge: M.Mat.4541
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

Georg-August-Universität Göttingen Module M.Mat.4942: Advanced seminar on stochastic processes

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- · analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these:
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

Workload:

62 h

Attendance time: 28 h Self-study time:

• present a mathematical topic of current research interest in t	he area "Stochastic
processes" in a talk;	

• conduct scholarly debates with reference to current research.

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Stochastic processes"	

Admission requirements:	Recommended previous knowledge: M.Mat.4542
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4943: Advanced seminar on stochastic methods in economathematics

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- · understand stochastic connections;
- understand references to other mathematical areas:
- get to know possible applications in theory and practice;
- gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Stochastic methods in economathematics" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Stochastic methods in economathematics"

Admission requirements:	Recommended previous knowledge: M.Mat.4543
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4944: Advanced seminar on mathematical statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Bachelor's or Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Mathematical statistics" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

20 11

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C

Examination prerequisites: Participation in the advanced seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Mathematical statistics"	

Admission requirements:	Recommended previous knowledge: M.Mat.4544
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module M.Mat.4945: Advanced seminar on statistical modelling and inference

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Statistical modelling and inference" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the fundamental principles of statistics and inference in parametric and non-parametric models: estimation, testing, confidence statements, prediction, model selection and validation;
- · are familiar with the tools of asymptotic statistical inference;
- learn Bayes and frequentist approaches to data modelling and inference, as well
 as the interplay between both, in particular empirical Bayes methods;
- are able to implement Monte Carlo statistical methods for Bayes and frequentist inference and learn their theoretical properties;
- become confident in non-parametric (regression) modelling and inference for various types of the data: count, categorical, dependent, etc.;
- are able to develop and mathematically evaluate complex statistical models for real data problems.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Statistical modelling and inference" in a talk;
- · conduct scholarly debates with reference to current research.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C
Examination prerequisites:	
Participation in the advanced seminar	
	*

Examination requirements:

Autonomous permeation and presentation of complex mathematical issues of current research literature in the area "Statistical modelling and inference"

Admission requirements:	Recommended previous knowledge:
none	M.Mat.4545
Language:	Person responsible for module:
English	Programme coordinator

Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen Module M.Mat.4946: Advanced seminar on multivariate statistics

3 C 2 WLH

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Multivariate statistics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are well acquainted with the most important methods of multivariate statistics like estimation, testing, confidence statements, prediction, linear and generalized linear models, and use them in modeling real world applications;
- can apply more specific methods of multivariate statistics such as dimension reduction by principal component analysis (PCA), factor analysis and multidimensional scaling;
- are familiar with handling non-Euclidean data such as directional or shape data using parametric and non-parametric models;
- are confident using nested descriptors for non-Euclidean data and Procrustes methods in shape analysis;
- are familiar with time dependent data, basic functional data analysis and inferential concepts such as kinematic formulae;
- analyze basic dependencies between topology/geometry of underlying spaces and asymptotic limiting distributions;
- · are confident to apply resampling methods to non-Euclidean descriptors;
- are familiar with high-dimensional discrimination and classification techniques such as kernel PCA, regularization methods and support vector machines;
- have a fundamental knowledge of statistics of point processes and Bayesian methods involved:
- are familiar with concepts of large scale computational statistical techniques;
- independently become acquainted with a current topic of multivariate and non-Euclidean statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Multivariate statistics" in a talk;
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h

Self-study time:

62 h

Course: Advanced seminar	2 WLH
Examination: Oral Presentation (approx. 75 minutes)	3 C

Examination prerequisites: Participation in the advanced seminar	
Examination requirements:	
Autonomous permeation and presentation of complex mathematical issues of current	
research literature in the area "Multivariate statistics"	

Admission requirements:	Recommended previous knowledge: M.Mat.4546
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students: not limited	

Instructor: Lecturers at the Institute of Mathematical Stochastics

Module M.Mat.4947: Advanced seminar on statistical foundations of data science

3 C 2 WLH

Learning outcome, core skills: Learning outcome:

The successful completion of modules of the cycle "Statistical foundations of data science" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

are familiar with the most important methods of statistical foundations of data science like estimation, testing, confidence statements, prediction, resampling, pattern recognition and classification, and use them in modeling real world applications;

- evaluate statistical methods mathematically precisely via suitable statistical risk and loss concepts;
- analyse characteristics of statistical estimation methods via lower and upper information bounds;
- are familiar with basic statistical distribution models that base on the theory of exponential families;
- are confident in modelling real world data structures such as categorial data, multidimensional and high dimensional data, data in imaging, data with serial dependencies
- analyse practical statistical problems in a mathematically accurate way with the techniques and models learned on the one hand and via computer simulations on the other hand:
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with concepts of large scale computational statistical techniques;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of statistical data science;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- present a mathematical topic of current research interest in the area "Statistical foundations of data science" in a talk:
- conduct scholarly debates with reference to current research.

Workload:

Attendance time: 28 h
Self-study time:

62 h

Course: Advanced seminar 2 WLH

Examination: Oral Presentation (approx. 75 mine Examination prerequisites: Participation in the advanced seminar	utes) 3 C
Examination requirements: Autonomous permeation and presentation of compl research literature in the area "Statistical foundation"	
Admission requirements:	Recommended previous knowledge: M.Mat.4547
Language: English	Person responsible for module: Programme coordinator
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Master: 1 - 4
Maximum number of students:	

not limited

Instructor: Lecturers at the Institute of Mathematical Stochastics

Georg-August-Universität Göttingen	9 C
Modul M.Phi.101: Ausgewählte Themen der Theoretischen	4 SWS
Philosophie	
English title: Selected Topics in Theoretical Philosophy	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Das Wahlpflichtmodul dient der Erweiterung der Kenntnisse und Fähigkeiten in einem	Präsenzzeit:
Wahlbereich der Philosophie. Im 42-C-Master-Fach wird hier ein Schwerpunkt mit	56 Stunden
vertieften Kenntnissen ausgebildet. Im 78-C-Master-Fach sollen ergänzende Themen	Selbststudium:
studiert werden, die nicht im Bereich des zu wählenden Studienschwerpunktes (s.	214 Stunden
Module 104-107) liegen.	
Die Studierenden besitzen vermehrte Kenntnis von Theorieansätzen und	
umfassendere Problemperspektiven auf Gebieten der Theoretischen Philosophie.	
Sie kennen unterschiedliche Methoden und Terminologien, können Positionen	
und Problemstellungen in größere Zusammenhänge einordnen, mit anderen	
Positionen vergleichen und ihre Relevanz und Leistungsfähigkeit beurteilen. Z.B.	
können erkenntnistheoretische Ansätze durch zusätzliche Kenntnisse aus der	
Sprachphilosophie, der Ontologie oder der Philosophie des Geistes adäquater	
eingeschätzt werden und umgekehrt.	
Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs),	2 SWS
Seminar oder Hauptseminar zu einem Thema der theoretischen Philosophie	
Von den folgenden Prüfungen ist genau eine erfolgreich zu absolvieren:	
Von den folgenden Prüfungen ist genau eine erfolgreich zu absolvieren: Prüfung: Hausarbeit (max. 15 Seiten)	7 C
	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten)	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen:	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten)	7 C
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen:	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten)	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen:	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs),	
Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren. Prüfung: Mündlich (ca. 30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) Prüfungsanforderungen: Kenntnisse wichtiger Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik; Fähigkeit, philosophische Probleme in diesen Bereichen zu behandeln und Lösungsvorschläge unter sachgerechter Abwägung von Argumenten zu diskutieren.	7 C

Fähigkeit, sich mit wichtigen Positionen der Sprachphilosophie, Erkenntnistheorie, Philosophie des Geistes, Wissenschaftsphilosophie oder Metaphysik auseinanderzusetzen und in kurzer schriftlicher Form einzelne Fragen, Probleme oder Lösungsvorschläge argumentativ verständlich darzulegen. Bei der kleinen Leistung kann es sich um ein Protokoll, ein Handout zu einem Referat, die Bearbeitung von Aufgaben oder Fragen zur Textvor- oder Nachbereitung, einen kurzen Essay oder Vergleichbares (je nach Arbeitsform der betreffenden Veranstaltung) handeln.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Catrin Misselhorn
Angebotshäufigkeit: jedes Semester	Dauer: 1-2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 25	

Bemerkungen:

Von den zwei Lehrveranstaltungen darf nur eine in Form einer Vorlesung besucht werden, die andere muss ein Seminar oder Hauptseminar sein.

9 C Georg-August-Universität Göttingen 4 SWS Modul M.Phi.102: Ausgewählte Themen der Praktischen Philosophie English title: Selected Topics in Practical Philosophy Lernziele/Kompetenzen: Arbeitsaufwand: Das Wahlpflichtmodul dient der Erweiterung der Kenntnisse und Fähigkeiten in einem Präsenzzeit: 56 Stunden Wahlbereich der Philosophie. Im 42-C-Master-Fach wird hier ein Schwerpunkt mit vertieften Kenntnissen ausgebildet. Im 78-C-Master-Fach sollen ergänzende Themen Selbststudium: studiert werden, die nicht im Bereich des zu wählenden Studienschwerpunktes (s. 214 Stunden Module 104-107) liegen. Die Studierenden besitzen erweiterte Kenntnisse von Theorieansätzen in mehreren Bereichen der Praktischen Philosophie. Sie können ethische und politiktheoretische Positionen und Problemstellungen in größere Zusammenhänge einordnen, unterschiedliche Ansätze vergleichen und ihre Relevanz und Leistungsfähigkeit beurteilen. Im Bereich der Ethik wird z.B. die Kenntnis individualethischer Positionen durch solche der Sozialethik oder der politischen Philosophie ergänzt, durch Ansätze der Metaethik in der Grundlagendimension vertieft oder durch Ansätze der Angewandten Ethik in der Anwendungsdimension konkretisiert. 2 SWS Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs), Seminar oder Hauptseminar zu einem Thema der praktischen Philosophie Von den folgenden Prüfungen ist genau eine erfolgreich zu absolvieren: 7 C Prüfung: Hausarbeit (max. 15 Seiten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) 7 C Prüfung: mündliche Prüfung (30 Minuten) Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten) 2 SWS Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs), Seminar oder Hauptseminar zu einem Thema der praktischen Philosophie Prüfung: Eine kleine Leistung mindestens in Textform (max. 3 Seiten), unbenotet 2 C Prüfungsanforderungen: Fähigkeit, sich mit wichtigen Positionen der Theoretischen Ethik, der Angewandten Ethik oder der Politischen Philosophie auseinanderzusetzen und in kurzer schriftlicher Form einzelne Fragen, Probleme oder Lösungsvorschläge argumentativ verständlich darzulegen. Bei der kleinen Leistung kann es sich um ein Protokoll, ein Handout zu einem Referat, die Bearbeitung von Aufgaben oder Fragen zur Textvor- oder Nachbereitung, einen kurzen Essay oder Vergleichbares (je nach Arbeitsform der betreffenden Veranstaltung) handeln. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]:

Deutsch	Prof. Dr. Holmer Steinfath
Angebotshäufigkeit: jedes Semester	Dauer: 1-2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 25	

Bemerkungen:

Von den zwei Lehrveranstaltungen darf nur eine in Form einer Vorlesung besucht werden, die andere muss ein Seminar oder Hauptseminar sein.

Georg-August-Universität Göttingen	9 C
Modul M.Phi.103: Ausgewählte Themen der Geschichte der	4 SWS
Philosophie	
English title: Selected Topics in History of Philosophy	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Das Wahlpflichtmodul dient der Erweiterung der Kenntnisse und Fähigkeiten in einem	Präsenzzeit:
Wahlbereich der Philosophie. Im 42-C-Master-Fach wird hier ein Schwerpunktbereich	56 Stunden
mit vertieften Kenntnissen ausgebildet. Im 78-C-Master-Fach sollen ergänzende	Selbststudium:
Themen studiert werden, die nicht im Bereich des zu wählenden Studienschwerpunktes	214 Stunden
(s. Module 104-107) liegen.	
Die Studierenden kennen verschiedene philosophiegeschichtliche Theorieansätze	
und die wesentlichen Diskussionszusammenhänge, in denen sie stehen. Klassische	
Primärtexte können unter Einbeziehung ihrer historischen und systematischen Kontexte	
sachgemäß interpretiert und analysiert werden. Philosophische Positionen können	
entwicklungsgeschichtlich aufeinander bezogen, fortschrittliche und wiederkehrende	
Elemente darin erkannt und Diskussionsbeiträge oder Theorieentwürfe nach ihrer	
theoriegeschichtlichen Bedeutung eingeschätzt werden.	
Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs),	2 SWS
Seminar oder Hauptseminar zu einem Thema der Geschichte der Philosophie	
Von den folgenden Prüfungen ist genau eine erfolgreich zu absolvieren:	
Prüfung: Hausarbeit (max. 15 Seiten)	7 C
Prüfungsvorleistungen:	
Eine kleine Leistung mindestens in Textform (max. 3 Seiten)	
Prüfungsanforderungen:	
Kenntnisse wichtiger philosophiegeschichtlicher Werke und Positionen; Fähigkeit, klassische Texte sachgemäß zu interpretieren, in ihre historischen und systematischen	
Kontexte einzuordnen und ihre theoretische Leistungsfähigkeit zu beurteilen.	
Prüfung: mündliche Prüfung (30 Minuten)	7 C
Prüfungsvorleistungen: Eine kleine Leistung mindestens in Textform (max. 3 Seiten)	
Prüfungsanforderungen:	
Kenntnisse wichtiger philosophiegeschichtlicher Werke und Positionen; Fähigkeit,	
klassische Texte sachgemäß zu interpretieren, in ihre historischen und systematischen	
Kontexte einzuordnen und ihre theoretische Leistungsfähigkeit zu beurteilen.	
	<u> </u>
Lehrveranstaltung: Vorlesung für Fortgeschrittene (= nicht Einführungskurs), Seminar oder Hauptseminar zu einem Thema der Geschichte der Philosophie	2 SWS
Prüfung: Eine kleine Leistung mindestens in Textform (max. 3 Seiten), unbenotet	2 C
Prüfungsanforderungen:	
Fähigkeit, sich mit wichtigen philosophiegeschichtlichen Werken und Positionen	
	1
auseinanderzusetzen, sie sachgemäß zu interpretieren sowie in ihren historischen und systematischen Kontexten einzuordnen. Fähigkeit, in kurzer schriftlicher Form einzelne	

Fragen, Probleme oder Lösungsvorschläge argumentativ verständlich darzulegen. Bei der kleinen Leistung kann es sich um ein Protokoll, ein Handout zu einem Referat, die Bearbeitung von Aufgaben oder Fragen zur Textvor- oder Nachbereitung, einen kurzen Essay oder Vergleichbares (je nach Arbeitsform der betreffenden Veranstaltung) handeln.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Bernd Ludwig
Angebotshäufigkeit: jedes Semester	Dauer: 1-2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: 25	

Bemerkungen:

Von den zwei Lehrveranstaltungen darf nur eine in Form einer Vorlesung besucht werden, die andere muss ein Seminar oder Hauptseminar sein.

Georg-August-Universität Göttingen Modul M.WIWI-BWL.0001: Finanzwirtschaft English title: Corporate Finance

Lernziele/Kompetenzen:

Mit dem erfolgreichen Abschluss des Moduls haben die Studierenden folgende Kompetenzen erworben:

- sie sind in der Lage einen vertieften Überblick über die grundlegenden Fragen der betrieblichen Finanzwirtschaft und ihre Verbindungen zueinander zu geben,
- sie können die zentralen Methoden der Risikoanalyse und der Beurteilung von Investitionen verstehen, anwenden und kritisch reflektieren,
- sie verstehen die zentrale Theorien zur Marktbewertung riskanter Zahlungsströme und können diese kritisch reflektieren,
- sie verstehen die Hypothesen zur Informationseffizienz von Kapitalmärkten können und deren Konsequenzen für Investoren und Unternehmen beurteilen,
- sie verstehen verhaltenswissenschaftliche Aspekte in Finanzmärkten, deren ökonomische Fundierung und deren Auswirkungen auf Investitions- und Finanzierungsentscheidungen und sind in der Lage diese kritisch zu reflektieren,
- sie verstehen Theorien zur optimalen Kapitalstruktur und Dividendenpolitik von Unternehmen und k\u00f6nnen deren Verbindungen zu verschiedenen Marktfriktionen und Prinzipal-Agenten-Problemen aufzeigen,
- sie sind in der Lage Theorien zur optimalen Kapitalstruktur und Dividendenpolitik von Unternehmen hinsichtlich ihrer praktischen Implikationen und ihrer Fähigkeit zur Erklärung empirischer Phänomene zu beurteilen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

2 SWS Lehrveranstaltung: Finanzwirtschaft (Vorlesung) Inhalte: 1. Grundlegende Fragestellungen der betrieblichen Finanzwirtschaft 2. Investitionsentscheidungen unter Risiko: Risikoanalyse und subjektive Bewertung 3. Investitionsentscheidungen unter Risiko: Marktbewertung - Bewertungsmodelle (Capital Asset Pricing Model, Arbitrage Pricing Theory, Empirische Faktormodelle) 4. Investitionsentscheidungen unter Risiko: Marktbewertung - Implementierung 5. Finanzierungsinstrumente, effiziente Kapitalmärkte, Behavioral Finance und Finanzierungsentscheidungen 6. Kapitalstrukturentscheidungen 7. Dividenden und Ausschüttungspolitik Teile des Materials der Vorlesungen werden durch Aufzeichnungen vermittelt, die von den Studierenden eigenständig durchzuarbeiten sind. 2 SWS Lehrveranstaltung: Finanzwirtschaft (Übung) Inhalte: Im Rahmen der begleitenden Übung vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten 6 C Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

- Darlegung eines übergreifenden Verständnisses grundlegender finanzwirtschaftlicher Fragestellungen,
- Nachweis der Kenntnis zentraler Methoden der Risikoanalyse und der Beurteilung von Investitionen unter Risiko sowie der Fähigkeit diese anzuwenden,
- Nachweis des Verständnisses zentraler Theorien zur Marktbewertung riskanter Zahlungsströme und der Fähigkeit zur kritischen Beurteilung dieser Theorien,
- Nachweis des Verständnisses der Hypothesen zur Informations-effizienz von Kapitalmärkten, verhaltenswissenschaftlicher Phänomene auf Kapitalmärkten sowie deren praktischer Implikationen für Investoren und Unternehmen,
- Fähigkeit zur Analyse von Fragen der optimalen Kapitalstruktur und der Dividendenpolitik von Unternehmen vor dem Hintergrund verschiedener Marktfriktionen und Prinzipal-Agenten-Problemen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse aus finanzwirtschaftlichen Veranstaltungen im Bachelorstudium
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Olaf Korn
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 SWS Modul M.WIWI-BWL.0002: Rechnungslegung nach IFRS English title: IFRS Financial Reporting Lernziele/Kompetenzen: Arbeitsaufwand: Gegenstand der Veranstaltung sind die Ziele, Instrumente, Prinzipien und Präsenzzeit: Einzelregelungen der Rechnungslegung nach den International Financial Reporting 56 Stunden Standards (IFRS). Mit erfolgreicher Teilnahme am Moduls sind die Studierenden in Selbststudium: der Lage die kennengelernten Regelungen einzuordnen, kritisch zu Hinterfragen und 124 Stunden anzuwenden. Darüber hinaus können die Teilnehmer unterschiedliche Sachverhalte in Bilanzierungs- und Offenlegungsregelungen einordnen, diese kritisch würdigen und prinzipienorientierte Lösungen entwickeln. Lehrveranstaltung: Rechnungslegung nach IFRS (Vorlesung) 2 SWS Inhalte: I. Die "IFRS-Revolution" II. Das Konzept der kapitalmarktorientierten Rechnungslegung III. Institutionelle Grundlagen IV. Rechnungslegungsprinzipien in den IFRS V. Bestandteile des Jahresabschlusses nach IFRS VI. Ansatz und Bewertung nach den IFRS Lehrveranstaltung: Rechnungslegung nach IFRS (Übung) 2 SWS Inhalte: Im Rahmen der begleitenden Übung vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten. 6 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: • Darlegung eines übergreifenden Verständnisses grundlegender Fragestellungen der internationalen Rechnungslegung und des damit verbundenen institutionellen Rahmens, • Nachweis der Kenntnis zentraler Regelungen der Rechnungslegung nach IFRS und der Fähigkeit diese anzuwenden. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine Grundkenntnisse der Buchführung sowie der Bilanzierung nach Handelsrecht und IFRS werden vorausgesetzt

Sprache:

Angebotshäufigkeit:

iedes Wintersemester

Wiederholbarkeit:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Jörg-Markus Hitz

Empfohlenes Fachsemester:

Dauer:

1 Semester

zweimalig	1 - 2
Maximale Studierendenzahl:	
nicht begrenzt	

Georg-August-Universität Göttingen Modul M.WIWI-BWL.0003: Unternehmensbesteuerung English title: Company Taxation

Lernziele/Kompetenzen:

Mit Abschluss haben die Studierenden folgende Kompetenzen erworben:

- Quantifizierung von rechtlichen Steuerbelastungen (steuerzahlungen) mittels geeigneter Verfahren sowie die Fähigkeit, Vor- und Nachteile dieser Verfahren diskutieren zu können,
- Berechnung und Interpretation verschiedener Ausprägungen der wirtschaftlichen Steuerbelastung sowie ihrer Würdigung bezüglich ihrer Abhängigkeiten von steuerlichen Parametern,
- Kenntnis über die Preiswirkungen der Besteuerung sowie die Fähigkeit, sie in konkreten Sachverhalten herausarbeiten zu können,
- Kenntnis über ökonomisch bedeutsame Neutralitäten, die durch die Besteuerung nicht verletzt werden sollten,
- Fähigkeit, Verfahren aufzuzeigen und anzuwenden, die eine entscheidungsneutrale Besteuerung gewährleisten,
- Beurteilung von konkreten steuerlichen Gewinnermittlungsvorschriften hinsichtlich ihrer Entscheidungswirkungen anhand geeigneter Methoden und
- Durchführung von Steuerwirkungsanalysen und steuerlichen Vorteilhaftigkeitsvergleichen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Unternehmensbesteuerung (Vorlesung) *Inhalte*:

Die Vorlesung soll den Studierenden die wirtschaftlichen Wirkungen der Besteuerung (Steuerlastlehre und Neutralitätsüberlegungen) sowie die grundlegenden Einflussfaktoren bei Steuerplanungsüberlegungen vermitteln. Hierzu gliedert sich die Vorlesung in vier Kapitel. Im ersten Kapitel erfolgt eine Einordnung der Besteuerung in die betriebswirtschaftliche Entscheidungstheorie. Im zweiten Kapitel werden Verfahren zur Messung von Steuerzahlungen und Steuerbelastungen behandelt und Formen steuerlicher Neutralität unterschieden, die aus ökonomischer Sicht durch die Besteuerung nicht verletzt werden sollten. Im dritten Kapitelwerdenden Studierendeninstitutionelle Grundlagen der Unternehmensbesteuerung vermittelt. Das vierte Kapitel bietet eine Einführung in Steuerwirkungsanalysen in Bezug auf rein nationale Sachverhalte.

2 SWS

Lehrveranstaltung: Unternehmensbesteuerung (Übung)

Im Rahmen der begleitenden Übung vertiefen, ergänzen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten. Insbesondere werden mit den Studierenden Übungsfälle erarbeitet und diskutiert, mithilfe derer ein tieferes Verständnis für die praktische Anwendung der in der Vorlesung theoretisch vermittelten Inhalte geschaffen wird.

2 SWS

Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis von Kenntnissen der wirtschaftlichen	
Wirkungen der Besteuerung sowie grundlegender Steuerplanungsüberlegungen	
und zeigen, dass sie in der Lage sind, diese auf spezifische Sachverhalte anwenden	
können. Ferner erbringen die Studierenden den Nachweis über den Erwerb	
grundlegender Kenntnisse der Besteuerung alternativer Rechtsformen.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-BWL.0001 Unternehmenssteuern I
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Oestreicher
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-BWL.0004: Financial Risk Management Learning outcome, core skills: Workload: After a successful completion of the course students are able to: Attendance time: 56 h · understand and explain how risk management is related to other issues in Self-study time: corporate finance, 124 h · critically assess different motivations for corporate risk management, · understand and critically assess different risk measures and how they are applied in practice, · understand and explain how international risks can be managed and how the management of international risks is related to various economic parity conditions, understand, analyze and critically apply measures and methods to manage interest rate risk, understand, analyze and critically apply measures and methods to manage credit · understand, analyze and critically apply hedging strategies for commodity price risk. Course: Financial Risk Management (Lecture) 2 WLH Contents: 1. Introduction 2. Risk Management: Motivation and Strategies 3. Managing Interest Rate Risk 4. Managing Credit Risk 5. Managing International Risks 6. Managing Commodity Price Risk Parts of the material covered by the lectures will be transmitted via recordings that students have to work through on their own. Parts of the contact hours during lectures will be used by the students to discuss open issues and to work on specific cases and applications of the main concepts. 2 WLH Course: Financial Risk Management (Tutorial) In the accompanying practice sessions students deepen and broaden their knowledge from the lectures. Examination: Written examination (90 minutes) 6 C **Examination requirements:** Demonstrate a profound knowledge of how risk management is related to other issues in corporate finance. · Document an understanding of viable reasons for corporate risk management and

• Demonstrate the ability to analyze and apply different risk measures.

how corporate risk management can create value.

• Show a profound understanding of methods and techniques used to manage international risks, interest rate risk, credit risk, and commodity price risk.

Admission requirements:	Recommended previous knowledge: M.WIWI-BWL.0001 Corporate Finance
Language: English	Person responsible for module: Prof. Dr. Olaf Korn
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 2 - 3
Maximum number of students: not limited	

Georg-August-Universität Göttingen Modul M.WIWI-BWL.0006: Seminar in Finanzwirtschaft English title: Seminar in Finance

Lernziele/Kompetenzen:

Mit dem erfolgreichen Abschluss des Moduls haben die Studierenden folgende Kompetenzen erworben:

- sie können die Lösung für eine komplexe, übergreifende Fragestellung mit finanzwirtschaftlichem Schwerpunkt eigenständig erarbeiten und sind in der Lage, das erworbene Wissen schriftlich und mündlich sachgerecht zu kommunizieren,
- sie k\u00f6nnen ein Projekt erfolgreich managen und sind in der Lage eine Arbeitsgruppe zu koordinieren,
- sie können von anderen erarbeiteten Lösungen der Fragestellung auf ihre zentralen Aspekte reduzieren und kritisch kommentieren,
- sie können zu einer durch Referate angestoßenen Diskussion durch eigene qualifizierte Beiträge beitragen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

152 Stunden

2 SWS

6 C

Lehrveranstaltung: Seminar in Finanzwirtschaft (Seminar) *Inhalte*:

Inhalt des Seminars ist die projektbezogene Erarbeitung einer Lösung für eine übergreifende, komplexe Problemstellung mit finanzwirtschaftlichem Schwerpunkt. Genaue Inhalte und Themen können von Semester zu Semester wechseln und werden zum Ende des vorangehenden Semesters bekannt gegeben.

Prüfung: Hausarbeit (max. 25 Seiten) mit Präsentation (ca. 45 Minuten) Prüfungsvorleistungen:

Aktive Teilnahme am Seminar.

Prüfungsanforderungen:

- Nachweis der Fähigkeit, eine komplexe finanzwirtschaftliche Fragestellung zu strukturieren und in verschiedene Teilfragen zu zerlegen.
- Nachweis der Fähigkeit, eigenständige Lösungen der finanzwirtschaftlichen Fragestellung zu entwickeln und umzusetzen sowie diese zu kommunizieren.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: M.WIWI-BWL.0001 Finanzwirtschaft M.WIWI-BWL.0008 Derivate
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Olaf Korn
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 3
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul M.WIWI-BWL.0008: Derivate English title: Derivatives 6 C 4 SWS

Lernziele/Kompetenzen:

Nach dem erfolgreichen Abschluss des Moduls haben die Studierenden folgende Kompetenzen erworben:

- sie besitzen vertiefte Kenntnisse über die verschiedenen Formen von Derivaten, insbesondere deren Ausgestaltung, Handel und Bedeutung,
- sie können verschiedene Bewertungsansätze für Derivate (Duplikationsprinzip, Hedgingprinzip, Risikoneutrale Bewertung) verstehen und interpretieren,
- sie verstehen die der Bewertung von Derivaten zugrundeliegende ökonomische Argumentation und sind in der Lage diese kritisch reflektierend zu bewerten,
- sie verstehen die für die Bewertung und das Risikomanagement von Derivaten erforderlichen mathematisch-statistischen Verfahren und Kennzahlten und können diese anwenden,
- sie sind in der Lage auch komplexe Derivate adäquat zu analysieren und selbständig computergestützt zu bewerten.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Derivate (Vorlesung)

Inhalte:

- 1. Einführung
- 1.1. Begriffliche Grundlagen
- 1.2. Grundidee der Derivatebewertung
- 2. Forwards und Futures
- 2.1. Arbitragefreie Terminpreise
- 2.2. Forwards versus Futures
- 3. Optionen
- 3.1. Grundlagen
- 3.2. Verteilungsfreie Wertgrenzen
- 3.3. Arbitrageorientierte Bewertung
- 4. Risikomanagement von Derivatepositionen
- 4.1. Optionssensitivitäten
- 4.2. Risikosteuerung
- 4.3. Marktfriktionen und gleichgewichtsorientierte Bewertung

2 SWS

Die Erarbeitung des Vorlesungsstoffes erfolgt z.T. im Selbststudium auf Basis von Vorlesungsaufzeichnungen.	
Lehrveranstaltung: Derivate (Übung)	2 SWS
Inhalte:	
Im Rahmen der begleitenden Übung vertiefen und erweitern die Studierenden die in der	
Vorlesung erworbenen Kenntnisse und Fähigkeiten	
Prüfung: Klausur (90 Minuten)	6 C

Prüfungsanforderungen:

- Nachweis von Kenntnissen über die Ausgestaltungsformen von Derivaten, den Derivatehandel und die Bedeutung unterschiedlicher Produkte.
- Nachweis von Kenntnissen über die verschiedenen Bewertungsansätze von Derivaten.
- Nachweis über die Fähigkeit zur kritischen Analyse von Bewertungsmodellen und ihrer Annahmen.
- Nachweis von Kenntnissen über die sich aus Bewertungsmodellen ergebenen Verfahren zum Risikomanagement von Derivaten und deren Anwendung.
- Fähigkeit zur eigenständigen komplexer Derivatepositionen und zur Ermittlung von modellbasierten Werten.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse aus finanzwirtschaftlichen Veranstaltungen im Bachelorstudium
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Olaf Korn
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

6 C Georg-August-Universität Göttingen 4 SWS Modul M.WIWI-BWL.0023: Performance Management English title: Performance Management Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Mit Abschluss haben die Studierenden die konzeptionellen Grundlagen der 56 Stunden wesentlichen Kennzahlen im Bereich der wertorientierten Unternehmensführung Selbststudium: kennengelernt. Durch die Kombination von wissenschaftlichen Kenntnissen und 124 Stunden praxisnahen Inhalten haben die Studierenden Kenntnis über die positiven und negativen Wirkungen von Instrumenten des Value Based Managements erlangt. Des Weiteren haben die Studierenden Kenntnisse über Ansätze zur Messung von Nachhaltigkeit in der Unternehmenssteuerung erworben. 2 SWS Lehrveranstaltung: Performance Management (Vorlesung) Inhalte: Die Veranstaltung befasst sich mit wesentlichen Aspekten des Performancemanagements unternehmerischer Aktivitäten mit dem Fokus auf einer wertorientierten Perspektive ergänzt durch die zunehmend wichtiger werdende Nachhaltigkeitsperspektive. Die Veranstaltung ist in fünf Hauptkapitel gegliedert. Zuerst werden Grundlagen des Management Accounting und der wertorientierten Unternehmensführung diskutiert. Auf dieser Basis werden Ansätze für die kapitalmarktund bilanzorientierte Performancemessung vorgestellt und deren Grenzen aufgezeigt. Darauffolgend werden die konzeptionellen Grundlagen eines ganzheitlichen Value Based Managements und die entsprechenden Dimensionen einer konsistenten Implementierung vorgestellt. Ein weiterer Fokus wird auf die Messung der Nachhaltigkeit im Unternehmen gelegt. Abschließend erfolgt eine Einbettung der vorgestellten Ansätze in die Ausgestaltung von Performance Management Systemen. 2 SWS Lehrveranstaltung: Performance Management (Übung) Inhalte: Die Übung dient dazu die Konzepte der wertorientierten Unternehmensführung auf praktische Fragestellungen anzuwenden, indem Übungsaufgaben gelöst und die Inhalte an praktischen Beispielen diskutiert werden. Im Sinne eines breiteren Einstiegs beginnt die Übung mit einer Abgrenzung der verschiedenen Stakeholdergruppen, um sich im Folgenden stärker auf die Shareholder-orientierten Inhalte der Unternehmensbewertung und deren Eignung für ein wertorientiertes Steuerungssystem zu diskutieren. Daraufhin werden traditionelle Kennzahlenkonzepte vorgestellt und mögliche Nachteile aufgezeigt. Auf dieser Basis werden die methodischen Grundlagen von wertorientierten Kennzahlen erörtert und deren Potentiale aufgezeigt. Den Gedanken der Stakeholder Orientierung wieder aufnehmend werden die Eigenschaften von Nachhaltigkeitskennzahlen genauer

Value Based Management diskutiert.

Prüfung: Klausur (90 Minuten)

betrachtet. Zum Abschluss wird die Eignung der ganzheitlichen Implementierung von

6 C

Nachweis von Kenntnissen der Konzepte, Dimensionen und Grenzen der Kapitalmarktund Bilanz-orientierten Performancemessung, des Value-Based Managements sowie von Nachhaltigkeitskennzahlen durch Nennen, Erläutern und Berechnen in entsprechenden Aufgaben. Außerdem das Anwenden des erworbenen Wissens auf praxisnahe Aufgabenstellungen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse in Controlling
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Michael Wolff
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul M.WIWI-BWL.0034: Logistik- und Supply Chain Management English title: Logistics and Supply Chain Management

Lernziele/Kompetenzen:

Die Studierenden:

- kennen die Teilbereiche und Funktionen der Logistik sowie des Supply Chain Managements und können diese klassifizieren,
- kennen den Begriff "Standortplanung", können dessen Teilgebiete definieren und verschiedene OR-Modelle und Verfahren zur Standortbestimmung anwenden,
- können das klassische Transportproblem erläutern und kennen dessen graphentheoretische Grundlagen,
- kennen verschiedene Lösungsalgorithmen für das Transportproblem und können diese auch auf Sonderformen des klassischen Transportproblems anwenden,
- kennen die Ausgestaltungsformen von Supply Chains und das SCOR-Modell,
- · können Produkt- und Prozessdesign voneinander abgrenzen,
- kennen mögliche Formen der Vertragsgestaltung im Supply Chain Management,
- kennen die verschiedenen Modelle der Bestellplanung und die Bestellregeln,
- · können statische Lagerhaltungsmodelle interpretieren und anwenden,
- können dynamische Modelle voneinander abgrenzen und anwenden.

Lehrveranstaltung: Logistik- und Supply Chain Management (Vorlesung)

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

138 Stunden

2 SWS

Inhalte: Inhaltlicher Schwerpunkt der Veranstaltung ist die Betrachtung der verschiedenen logistischen Strukturen und Probleme in und zwischen produzierenden Unternehmen. Dazu werden Quantitative Modelle vorgestellt und auf die Bereiche der Standortwahl, der Transportplanung, des Supply Chain Management und der Lagerhaltung	2 3003
angewendet.	
Lehrveranstaltung: Logistik- und Supply Chain Management (Übung)	1 SWS
Prüfung: Klausur (90 Minuten)	6 C
Prüfungsanforderungen:	
Die Studierenden weisen in der Prüfung Kenntnisse in den folgenden Bereichen nach:	
Grundlagen logistischer Problemstellungen	
Standortplanung	
Transportplanung	
Supply Chain Management	
Lagerhaltungsmodelle	
Anwendung der vorgestellten OR-Modelle und Algorithmen auf die	
Problemstellungen der obigen Teilbereiche	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	M.WIWI-BWL.0024 Unternehmensplanung
Sprache:	Modulverantwortliche[r]:

3	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Module M.WIWI-BWL.0133: Banking Supervision Learning outcome, core skills: After a successful completion of the course students are able to: • understand and explain how banking supervision has developed over time and how it differs across jurisdictions, • understand, explain and critically apply standard measures and methods of banking supervision, • understand and explain the Euro area banking union, • understand, explain and critically apply key concepts in banking regulation, • understand, explain and critically apply key measures and methods to assess the risks of financial institutions,	Workload: Attendance time 28 h Self-study time: 152 h
 After a successful completion of the course students are able to: understand and explain how banking supervision has developed over time and how it differs across jurisdictions, understand, explain and critically apply standard measures and methods of banking supervision, understand and explain the Euro area banking union, understand, explain and critically apply key concepts in banking regulation, understand, explain and critically apply key measures and methods to assess the 	Attendance time 28 h Self-study time:
understand and explain micro-and macroprudential supervision and their differences.	,
Course: Banking Supervision (Lecture) Contents: 1. Introduction (e.g. banking structure) 2. Foundations of banking supervision • Historical developments • Comparison across different jurisdictions	2 WLH
3. Banking Union – SSM 4. Banking Regulation	
 Basel III, CRDIV/CRR ASFR model by Gordy Further requirements on banks 	
5. SSM Guide on banking supervision	
 How is banking supervision applied? Risk Analysis Stress testing Bank Rating 	
7. Microprudential versus macroprudential supervision	
Examination: Written examination (90 minutes)	6 C

• Show an understanding of the Euro area banking union

supervision

banking regulation

• Demonstrate a profound knowledge of standard measures and methods of banking

• Demonstrate the ability to explain and to some extent to apply key concepts in

- Document the knowledge to apply key measures and methods to assess the risks of financial institutions and to interpret the obtained results appropriately
- Document an understanding of micro-and macroprudential supervision and their differences

Admission requirements: none	Recommended previous knowledge: M.WIWI-BWL.0001 Corporate Finance M.WIWI-BWL.0004 Financial Risk Management
Language: English	Person responsible for module: Dr. Philipp Koziol
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 3
Maximum number of students: not limited	

Goorg / tagaot Gint Grottat Gottingon	6 C
Module M.WIWI-BWL.0134: Panel Data Analysis in Marketing	2 WLH

Learning outcome, core skills:

Panel data refers to observations from different individuals or units (consumers, stores, products, etc.) over several time periods (days, weeks, months, etc.). After successful attendance the students will understand the methodological principles of panel data analysis, especially in the context of consumer behavior and marketing-mix models. Further, they will be able to conduct own panel data analyses using the statistical programming language R.

Workload:

Attendance time: 28 h Self-study time: 152 h

Course: Panel Data Analysis in Marketing (Lecture with exercise)

Contents:

- Introduction to R
- · Refreshment in Regression Analysis
- · Fixed Effects Models in Marketing
- · Random Effects Models in Marketing
- Dynamic Panel Models in Marketing

Examination: Term Paper (max. 6000 words)

2 WLH

6 C

Examination requirements:

A self-conducted empirical project. Students will be provided with empirical data, but are welcome to analyze own projects. Students are advised to use the statistical programming language R, but can be allowed to use different statistics software in exceptional cases.

Theoretical, methodological and empirical elaboration of a selected topic in panel data analysis with focus on consumer behavior and/or marketing-mix modeling.

	- '
Admission requirements:	Recommended previous knowledge:
none	Basics in Hypothesis testing & Regression analysis
	Previous knowledge in R is not required
Language:	Person responsible for module:
English	PD Dr. Ossama Elshiewy
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	2 - 4
Maximum number of students:	
25	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) Learning outcome, core skills: Workload: Upon completion of the module, the students have acquired the following competencies: Attendance time: 56 h • foundations and general properties of likelihood-based inference in statistics, Self-study time: bayesian approaches to statistical learning and their properties, 124 h implementation of both approaches in statistical software using appropriate numerical procedures. 2 WLH Course: Advanced Statistical Inference (Likelihood & Baye) (Lecture) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 2 WLH Course: Advanced Statistical Inference (Likelihood & Bayes) (Exercise) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 6 C Examination: Written examination (90 minutes) or oral examination (approx. 20 minutes) **Examination requirements:** The students demonstrate their general understanding of likelihood-based and Bayesian inference for different types of applications and research questions. They know about the advantages and disadvantages as well as general properties of both approaches, can critically assess the appropriateness for specific problems, and can implement them in statistical software. The exam covers contents of both the lecture and the exercise class. Admission requirements: Recommended previous knowledge: none none Person responsible for module: Language: Prof. Dr. Thomas Kneib English

Duration:

1 semester[s]

Course frequency:

every year

Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	
Additional notes and regulations: The actual examination will be published at the beginning of the semester.	

Georg-August-Universität Göttingen		6 C
Module M.WIWI-QMW.0004: Econometrics	s I	6 WLH
Learning outcome, core skills: This course enables students to approach empirical research problems within the framework of the linear regression model, including model specification and selection, estimation, inference and detection of heteroscedasticity and autocorrelation. Moreover, the students can apply the methods discussed to real economic data and problems using the statistical software package R and they are able to assess estimator properties (finite sample and asymptotic). This course enables students to access more advanced topics in econometrics.		Workload: Attendance time: 56 h Self-study time: 124 h
 Course: Econometrics I (Lecture) Contents: The lecture covers the following topics: Introduction to the basic multiple regression model, model specification, OLS estimation, prediction and model selection, Multicollinearity and partial regression. The normal linear model, including maximum likelihood and interval estimation, hypothesis testing. Asymptotic properties of the OLS and (E)GLS estimators. Generalized linear model: GLS and EGLS estimators, properties of these, heteroskedastic and autocorrelated models, testing for heteroscedasticity and autocorrelation. 		2 WLH
Course: Econometrics I (Exercise) Contents: The practical deepens the understanding of the lecture topics by applying the methods from the lecture to economic problems and data, and reviewing and intensify theoretical concepts.		2 WLH
Course: Econometrics I (Tutorial) Contents: The tutorials are small classes with max. 20 students, which give room for applying the concepts to specific problem sets and discussing questions, that students might encounter regarding the concepts addressed in the lecture and practical. A part of the tutorial are hands-on computer exercises using the software R. This enables students to conduct regression analysis in practice and prepares them for others (applied) courses.		2 WLH
Examination: Written examination (90 minutes)		6 C
Examination requirements: The students demonstrate their understanding of basic econometric concepts. They show that they can apply these concepts to real economic problems.		
Admission requirements:	Recommended previous knowle Module B.WIWI-OPH.0006: Statist module B.WIWI-OPH.0002: Mathe	ics and
Language:	Person responsible for module:	

English	Prof. Dr. Helmut Herwartz
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-QMW.0005: Econometrics II Workload: Learning outcome, core skills: As the outcome of this advanced course the students are able to Attendance time: 56 h · identify problems of estimation and inference arising due to stochastic regressors, Self-study time: • establish finite sample and asymptotic properties of estimators under the 124 h assumption that the data generating process contains stochastic regressors, • model simple univariate stationary and non-stationary time series processes, carry out and interpret test results of unit root and cointegration tests. • set up, and estimate (over-, under-) identified simultaneous equation models, · model simple multivariate time series with possible cointegration, implement estimators and analyze real world datasets with the R programming language. 2 WLH Course: Econometrics (Lecture) Contents: Stochastic regressors in linear econometric models; OLS, IV, 2SLS, GMM estimators; Dynamic linear econometric models: stationary stochastic processes, ARMA models, (testing) unit roots, (testing) cointegration, spurious regression; Simultaneous equation models: Identification, estimation (GLS, IV, 2SLS, 3SLS, ILS) Vector autoregressive and error correction models: Interpretation, estimation, inference. 2 WLH Course: Econometrics II (Exercise) Contents: Exercises deepening concepts from the lecture, and demonstrating practical applications. Simulations and data analysis exercises using the R programming language. 6 C **Examination: Written examination (90 minutes) Examination requirements:** The students demonstrate their understanding of advanced econometric concepts. They show that they can apply these concepts to real economic problems. Admission requirements: Recommended previous knowledge: Module M.WIWI-QMW.0004: Econometrics I none Language: Person responsible for module: Prof. Dr. Helmut Herwartz English Course frequency: **Duration:** each summer semester 1 semester[s]

Number of repeat examinations permitted:

Maximum number of students:

twice

not limited

Recommended semester:

2 - 3

Georg-August-Universität Göttingen		6 C 4 WLH
Module M.WIWI-QMW.0009: Introduction to Time Series Analysis		4 ***
Learning outcome, core skills: The students: I learn concepts and techniques related to the antiforecasting, gain a solid understanding of the stochastic median.		Workload: Attendance time: 56 h Self-study time: 124 h
data,learn how to analyse time series using statistica interpret the results obtained.	I software packages and how to	
Course: Introduction to Time Series Analysis (Lecture) Contents: Classical time series decomposition analysis (moving averages, transformations of time series, parametric trend estimates, seasonal and cyclic components), exponential smoothing, stochastic models for time series (multivariate normal distribution, autocovariance and autocorrelation function), stationarity, spectral analysis, general linear time series models and their properties, ARMA models, ARIMA models, ARCH and GARCH models.		2 WLH
Course: Introduction to Time Series Analysis (Tutorial) Contents: Practical and theoretical exercises covering the content of the lecture. Implementation of time series models and estimation by common statistical software (e.g. R or Matlab). Interpretation of estimation results.		2 WLH
Examination: Written examination (90 minutes)		6 C
Examination requirements: The students show their ability to analyze time series using specific statistical techniques, can derive and interpret properties of stochastic models for time series, and can decide on appropriate models for given time series data. The students are able to implement time series analyses using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercise class.		
Admission requirements: none	Recommended previous knowled B.WIWI-OPH.0006 Statistics and I QMW.0004 Econometrics I	_
Language: English	Person responsible for module: Prof. Dr. Helmut Herwartz	
Course frequency: once a year	Duration: 1 semester[s]	

Number of repeat examinations permitted:

twice

Recommended semester:

2 - 3

Maximum number of students:	
50	

Georg-August-Universität Göttingen	6 C
Module M.WIWI-QMW.0012: Multivariate Time Series Analysis	4 WLH

Learning outcome, core skills:	Workload:
The students:	Attendance time:
learn concepts and techniques related to the analysis of multivariate time series and the forecasting thereof.	56 h Self-study time: 124 h
 learn to characterize the dynamic interrelationship between the variables of dynamic systems, 	124 11
 learn to relate economic models with restrictions implied by its empirical counterpart, 	
 learn how to analyse multivariate time series using by means of statistical software packages and to interpret the results obtained. 	

Course: Multivariate Time Series Analysis (Lecture)	2 WLH
Contents:	
Vector Autoregressive and Vector Moving Average representations Model selection	
and estimation, Unit roots in vector processes, Vector autoregressive vs. vector error	
correction modeling, structural vectorautoregressions, Impulse response analysis,	
forecasting, forecast error variance decomposition	
Course: Multivariate Time Series Analysis (Tutorial)	2 WLH
Course: Multivariate Time Series Analysis (Tutorial) Contents:	2 WLH
• , , ,	2 WLH
Contents:	2 WLH
Contents: Practical and theoretical exercises covering the content of the lecture. Implementation of	2 WLH

Examination requirements:

The students show their ability to analyze systems of time series using specific statistical techniques, can derive and interpret properties of stochastic models for time series, and can decide on appropriate models for given data. The students are able to implement time series analyses using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercises.

Admission requirements:	Recommended previous knowledge:
none	B.WIWI-OPH.0006 Statistics,
	M.WIWI-QMW.0004 Econometrics I,
	M.WIWI-QMW.0009 Introduction to Time Series
	Analysis
Language:	Person responsible for module:
English	Prof. Dr. Helmut Herwartz
Course frequency:	Duration:
once a year	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:

twice	3 - 4

Georg-August-Universität Göttingen Module M.WIWI-VWL.0001: Advanced Microeconomics 6 C 4 WLH

Learning outcome, core skills:

This course covers advanced microeconomic models. In this regard students are provided with the skills required to understand these models including advanced methods of calculus and basic proof techniques. Students learn how to formalize and analyze individual decision making and strategic interactions. They will get acquainted with models of individual choice under certainty and uncertainty. Students will be able to analyze decision problems of firms. They can distinguish between partial analysis of isolated markets and a general analysis considering mutual dependencies of markets. Finally, students will be able to formalize strategic interactions and to predict their theoretical outcomes based on a variety of solution concepts.

Workload:

Attendance time: 56 h Self-study time: 124 h

Course: Advanced Microeconomics (Lecture)

Contents:

This course presents a formal treatment of microeconomic theory.

- 1. Rational choice under certainty
- 2. Consumer theory
- 3. Rational choice under uncertainty
- 4. Partial equilibrium
- 5. General equilibrium
- 6. Game theory

2 WLH

2 WLH

Course: Advanced Microeconomics (Exercise)

Examination: Written examination (90 minutes)

Contents:

The exercise deepens the understanding of concepts presented in the lecture. Students will receive problem sets, which they are requested to prepare at home. The solutions of these problem sets will be discussed in class.

6 C

Examination requirements:

- · Demonstrate the capability to understand advanced economic models
- Demonstrate the understanding of the main concepts of individual choice theory
- Apply techniques developed in the lecture and in the exercise such as the method of Lagrange multipliers or the Edgeworth Box
- Demonstrate the basic knowledge of the theory of partial and general equilibrium
- · Prove the ability to solve analytical exercises
- Find the game theoretical solutions to strategic interactions
- · Conduct advanced calculations

Admission requirements:	Recommended previous knowledge:
none	BA level microeconomics and mathematics
Language:	Person responsible for module:
English	Prof. Dr. Claudia Keser
	Prof. Marcela Ibanez Diaz

Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	

Georg-August-Universität Göttingen

Module M.WIWI-VWL.0041: Panel Data Econometrics

6 C 4 WLH

Learning outcome, core skills:

This course aims to study panel data econometric techniques in an intuitive and practical way and to provide students the skills and understanding to read and evaluate empirical literature and to carry out empirical research. The course is concerned with the application of econometric panel-data methods, including basic linear unobserved effects panel data models with exogenous and endogenous regressors; random effects and fixed effects methods for static and dynamic models and panel data methods for binary dependent variables.

Students learn basic econometric terminology and estimation and test principles for efficient inference with panel data and the potential of panel data to deal with estimation biases related to unobserved heterogeneity in individual characteristics.

Students read and understand project reports and journal articles that use the methods introduce in the course and to make use of the course content in their academic work, namely, in analyses that are part of their marter's or PhD thesis.

Workload:

Attendance time: 56 h Self-study time: 124 h

Course: Panel Data Econometrics (Lecture)

Contents:

Linear Panel Data Models

- 1. Static Linear Panel Data Models
 - 1.1 Introduction to Panel Data
 - 1.2 Assumptions
 - 1.3 Estimation and Testing
 - 1.3.1 Pooled OLS
 - 1.3.2 Random Effects Estimation
 - 1.3.3 Fixed Effects Estimation. Testing for Serial Correlation
 - 1.3.4 First-Differencing Estimation
 - 1.4. Comparison of Estimators and Testing the Assumptions
 - 1.5 Correlated Random Effects (CRE) or Mundlak's Approach
- 2. Endogeneity and Dynamics in Linear Panel Data Models
 - 2.1. Equivalence Between GMM 3SLS and Standard Estimators
 - 2.2 Chamberlain's Approach to UE Models
 - 2.3. RE and FE Instrumental Variables Methods
 - 2.4. Hausman and Taylor Models
 - 2.5. First Differencing and IV
 - 2.6. Dynamic Panel Data Models. Estimation under Sequential Exogeneity
- 3. Special Topics

2 WLH

- 3.1 Heterogeneous Panels
- 3.2 Random Trend Models
- 3.3 General Models with Specific Slopes
- 3.4 Robustness of Standard Fixed Effects Estimators
- 3.5 Testing for Correlated Random Slopes

Non-linear Panel Data Models

- 4. Panel Data Models for Discrete Variables
- 4.1 Introduction. Binary Response Panel Data Models with Strictly Exogenous Variables
 - 4.2 Linear Probability Model
 - 4.3 Fixed versus Random Effects
 - 4.4 Other issues: Endogenous explanatory variables/Selection Bias

The course is organized as a series of lectures complemented with tutorials.

Course: Panel Data Econometrics (Tutorial)	2 WLH
Contents:	
The computer software package STATA will be used for practical work.	
Examination: Written examination (120 minutes)	4 C
Examination: Term Paper (max. 10 pages, based on the tutorial)	2 C

Examination requirements:

After taking the course, students should be able to:

- formulate static and dynamic econometric models for panel data on the basis
 of economic theories, recognise the reasons why panel data is a richer data
 framework than pure cross-secton or pure time-series data,
- translate models for cross-section and for time-series into panel data models,
- use the computer software package STATA to estimate panel data models,
- estimate parameter in panel data models using real datasets and test hypotheses by using STATA,
- interpret and evaluate the results of empirical estimations of economic models, which is an important feature of the study and application of economics.

Admission requirements: none	Recommended previous knowledge: Previous knowledge of intermediate econometrics is required.
Language: English	Person responsible for module: Prof. Dr. Inmaculada Martinez-Zarzoso
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 2 - 4

Maximum number of students:	
30	

Georg-August-Universität Göttingen Module M.WIWI-VWL.0092: International Trade

6 C 4 WLH

Learning outcome, core skills:

After a successful completion of the course students have achieved following competences:

- give an overview of the core theoretical concepts explaining international trade
 patterns by means of various sources of trade flows like different technologies or
 factor endowments,
- understand and apply the concepts of comparative and absolute advantage,
- analyze the effects of international trade on the trading partners with respect to

 (i) their production and overall welfare, (ii) the reallocation of resources in the
 production process, (iii) the change in nominal factor prices, and (iv) on changes in
 the purchasing power of consumers,
- · evaluate and critically reflect the gains and losses of international trade,
- evaluate the consequences of different trade policies like tariffs and subsidies,
- understand, summarize, and critically assess recent approaches to explain international trade patterns that are observed today based on scientific publications.

Workload:

124 h

Attendance time: 56 h Self-study time:

Course: International Trade (Lecture)

Contents:

1. The Ricardian model

Mathematical and graphical analysis of the trade equilibrium in a neoclassical model explaining inter-industry trade with one production factor and (i) two goods, as well as (ii) a continuum of goods. Analysis of the trade effects on production and consumption, wages and overall welfare gains from trade.

2. The Heckscher-Ohlin model

Mathematical and graphical analysis of the trade equilibrium in a neoclassical model with two production factors. Analysis of trade effects on production and consumption, factor prices, and of distributional effects as implied by the Stolper-Samuelson Theorem. Analysis of the effects of changes in resource endowments as implied by the Rybczynski Theorem. Empirical test of the Heckscher-Ohlin model.

3. The neoclassical trade model in higher dimensions

Generalization of the Heckscher-Ohlin model to many production factors and goods by means of the Heckscher-Ohlin-Vanek model. Empirical test of Heckscher-Ohlin-Vanek model. Derivation of the specific-factors model with more production factors than goods and analysis of changes in goods prices and factor endowments.

4. Imperfect competition in international trade

Mathematical and graphical analysis of the Krugman model with increasing returns to scale and monopolistic competition as an explanation of intra-industry trade. Non-formal extensions of the Krugman model with (i) consumer CES preferences and (ii) heterogeneous technologies across firms, and the Melitz model. Formal

2 WLH

derivation of the empirical Gravity equation based on the monopolistic competition model.

5. Trade policy under perfect competition

Graphical analysis of the introduction of tariffs and quotas to the trade equilibrium under perfect competition on economic welfare. Analysis of partial and general equilibrium effects.

6. Trade policy under imperfect competition

Graphical analysis of the introduction of tariffs and quotas to the trade equilibrium under monopolistic market power on economic welfare. Formal derivation of the median voter model to analyze political decisions on the usage of trade policies.

7. Project work

Recent empirical and theoretical contributions from the academic literature on international trade within the frame of student presentations.

·	
Course: International Trade (Exercise)	2 WLH
Contents:	
In the accompanying practice session students deepen and broaden their knowledge	
from the lectures.	
Examination: Written examination (90 minutes)	6 C
Examination prerequisites:	
Presentation of a group work (approx. 20 min)	

Examination requirements:

- Demonstrate a profound knowledge of the core theoretical concepts in international trade,
- show the ability to analyze the welfare and distributional effects of international trade by means of graphical and mathematical tools,
- show the ability to analyze the effects of trade policies,
- students should be able to assess the theoretical models with respect to empirical applications.

Admission requirements:	Recommended previous knowledge:
none	Microeconomics
Language: English	Person responsible for module: Prof. Dr. Udo Kreickemeier
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	

Additional notes and regulations:

The courses "M.WIWI-VWL.0003: Reale Außenwirtschaft" and "M.WIWI-VWL.0092: International Trade" are equal. Students can conclude only one of these courses.

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-VWL.0128: Deep Determinants of Growth and Development Learning outcome, core skills: Workload: After a successful participation, students have a deeper understanding of the Attendance time: mechanisms that lead to long-run economic growth and development. They learn about 56 h the forces that are linked to economic development like demography, education, and Self-study time: fundamental determinants of economic growth like culture, institutions, geography. 124 h Course: Deep Determinants of Growth and Development (Lecture) 2 WLH Contents: In this course, we will study long-run trends in economic development. We will analyze questions such as Why are some countries richer than others? • Why is a country today richer than several generations ago? How can historical events affect the economy today? What are the mechanisms that lead to the transition from stagnation towards sustained growth? Contents: 1) (Bio-)Geography and Economic Development 2) Institutions 3) Government 4) Culture and Economic Development 5) The Deep Roots of Economic Development 6) Population and Economic Growth Economic Growth in the Very Long Run 7) Course: Deep Determinants of Growth and Development (Tutorial) 2 WLH Contents: In the accompanying tutorials, students should discuss and solve problem sets to deepen and broaden their knowledge of the topics covered in the lectures. 6 C Examination: Oral exam (ca. 20 minutes) or written exam (90 minutes) **Examination requirements:** Demonstrate: · a profound knowledge of the deep determinants of long-run development, a deep understanding of the fundamental causes and consequences of long-run economic growth, • the ability to solve problems in a verbal, graphical and analytical manner. Admission requirements: Recommended previous knowledge:

none

	Macroeconomics, Mathematics for Economists, Economic Growth, Econometrics as taught in the Bachelor courses
Language: English	Person responsible for module: Dr. Katharina Werner
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 1 - 4
Maximum number of students: not limited	

Fakultät für Biologie und Psychologie:

Nach Beschluss des Fakultätsrats der Fakultät für Biologie und Psychologie vom 09.03.2022 und 04.05.2022 sowie nach Stellungnahme des Senats vom 18.05.2022 hat das Präsidium der Georg-August-Universität Göttingen am 25.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Computational Biology and Bioinformatics" genehmigt (§ 44 Abs. 1 Satz 2; § 41 Abs. 2 Satz 2 NHG; §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II zum 01.10.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Computational Biology and Bioinformatics" (Amtliche Mitteilungen I Nr. 25/2022 S. 452)

Module

B.Bio-NF.112: Biochemie	6792
B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie	6793
B.Bio-NF.125: Zell- und Molekularbiologie der Pflanze	6794
B.Bio-NF.130: Kognitionspsychologie	6795
B.Bio.107: Statistik für Biologen	6796
B.Bio.113: Angewandte Bioinformatik	6797
B.Inf.1101: Grundlagen der Informatik und Programmierung	6798
B.Inf.1131: Data Science I: Algorithmen und Prozesse	6800
B.Inf.1209: Softwaretechnik	6801
B.Inf.1231: Infrastrukturen für Data Science	6803
B.Inf.1236: Machine Learning	6805
B.Inf.1237: Deep Learning	6806
B.Inf.1240: Visualization	6807
B.Inf.1501: Algorithmen der Bioinformatik I	6808
B.Inf.1504: Maschinelles Lernen in der Bioinformatik	6809
B.Inf.1801: Programmierkurs	6810
B.Inf.1802: Programmierpraktikum	6811
B.Inf.1842: Programmieren für Data Scientists II	6812
M.Bio.101: Allgemeine und Angewandte Mikrobiologie	6813
M.Bio.102: Molekulare Genetik und mikrobielle Zellbiologie	6815
M.Bio.105: Angewandte Bioinformatik in den Molekularen Biowissenschaften	6816
M.Bio.106: Strukturbiochemie	6818
M.Bio.107: Biochemie und Biophysik	6820
M.Bio.141: Allgemeine und Angewandte Mikrobiologie	6822
M.Bio.142: Molekulare Genetik und mikrobielle Zellbiologie	6823
M.Bio.144: Zell- und Molekularbiologie von Pflanzen-Mikroben-Interaktionen	6824
M.Bio.156: Strukturbiochemie - Schlüsselkompetenzmodul	6825
M.Bio.157: Biochemie und Biophysik - Schlüsselkompetenzmodul	6826
M.Bio.158: Enzymkatalyse und biologische Chemie - Schlüsselkompetenzmodul	6827

M.Bio.172: Molekulare Genetik und mikrobielle Zellbiologie	6828
M.Bio.176: Strukturbiochemie	6829
M.Bio.310: Systembiologie	6830
M.Bio.323: Einführung in die Bayes'sche Inferenz und Informationstheorie	6832
M.Bio.340: Bioinformatik der Systembiologie (Schlüsselkompetenzmodul)	6833
M.Bio.372: Matlab in Biopsychology and Neuroscience	6834
M.Bio.375: Neurorehabilitation Technologies: Introduction and Applications	6835
M.Biodiv.425: Evolution der Embryophyta	6837
M.Biodiv.446: Molekulare Zoologie und Insekten-Biotechnologie	6838
M.Biodiv.479: Einführung in die Phylogenomik	6840
M.Biodiv.491: "Next Generation Sequencing" in der Evolutionsbiologie	6841
M.Biodiv.600: Einführung in die Phylogenetik	6843
M.CoBi.501: Bioinformatics and its areas of application	6844
M.CoBi.502: Biology for (bio)informaticians	6845
M.CoBi.503: Advanced course in Computational Biology	6846
M.CoBi.504: Comparative and Evolutionary Genomics	6847
M.CoBi.505: Population Genomics	6849
M.Inf.1114: Algorithms on Sequences	6851
M.Inf.1142: Semantic Web	6853
M.Inf.1232: Parallel Computing	6854
M.Inf.1501: Data Mining in der Bioinformatik	6856
M.Inf.1504: Algorithmen der Bioinformatik II	6857
M.Inf.2102: Advanced Statistical Learning for Data Science	6858
M.WIWI-QMW.0001: Generalized Regression	6860
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes)	6862
M.iPAB.0003: Statistical genetics, breeding informatics and experimental design	6864
M.iPAB.0014: Data Analysis with R	6865
M.iPAB.0017: Applied Bioinformatics with R	6866
SK.Bio-NF.7001: Neurobiology	6868

Übersicht nach Modulgruppen

I. Master-Studiengang "Computational Biology and Bioinformatics"

Es müssen Module im Umfang von insgesamt 120 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Fachstudium (54 C)

Es müssen Module im Umfang von insgesamt 54 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Module, die bereits im Bachelor-Studium absolviert wurden, können nicht erneut belegt werden.

a. Brückenmodule

Je nach Vorkenntnissen muss wenigstens eines der folgenden Module im Umfang von insgesamt **10 C** absolviert werden. Hierüber entscheidet die Mentorin oder der Mentor nach Maßgabe durch die Prüfungskommission zu formulierender Grundsätze.

B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS)6798
B.Inf.1801: Programmierkurs (5 C, 3 SWS)6810
B.Inf.1802: Programmierpraktikum (5 C, 4 SWS)6811
M.CoBi.502: Biology for (bio)informaticians (10 C, 6 SWS)
b. Pflichtmodul
Es muss folgendes Modul im Umfang von 8 C erfolgreich absolviert werden:
M.CoBi.501: Bioinformatics and its areas of application (8 C, 7 SWS)
c. Wahlpflichtmodule "Bioinformatik"
Es müssen Module im Umfang von insgesamt wenigstens 24 C aus dem Wahlpflichtbereich Bioinformatik erfolgreich absolviert werden:
B.Bio.107: Statistik für Biologen (4 C, 2 SWS)
B.Bio.113: Angewandte Bioinformatik (10 C, 7 SWS)
B.Inf.1501: Algorithmen der Bioinformatik I (5 C, 4 SWS)
B.Inf.1504: Maschinelles Lernen in der Bioinformatik (5 C, 4 SWS)
M.Bio.105: Angewandte Bioinformatik in den Molekularen Biowissenschaften (12 C, 14 SWS). 6816
M.Bio.310: Systembiologie (12 C, 14 SWS)
M.Bio.323: Einführung in die Bayes'sche Inferenz und Informationstheorie (12 C, 12 SWS)6832
M.Bio.340: Bioinformatik der Systembiologie (Schlüsselkompetenzmodul) (3 C, 2 SWS) 6833
M.CoBi.504: Comparative and Evolutionary Genomics (12 C, 14 SWS)6847

M.CoBi.505: Population Genomics (6 C, 8 SWS)	6849
M.Inf.1501: Data Mining in der Bioinformatik (6 C, 4 SWS)	6856
M.Inf.1504: Algorithmen der Bioinformatik II (6 C, 4 SWS)	6857
M.iPAB.0003: Statistical genetics, breeding informatics and experimental design (6 C, 4 SWS)	6864
d. Wahlpflichtmodule "Biologie"	
Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Wahlpflichtbereich Biologie erfolgreich absolviert werden. Nach Nr. 1 Buchstabe C absolvierte Module werden erneut berücksichtigt.	
B.Bio-NF.112: Biochemie (6 C, 4 SWS)	6792
B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie (6 C, 4 SWS)	6793
B.Bio-NF.125: Zell- und Molekularbiologie der Pflanze (6 C, 4 SWS)	6794
B.Bio-NF.130: Kognitionspsychologie (3 C, 2 SWS)	6795
M.Bio.101: Allgemeine und Angewandte Mikrobiologie (12 C, 14 SWS)	6813
M.Bio.102: Molekulare Genetik und mikrobielle Zellbiologie (12 C, 14 SWS)	6815
M.Bio.105: Angewandte Bioinformatik in den Molekularen Biowissenschaften (12 C, 14 SWS). 6816
M.Bio.106: Strukturbiochemie (12 C, 14 SWS)	6818
M.Bio.107: Biochemie und Biophysik (12 C, 14 SWS)	6820
M.Bio.141: Allgemeine und Angewandte Mikrobiologie (3 C, 3 SWS)	6822
M.Bio.142: Molekulare Genetik und mikrobielle Zellbiologie (3 C, 3 SWS)	6823
M.Bio.144: Zell- und Molekularbiologie von Pflanzen-Mikroben-Interaktionen (3 C, 3 SWS)	6824
M.Bio.156: Strukturbiochemie - Schlüsselkompetenzmodul (3 C, 3 SWS)	6825
M.Bio.157: Biochemie und Biophysik - Schlüsselkompetenzmodul (3 C, 3 SWS)	6826
M.Bio.158: Enzymkatalyse und biologische Chemie - Schlüsselkompetenzmodul (3 C, 3 SWS)	6827
M.Bio.172: Molekulare Genetik und mikrobielle Zellbiologie (6 C, 4 SWS)	6828
M.Bio.176: Strukturbiochemie (6 C, 4 SWS)	6829
M.Bio.372: Matlab in Biopsychology and Neuroscience (3 C, 2 SWS)	6834
M.Bio.375: Neurorehabilitation Technologies: Introduction and Applications (2 C, 2 SWS)	6835
M.Biodiv.425: Evolution der Embryophyta (6 C, 4 SWS)	6837
M.Biodiv.446: Molekulare Zoologie und Insekten-Biotechnologie (6 C, 8 SWS)	6838
M.Biodiv.479: Einführung in die Phylogenomik (6 C, 6 SWS)	6840

	M.Biodiv.491: "Next Generation Sequencing" in der Evolutionsbiologie (6 C, 4 SWS)	.6841
	M.Biodiv.600: Einführung in die Phylogenetik (6 C, 8 SWS)	. 6843
	M.CoBi.504: Comparative and Evolutionary Genomics (12 C, 14 SWS)	.6847
	M.CoBi.505: Population Genomics (6 C, 8 SWS)	6849
	SK.Bio-NF.7001: Neurobiology (3 C, 2 SWS)	. 6868
2.	. Professionalisierungsbereich (36 C)	
	s müssen Module im Umfang von insgesamt 36 C nach Maßgabe der nachfolgenden Bestimmu folgreich absolviert werden.	ingen
	a. Pflichtmodul	
	Es muss folgendes Modul im Umfang von 12 C erfolgreich absolviert werden.	
	M.CoBi.503: Advanced course in Computational Biology (12 C)	. 6846
	b. Wahlpflichtmodule "Informatik"	
	Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Wahlpflichtbereich Informatik erfolgreich absolviert werden. Je nach vorhandenen Vorkenntnissen können in Absprache mit der Mentorin oder dem Mentor auch Module aus dem Wahlpflichtbereich Biolog oder Bioinformatik belegt werden. Nach Nr. 1 Buchstabe C absolvierte Module werden nicht e berücksichtigt.	
	B.Bio.107: Statistik für Biologen (4 C, 2 SWS)	.6796
	B.Inf.1131: Data Science I: Algorithmen und Prozesse (6 C, 4 SWS)	. 6800
	B.Inf.1209: Softwaretechnik (5 C, 3 SWS)	6801
	B.Inf.1231: Infrastrukturen für Data Science (6 C, 4 SWS)	. 6803
	B.Inf.1236: Machine Learning (6 C, 4 SWS)	. 6805
	B.Inf.1237: Deep Learning (6 C, 4 SWS)	. 6806
	B.Inf.1240: Visualization (5 C, 3 SWS)	.6807
	B.Inf.1801: Programmierkurs (5 C, 3 SWS)	6810
	B.Inf.1802: Programmierpraktikum (5 C, 4 SWS)	.6811
	B.Inf.1842: Programmieren für Data Scientists II (5 C, 3 SWS)	.6812
	M.Bio.323: Einführung in die Bayes'sche Inferenz und Informationstheorie (12 C, 12 SWS)	. 6832
	M.Inf.1114: Algorithms on Sequences (5 C, 4 SWS)	. 6851
	M.Inf.1142: Semantic Web (6 C, 4 SWS)	.6853
	M.Inf.1232: Parallel Computing (6 C, 4 SWS)	. 6854
	M.Inf.2102: Advanced Statistical Learning for Data Science (6 C, 4 SWS)	.6858

M.WIWI-QMW.0001: Generalized Regression (6 C, 4 SWS)	.6860
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) (6 C, 4 SWS)	.6862
M.iPAB.0014: Data Analysis with R (3 C, 2 SWS)	. 6865
M.iPAB.0017: Applied Bioinformatics with R (6 C, 4 SWS)	.6866

c. Fächerübergreifende Schlüsselkompetenzen

Es können Module im Umfang von bis zu **12 C** aus dem universitätsweiten Modulverzeichnis Schlüsselkompetenzen oder der Prüfungsordnung für Studienangebote der zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS) belegt werden. Die Prüfungskommission entscheidet über weitere wählbare Module, die in geeigneter Weise bekannt zu machen sind.

3. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

Georg-August-Universität Göttingen		6 C
Modul B.Bio-NF.112: Biochemie		4 SWS
English title: Biochemistry		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden erwerben Grundlegende Stoffkenn	tnisse und einen Überblick über	Präsenzzeit:
Grundprinzipien biochemischer Reaktionen sowie die	e Anwendung biochemischer	56 Stunden
Methoden. Sie erhalten Einsicht in die Grundlagen d	er Proteinchemie und der Genetik:	Selbststudium:
DNA, RNA, Enzyme, Kohlenhydrate, Lipide und Zellr	nembranen, Grundlagen des	124 Stunden
Metabolismus und Signal Transduktion.		
Lehrveranstaltung: Grundlagen der Biochemie (Vorlesung)		4 SWS
Prüfung: Klausur (90 Minuten)		
Prüfungsanforderungen:		
Grundlegende Kenntnis biochemischer Reaktionen und ihrer Komponenten, sowie		
biochemischer Methoden.		
Anabolismus und Katabolismus von Aminosäuren, Kohlenhydraten, Lipiden und		
Nukleinsäuren; Synthese, Struktur und Funktion von Makromolekülen; Erzeugung und		
Speicherung von Stoffwechselenergie		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine Biologische Grundkenntnisse		
ache: Modulverantwortliche[r]:		
Deutsch	Dr. rer. nat. Ellen Hornung	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester 1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	

3 - 5

Bemerkungen:

Maximale Studierendenzahl:

zweimalig

20

Das Modul kann nicht in Kombination mit B.Bio.112 belegt werden.

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie English title: General developmental and cell biology Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden lernen entwicklungsbiologisch relevante Aspekte der Zellbiologie, Präsenzzeit: 56 Stunden zentrale Themen der tierischen und pflanzlichen Entwicklungsbiologie, klassische und molekularbiologische Methoden der Entwicklungsbiologie und Modellorganismen Selbststudium: kennen. 124 Stunden Lehrveranstaltung: Allgemeine Entwicklungs- und Zellbiologie (Vorlesung) 4 SWS 6 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Die Studierenden sollen zu folgenden Themen Aussagen auf ihren Wahrheitsgehalt überprüfen können, stichpunktartig Fragen dazu beantworten können und die jeweiligen Grundlagen korrekt darstellen bzw. miteinander vergleichen können: Aufbau der Zelle, Zellkompartimente, Zytoskelett, Mitochondrien, Membranstruktur und transport, Zellkontakte und -kommunikation, Zellzyklus, Zellteilung, programmierter Zelltod, Kontrolle der eukaryotischen Genexpression, Allgemeine Mechanismen der Entwicklung, Keimzellen und Befruchtung, Furchung, Prinzipien der Musterbildung, Gestaltbildung, Gastrulation, Neurulation, Organogenese, Zellbewegungen, Zellformveränderungen, Methoden der experimentellen Embryologie, Methoden der Entwicklungsgenetik, Kenntnis von Modellorganismen, Achsenbildung, Segmentierungsgene, Homöotische Selektorgene, Evolutionäre Entwicklungsbiologie, Neuronale Entwicklung, Stammzellen und Regeneration, Homöostase, Krebsentstehung, Pflanzenembryogenese, Dormanz und Keimung, Lichtabhängige Entwicklung, Phytohormone, Evolution und Genetik der Blütenbildung. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Biologische Grundkenntnisse Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Ernst A. Wimmer Angebotshäufigkeit: Dauer: iedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** 3 - 5 zweimalig Maximale Studierendenzahl: 25

Das Modul kann nicht in Kombination mit B.Bio.116 belegt werden.

Bemerkungen:

Georg-August-Universität Göttingen Modul B.Bio-NF.125: Zell- und Molekularbiologie der Pflanze English title: Cell and molecular biology of plants 6 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden erhalten einen Einblick in die Besonderheiten der pflanzlichen Zelle, erlernen die Beziehung zwischen Struktur und Funktion der Organellen und der Zellwand und bekommen einen Überblick über Transportprozesse und intrazellulärer Signaltransduktion. Sie lernen die Modellpflanze Arabidopsis thaliana kennen und erwerben Kenntnisse der Biosynthese, Signaltransduktion und Wirkung von Phytohormonen sowie der molekularen Anpassungsmechanismen von Pflanzen an verschiedene abiotische und biotische Stressbedingungen. Die Studierenden erhalten einen Überblick zu den aktuellen Fakten der Phylogenie und Biotechnologie von Algen.

Arbeitsaufwand: Präsenzzeit:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Zell- und Molekularbiologie der Pflanze (Vorlesung)	4 SWS
Prüfung: Klausur (75 Minuten)	
Prüfungsanforderungen:	
Arabidopsis thaliana als Modellsystem zur Erforschung zell – und molekularbiologischer	
Prozesse, Methoden zur Erforschung zell- und molekularbiologischer Prozesse,	
Mechanismen des Transport von Proteinen in unterschiedliche Zellorganellen und in	
die Zellwand, Mechanismen pflanzlicher Signaltransduktion, Mechanismen pflanzlicher	
Immunität	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Biologische Grundkenntnisse
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christiane Gatz
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: 15	

Bemerkungen:

Das Modul kann nicht in Kombination mit B.Bio.125 belegt werden.

Georg-August-Universität Göttingen Modul B.Bio-NF.130: Kognitionspsychologie English title: Cognitive psychology

Lernziele/Kompetenzen: Im Rahmen der Vorlesung erhalten die Studierenden eine Einführung in die Kognitionsforschung. Sie besitzen nach Abschluss des Moduls Kenntnisse der zentralen 28 Stunden

Konzepte und Forschungsmethoden in diesem Bereich. Es werden Grundlagen des experimentellen Arbeitens zu einzelnen Teilbereichen menschlicher Kognition (z.B. Aufmerksamkeit, Gedächtnis, Sprache, Emotion) vermittelt. Dabei stehen neben klassischen Paradigmen und Theorien psychophysiologische Ansätze und Methoden im

62 Stunden

Selbststudium:

 Lehrveranstaltung: Kognitionspsychologie (Vorlesung)
 2 SWS

 Prüfung: Klausur (45 Minuten)
 3 C

Prüfungsanforderungen:

Mittelpunkt.

Die Studierenden sollen das in der Vorlesung vermittelte Grundwissen der Kognitionsforschung beherrschen. Sie sollen über die gelernten Fakten hinaus Zusammenhänge des Erwerbens von kognitiven Fähigkeiten, Verhaltensmustern und psychophysiologischer Korrelate höherer Hirnfunktionen verstehen, diese darstellen können und in der Lage sein, das erworbene Wissen auf neue Situationen anzuwenden.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Annekathrin Schacht
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 3
Maximale Studierendenzahl: 25	

Bemerkungen:

Das Modul kann nicht in Kombination mit B.Bio.130 belegt werden.

Maximale Studierendenzahl:

240

		1
Georg-August-Universität Göttingen	4 C 2 SWS	
Modul B.Bio.107: Statistik für Biologen	2 5005	
English title: Statistics for biologists		
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Nach erfolgreichem Absolvieren des Moduls haben o	lie Studierenden ein theoretisches	Präsenzzeit:
Verständnis der grundlegenden wahrscheinlichkeitst	heoretischen Begriffe und der	28 Stunden
elementaren Methoden der beschreibenden und sch	ließenden Statistik. Sie sind in der	Selbststudium:
Lage, selbständig einfache statistische Tests und Ab	schätzungen durchzuführen.	92 Stunden
Lehrveranstaltung: Vorlesung Statistik (Vorlesung	j)	2 SWS
Es werden die zugehörigen Übungen Statistik im Um	fang von 2 SWS empfohlen.	
Prüfung: Klausur (120 Minuten)		4 C
Prüfungsanforderungen:		
Die Studierenden sollen in der Lage sein, die in der Vorlesung behandelten statistischen		
Ansätze, Methoden und Tests in konkreten Situationen anzuwenden. Hierbei sollen sie		
einerseits in der Lage sein, in der jeweiligen Situation den passenden Test bzw. Ansatz		
zu finden, mit dem die entsprechende Frage gelöst werden kann. Andererseits sollen sie		
in der Lage sein, mit Hilfe dieses Ansatzes das gege		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine B.Mat.0811 Mathematik für Biologe		en
Sprache: Modulverantwortliche[r]:		
Deutsch Prof. Dr. Michael Wibral		
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester	1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig	2	
l .	i	

Georg-August-Universität Göttingen Modul B.Bio.113: Angewandte Bioinformatik English title: Applied bioinformatics

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden die meisten in der biowissenschaftlichen Forschung benötigten Datenbanken in ihrem Aufbau verstanden und können deren Inhalte kritisch einschätzen. Sie haben die Fähigkeit erworben, selbst biologische Fakten zu strukturieren und in ein Datenbankschema zu übertragen. Sie sind in der Lage, bioinformatische Methoden insbesondere auf die Analyse von Sequenzdaten, biologischen Netzwerken und Genexpressionsdaten kritisch anzuwenden. Sie besitzen die Fähigkeit, grundlegende biologische Prozesse in einem mathematischen Formalismus/Modell zu beschreiben und diese Modelle in gängiger Standardsoftware (R) anzuwenden.

Arbeitsaufwand:

Präsenzzeit: 98 Stunden Selbststudium: 202 Stunden

4 SWS

Lehrveranstaltung: Einführung in die angewandte Bioinformatik (Vorlesung)

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

regelmäßige Teilnahme an den praktischen Übungen und erfolgreiches Absolvieren von drei Übungszetteln

Prüfungsanforderungen:

Identifizierung und Benennung geeigneter Informationsquellen für bestimmte Wissensbereiche im Internet; Darstellung der Grundlagen für ein einfaches Datenbankschema und exemplarische Entwicklung eines solchen Schemas; Benennung und Anwendung von Maßzahlen zur kritischen Bewertung von bioinformatischen Analyseverfahren; Kennen verschiedener grundlegender Methoden des Sequenzvergleichs; Anwendung einzelner Verfahren zur phylogenetischen Rekonstruktion sowie des Informationsbegriffs bei der Analyse von Sequenzdaten; Wiedergabe und Anwendung grundlegender Eigenschaften biologischer Netzwerke und ihrer graphentheoretischen Repräsentation

3 SWS

Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Tim Beißbarth
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl:	

Lehrveranstaltung: Internet-basierte Bioinformatik (Übung)

Georg-August-Universität Göttingen

Modul B.Inf.1101: Grundlagen der Informatik und Programmierung

English title: Introduction to Computer Science and Programming

10 C 6 SWS

Lernziele/Kompetenzen:

Studierende

- kennen grundlegende Begriffe, Prinzipien und Herangehensweisen der Informatik, kennen einige Programmierparadigmen und Grundzüge der Objektorientierung.
- erlangen elementare Grundkenntnisse der Aussagenlogik, verstehen die Bedeutung für Programmsteuerung und Informationsdarstellung und können sie in einfachen Situationen anwenden.
- verstehen wesentliche Funktionsprinzipien von Computern und der Informationsdarstellung und deren Konsequenzen für die Programmierung.
- erlernen die Grundlagen einer Programmiersprache und können einfache Algorithmen in dieser Sprache codieren.
- kennen einfache Datenstrukturen und ihre Eignung in typischen Anwendungssituationen, können diese programmtechnisch implementieren.
- analysieren die Korrektheit einfacher Algorithmen und bewerten einfache Algorithmen und Probleme nach ihrem Ressourcenbedarf.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

216 Stunden

6 SWS

10 C

Lehrveranstaltung: Informatik I (Vorlesung, Übung)

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen:

Nachweis von 50% der in den Übungsaufgaben erreichbaren Punkte. Kontinuierliche Teilnahme an den Übungen.

Prüfungsanforderungen:

In der Prüfung wird das Verständnis der vermittelten Grundbegriffe sowie die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Kenntnis von Grundbegriffen nachweisen durch Umschreibung in eigenen Worten.
- Standards der Informationsdarstellung in konkreter Situation umsetzen.
- Ausdrücke auswerten oder Bedingungen als logische Ausdrücke formulieren usw.
- Programmablauf auf gegebenen Daten geeignet darstellen.
- Programmcode auch in nicht offensichtlichen Situationen verstehen.
- Fehler im Programmcode erkennen/korrigieren/klassifizieren.
- Datenstrukturen für einfache Anwendungssituationen auswählen bzw. geeignet in einem Kontext verwenden.
- Algorithmen für einfache Probleme auswählen und beschreiben (ggf. nach Hinweisen) und/oder einen vorgegebenen Algorithmus (ggf. fragmentarisch) programmieren bzw. ergänzen.
- einfache Algorithmen/Programme nach Ressourcenbedarf analysieren.
- einfachsten Programmcode auf Korrektheit analysieren.
- einfache Anwendungssituation geeignet durch Modul- oder Klassenschnittstellen modellieren.

Empfohlene Vorkenntnisse:

Zugangsvoraussetzungen:

keine	keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Carsten Damm
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab bis
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen Modul B.Inf.1131: Data Science I: Algorithmen und Prozesse English title: Data Science I: Algorithms and Processes

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 56 Stunden • kennen die Phasen von Data Science Projekten und können diese definieren. Selbststudium: • kennen die Rollen die typischerweise in Data Science Projekten involviert sind. 124 Stunden • wissen was Regressionsprobleme sind und kennen verschiedene Modelle und Algorithmen zum Lösen von Regressionsproblemen. • wissen was Klassifikationsprobleme sind und kennen verschiedene Modelle und Algorithmen zur Klassifikationsproblemen. · wissen was Clustern ist und kennen verschiedene Modelle und Algorithmen zum Clustern von Daten. · wissen was Assoziationsregeln sind und kennen mindestens einen Algorithmus um Assoziationsregeln zu bestimmen. • kennen verschiedene Verfahren und Metriken zur Schätzung der Performanz von Modellen.

Lehrveranstaltung: Data Science I: Algorithmen und Prozesse (Vorlesung, Übung)	4 SWS
Prüfung: Klausur oder mündliche Prüfung Klausur (90 Min.) oder mündliche	6 C
Prüfung (ca. 20 Min.)	
Prüfungsanforderungen:	
Definition des Prozesses von Data Science Projekten, Definition der Rollen in	
Data Science Projekten, Definition und Kenntnis von Klassifikationsalgorithmen,	
Definition und Kenntnis von Regressionsalgorithmen, Definition und Kenntnis von	
Assoziationsregeln, Definition und Kenntnis von Clustering, Kenntnis von Verfahren und	
Metriken zu Performanzschätzung von Modellen.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101, B.Inf.1102
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Fabian Sinz
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

coorg / tagact crittorollar collinger	5 C
Modul B.Inf.1209: Softwaretechnik	3 SWS
English title: Software Engineering	

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 42 Stunden • kennen Geschichte, Definition, Aufgaben und Wissensgebiete der Selbststudium: Softwaretechnik. 108 Stunden • wissen was ein Softwareprojekt ist, welche Personen und Rollen in Softwareprojekten ausgefüllt werden müssen und wie Softwareprojekte in Unternehmensstrukturen eingebettet werden können. · kennen unterschiedliche Vorgehens- und Prozessmodelle der Softwaretechnik, · kennen deren Vor- und Nachteile und wissen wie die Qualität von Softwareentwicklungsprozessen bewertet werden können. • kennen verschiedene Methoden der Kosten- und Aufwandsschätzung für Softwareprojekte. • kennen die Prinzipien und verschiedene Verfahren für die Anforderungsanalyse für Softwareprojekte. • kennen die Prinzipien und mindestens eine Vorgehensweise für den Software Entwurf. · kennen die Prinzipien der Software Implementierung. • kennen die grundlegenden Methoden für die Software Qualitätssicherung.

Lehrveranstaltung: Softwaretechnik (Vorlesung, Übung) Inhalte: Software-Qualitätsmerkmale, Projekte, Vorgehensmodelle, Requirements-Engineering, Machbarkeitsstudie, Analyse, Entwurf, Implementierung, Qualitätssicherung	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
B.Inf.1209.Ue: Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe	
(Präsentation und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den	
Übungen.	
Prüfungsanforderungen:	
Definition und Aufgaben der Softwaretechnik, Definition Softwareprojekt,	
Personen und Rollen in Softwareprojekten, Einbettung von Softwareprojekten in	
Unternehmensstrukturen, Vorgehens- und Prozessmodelle und deren Bewertung,	
Aufwands- und Kostenabschätzung, Anforderungsanalyse, Design, Implementierung	
und Qualitätssicherung	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1801, B.Inf.1802
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Jens Grabowski
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Module B.Inf.1231: Infrastructures of Data Science

Learning outcome, core skills:

Upon completion the course, students

- understand the basic functions of data science infrastructures and their significance.
- · understand basic data types and their specifics.
- understand the most important technical infrastructures for storing and processing data locally and in the cloud as well as their advantages and disadvantages in relation to data science applications.
- can apply the concept of the data lake to basic data science problems.
- are able to apply the different steps of data pre-processing to selected data sets.
- can identify the characteristics of time series and graph data and are able to recall the functions of DBMSs designed for their processing.
- can present the basic tasks of data analysis platforms and can describe them using examples.
- can apply methods and tools for the presentation and visualisation of data.
- can model basic data science workflows and are able to transfer their knowledge to basic data science projects.

Workload:

Attendance time:

56 h

Self-study time:

124 h

Course: Infrastructures of Data Science (Lecture, Exercise)

Contents:

- · Data types and their characteristics
- · Common functions of data science infrastructures
- · Storage, compute, and cloud infrastructures for data science
- · Concept of a data lake
- · Data pre-processing methods and selected tools
- Time series and graph data, the respective DBMS, and query languages
- · Data analytics platforms
- · Data presentation and visualization
- · Data science workflows and selected infrastructure components

4 WLH

Examination: In-class, written exam (90 min) or oral exam (approx. 30 min.)

Examination prerequisites:

Students complete 50% of the homework exercises.

Examination requirements:

Through the examination students demonstrate that they are able to describe basic functions of (cloud-based) data science infrastructures as well as to specify and identify basic data types. Students can also prove their understanding of data lakes and can apply their knowledge of MapReduce and Hadoop in that particular context. They can analyse basic data pre-processing problems and sketch common solutions. Student can show that they understand time series and graph data as well as the corresponding DBMS and that they can present common tasks of data analysis platforms. Through the examination, students also demonstrate their ability to select appropriate methods for visualising data and show that they are able to create basic data science workflows.

6 C

Admission requirements: none	Recommended previous knowledge: Python and basic database knowledge (recommended, not mandatory)
Language: English	Person responsible for module: HonProf. Dr. Philipp Wieder
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: Bachelor: 3 - 6; Master: 1 - 2
Maximum number of students: 50	

Georg-August-Universität Göttingen	6 C
Module B.Inf.1236: Machine Learning	4 WLH

Module B.Int.1236: Machine Learning	
Learning outcome, core skills: Students • learn concepts and techniques of machine learning and understand their advantages and disadvantages compared with alternative approaches • learn techniques of supervised learning for classification and regression • learn techniques of unsupervised learning for density estimation, dimensionality reduction and clustering • implement machine learning algorithms like linear regression, logistic regression, kernel methods, tree-based methods, neural networks, principal component analysis, k-means and Gaussian mixture models • solve practical data science problems using machine learning methods	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Machine Learning (Lecture) Bishop: Pattern recognition and machine learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1236.Ex: At least 50% of homework exercises solved. Examination requirements: Knowledge of the working principles, advantages and disadvantages of the machine learning methods covered in the lecture	6 C
Course: Machine Learning - Exercise (Exercise)	2 WLH

Admission requirements:	Recommended previous knowledge: Knowledge of basic linear algebra and probability
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4
Maximum number of students: 100	

Georg-August-Universität Göttingen	6 C 4 WLH
Module B.Inf.1237: Deep Learning	4 VVLF1

Module B.Inf.1237: Deep Learning	7 ***
Learning outcome, core skills: Students • learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches • learn to solve practical data science problems using deep learning • implement deep learning techniques like multi-layer perceptrons, convolutional neural nerworks, recurrent neural networks, deep reinforcement learning • learn techniques for optimization and regularization of deep neural networks	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Deep Learning (Lecture) Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1237.Ex: At least 50% of homework exercises solved. Examination requirements: Knowledge of basic deep learning techniques, their advantages and disadvantages and approaches to optimization and regularization. Ability to implement these techniques.	6 C
	T

		\equiv
Course: Deep Learning - Exercise (Exercise)	2 WLH	

Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent
Language: English Course frequency:	Person responsible for module: Prof. Dr. Alexander Ecker Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 5
Maximum number of students: 100	

Soor g / tagast Sint Stonat Sottings:	5 C
Module B.Inf.1240: Visualization	3 WLH

Learning outcome, core skills: Workload: Knowledge of Attendance time: 42 h • the potentials and limitations of data visualization Self-study time: • the fundamentals of visual perception and cognition and their implications for data 108 h visualization. Students can apply these to the design of visualizations and detect manipulative design choices • a broad variety of techniques for visual representation of data, including abstract and high-dimensional data. Students can select appropriate methods on new problems • integration of visualization into the data analysis process, algorithmic generation and interactive methods

Course: Visualization (Lecture, Exercise)	3 WLH
Examination: Practical project (2-3 weeks) with presentation and questions during	5 C
oral exam in groups (approx. 20 minutes per examinee).	
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of potentials and limitations of data visualization, fundamentals of visual	
perception and their implications for good design choices, techniques for visual	
representation and how to use them.	

Admission requirements:	Recommended previous knowledge: Basic linear algebra and programming skills
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 3 - 6
Maximum number of students: 50	

20

Georg-August-Universität Göttingen	ormotik l	5 C 4 SWS
Modul B.Inf.1501: Algorithmen der Bioinf English title: Algorithms in Bioinformatics I	omiauk i	
Lernziele/Kompetenzen: Die Studierenden sollen die Spezifik der Modellbildur Bioinformatik kennen- und verstehen lernen. Ausgeh Fragestellungen sollen Entwurf und Anwendung gee werden.	end von konkreten biologischen	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Algorithmen der Bioinformatik I (Vorlesung, Übung)		4 SWS
Prüfung: Mündlich (ca. 20 Minuten) Prüfungsanforderungen: Die Studierenden sollen die Spezifik der Modellbildung und der Algorithmik in der Bioinformatik kennen und verstehen. Ausgehend von konkreten biologischen Fragestellungen sollen die Studierenden die Fähigkeit haben, geeignete Algorithmen zu entwerfen und anzuwenden.		5 C
Zugangsvoraussetzungen: B.Bio-NF.117: Genomanalyse	Empfohlene Vorkenntnisse: Biologische und mathematische Grundkenntnisse	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Inf.1504: Maschinelles Lernen in der Bioinformatik English title: Maschine Learning in Bioinformatics		5 C 4 SWS
Lernziele/Kompetenzen: Es sollen grundlegende Konzepte das maschinellen Lernens anschaulich vermittelt werden. Ziel ist das Verständnis der statistischen Voraussetzungen und der algorithmischen Umsetzung von maschinellen Lernverfahren. Dabei soll sowohl eine formale Beschreibung als auch die Implementation von einzelnen Methoden praktisch nachvollzogen werden können. Die Anwendungsmöglichkeiten der Methoden sollen vornehmlich im Kontext von mehrdimensionalen biomedizinschen Daten diskutiert und erprobt werden.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Maschinelles Lernen (Vorlesung, Übung)		4 SWS
Prüfung: Mündlich (ca. 20 Minuten)		5 C
Prüfungsanforderungen: Die Studierenden können Konzepte des Maschinellen Lernens selbständig verstehen und anwenden.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Biologische und mathematische Grundkenntnisse	
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Peter Meinicke	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5	
Maximale Studierendenzahl:		

15

5 C Georg-August-Universität Göttingen 3 SWS Modul B.Inf.1801: Programmierkurs English title: Programming

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen eine aktuelle Programmiersprache, sie Präsenzzeit: 42 Stunden • beherrschen den Einsatz von Editor, Compiler und weiteren Selbststudium: Programmierwerkzeugen (z.B. Build-Management-Tools). 108 Stunden • kennen grundlegende Techniken des Programmentwurfs und können diese anwenden. • kennen Standarddatentypen (z.B. für ganze Zahlen und Zeichen) und spezielle Datentypen (z.B. Felder und Strukturen). • kennen die Operatoren der Sprache und können damit gültige Ausdrücke bilden und verwenden. • kennen die Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) und können diese anwenden. • kennen die Möglichkeiten zur Strukturierung von Programmen (z.B. Funktionen und Module) und können diese einsetzen. kennen die Techniken zur Speicherverwaltung und können diese verwenden. • kennen die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und Gleitkommarithmetik) und können diese beim Programmentwurf berücksichtigen.

Lehrveranstaltung: Grundlagen der C-Programmierung (Blockveranstaltung)	3 SWS
Prüfung: Klausur (90 Minuten), unbenotet	5 C
Prüfungsanforderungen:	
Standarddatentypen, Konstanten, Variablen, Operatoren, Ausdrücke, Anweisungen,	
Kontrollstrukturen zur Steuerung des Programmablaufs, Strings, Felder, Strukturen,	
Zeiger, Funktionen, Speicherverwaltung, Rechnerarithmetik, Ein-/Ausgabe, Module,	
Standardbibliothek, Präprozessor, Compiler, Linker	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 120	

• kennen die Programmbibliotheken und können diese einsetzen.

Georg-August-Universität Göttingen Modul B.Inf.1802: Programmierpraktikum English title: Training in Programming

Lernziele/Kompetenzen:

Die Studierenden erlernen eine objektorientierte Programmiersprache, sie

- kennen die gängigen Programmierwerkzeuge (Compiler, Build-Management-Tools) und können diese benutzen.
- kennen die Grundsätze und Techniken des objektorientierten Programmentwurfs (z.B. Klassen, Objekte, Kapselung, Vererbung, Polymorphismus) und können diese anwenden.
- kennen eine Auswahl der zur Verfügung stehenden Application Programming Interfaces (APIs) (z.B. Collections-, Grafik-, Thread-API)
- können Dokumentationskommentare benutzen und kennen die Werkzeuge zur Generierung von API-Dokumentation.
- kennen Techniken und Werkzeuge zur Versionskontrolle und können diese anwenden.
- können Programme erstellen, die konkrete Anforderungen erfüllen, und deren Korrektheit durch geeignete Testläufe überprüfen.
- kennen die Prinzipien und Methoden der projektbasierten Teamarbeit und können diese umsetzen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

94 Stunden

Lehrveranstaltung: Programmierpraktikum (Praktikum, Vorlesung)	
Prüfung: Projektarbeit (4-6 Wochen) und mündliche Prüfung (ca. 20 Minuten je zu	5 C
prüfender Person) als Gruppenprüfung	
Prüfungsvorleistungen:	
B.Inf.1802.Ue: Lösung von 50% der Programmieraufgaben.	
Prüfungsanforderungen:	
Klassen, Objekte, Schnittstellen, Vererbung, Packete, Exceptions, Collections,	
Typisierung, Grafik, Threads, Thread-Synchronisation, Prozess-Kommunikation,	
Dokumentation, Archive, Versionskontrolle	

Zugangsvoraussetzungen: B.Inf.1101	Empfohlene Vorkenntnisse: B.Inf.1801
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul B.Inf.1842: Programmieren für Data Scientists II English title: Programming for Data Scientists II

Lernziele/Kompetenzen: Die Studierenden erlernen eine aktuelle Programmiersprache, sie • beherrschen den Zugriff auf Daten aus verschiedenen Quellen, unter anderem aus lokalen Dateien und aus Datenbanken. • kennen Programmbibliotheken zum machinellen Lernen und können diese anwenden um Modelle zu trainieren und auszuwerten. • kennen Programmbibliotheken zu statistischen Tests und können diese anwenden. • kennen Programmbibliotheken zur Visualisierung und können einfache Ergebnisgrafiken erstellen.

Lehrveranstaltung: Programmierpraktikum für Data Scientists (Praktikum, Vorlesung)	3 SWS
Prüfung: Mündlich (ca. 20 Minuten), unbenotet	5 C
Prüfungsvorleistungen:	
Lösung von 50% der Programmieraufgaben und die erfolgreiche Teilnahme an einer	
großen Gruppenaufgabe	
Prüfungsanforderungen:	
Kenntnis der Syntax und Semantik der Programmiersprache, Kenntnis von Bibliotheken	
und Befehlen zum maschinellen Lernen, statistischen Tests und zur Visualisierung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1841
Sprache: Deutsch	Modulverantwortliche[r]: N.N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen 12 C **14 SWS** Modul M.Bio.101: Allgemeine und Angewandte Mikrobiologie English title: General and applied microbiology Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Lernziele: Evolution und phylogenetisches System, Morphologie und Zellbiologie, Lebensgemeinschaften und symbiontische Beziehungen der Bakterien und Archaeen; 196 Stunden Genexpression und molekulare Kontrolle (Transkription, Translation); Posttranslationale Selbststudium: 164 Stunden Kontrolle, Proteinstabilität und Proteomics; Genetische Netzwerke; Molekulare Schalter und Signaltransduktion; mikrobielle Entwicklungsbiologie; Pathogenitätsmechanismen der wichtigsten Krankheitserreger; Entwicklung neuer antimikrobieller Wirkstoffe; die Vielfalt des Stoffwechsels in Bakterien und Archaeen als Grundlage für biotechnologische Anwendungen; industrielle Mikrobiologie. Erlernen der molekularbiologischen, genetischen, und biochemischen Manipulationsund Untersuchungstechniken für die in den beteiligten Abteilungen verwendeten Modellorganismen anhand von Versuchen aus den Arbeitsgebieten der einzelnen Forschergruppen, darunter Strukturelle Analyse und Klassifizierung von Bakterien, Transformation, DNA-Isolation, DNA-Sequenzanalyse, diagnostische und Real time-PCR, Fluoreszenzmikroskopie, Enzymtests, Klonierung, Proteinaufreinigung. Kompetenzen: Kenntnis biotechnologisch und medizinisch relevanter Mikroorganismen, Fähigkeit, diese Organismen zu identifizieren und mit molekularen Methoden zu untersuchen. Selbstständiges Aneignen von Fachwissen und kritisches Auseinandersetzen mit aktuellen Themen der Mikrobiologie aus Publikationen. Lehrveranstaltung: Allgemeine und Angewandte Mikrobiologie (Vorlesung) 3 SWS Prüfung: Klausur zum Inhalt der Vorlesung (90 Minuten) [90% der Gesamtnote] und Seminarvortrag (ca. 15 Minuten) [10% der Gesamtnote] Prüfungsvorleistungen: regelmäßige Teilnahme an Seminar und Praktikum; testiertes Praktikumsprotokoll (max. 10 Seiten) Lehrveranstaltung: Allgemeine und Angewandte Mikrobiologie (Seminar) 1 SWS Lehrveranstaltung: Isolation und Charakterisierung biotechnologisch relevanter Mikroorganismen (Laborpraktikum) oder 10 SWS Lehrveranstaltung: Signalübertragung in Bakterien (Laborpraktikum) Prüfungsanforderungen: Kenntnisse in Zellbiologie, Biochemie und Genetik prokaryotischer Mikroorganismen sowie detaillierte Kenntniss molekularbiologischer, genetischer und biochemischer Methoden zur Analyse prokaryotischer Mikoorganismen. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen:

keine

Kann nicht in Kombination mit Schlüsselkompetenzmodul M.Bio.141 belegt werden.	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Jörg Stülke
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 48	

out graduat out of the graduat out the gradual out the gradu		12 C
Modul M.Bio.102: Molekulare Genetik und English title: Molecular genetics and microbial cell bio	14 SWS	
Lernziele/Kompetenzen: Vertiefte Kenntnisse der Molekularen Genetik und mikrobiellen Zellbiologie an Fallbeispielen von Modellsystemen der molekularen Mykologie (Hefen und filamentöse Pilze). Einarbeitung in ein Thema bis auf die "Review"-Ebene. Praktikum: Forschungs- und Projekt-orientiertes Erlernen molekularbiologischer, genetischer, biochemischer und zellbiologischer Methoden in den beteiligten Abteilungen in kleinen Gruppen.		Arbeitsaufwand: Präsenzzeit: 196 Stunden Selbststudium: 164 Stunden
Lehrveranstaltung: Molekulare Genetik und mikrobielle Zellbiologie (Vorlesung)		3 SWS
Lehrveranstaltung: Molekulare Genetik und mikrobielle Zellbiologie (Seminar)		1 SWS
Lehrveranstaltung: Genetik/Zellbiologie (Laborpraktikum)		10 SWS
Prüfung: Klausur zum Inhalt der Vorlesung (90 Minuten) [80% der Gesamtnote]; Seminarvortrag (ca. 15 Minuten) und Protokoll (max. 10 Seiten) [20% der Gesamtnote] Prüfungsvorleistungen: regelmäßige Teilnahme an Seminar und Praktikum, testiertes Praktikumsprotokoll		
Prüfungsanforderungen: Kenntnisse in Zellbiologie, Biochemie und Genetik eukaryotischer Mikroorganismen und in molekularbiologischen, genetischen, zellbiologischen und biochemischen Methoden für eukaryotische Mikroorgansimen. Detaillierte Analyse von Experimenten und deren Darstellung. Fähigkeit, wissenschaftliche Publikationen reflektierend zu präsentieren.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit Schlüsselkompetenzmodul M.Bio.142 belegt werden.	Empfohlene Vorkenntnisse: Watson, Molecular Biology of Pearson, 7th Edition; Alberts, Molecular Biology of 5th Edition	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Gerhard Braus	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 24		

Georg-August-Universität Göttingen Modul M.Bio.105: Angewandte Bioinformatik in den Molekularen Biowissenschaften English title: Applied bioinformatics in molecular biosciences

Lernziele/Kompetenzen:

Die Studierenden setzen sich mit Programmen und Datenbanken zur datengetriebenen Omics-basierten Forschung auseinander, die es ermöglichen, wichtige Fragestellungen der modernen Biologie zu bearbeiten. Besondere inhaltliche Schwerpunkte sind:

- Die Anwendung der Bioinformatik in der molekularen Phylogenie, Evolution, Genomdynamik und (Meta)Omics
- Bioinformatische Analysen von RNAs und Proteinen
- · Motiverkennung und Genidentifizierung
- Erstellung und Bearbeitung von Stoffwechselmodellen und -netzwerken

Im Mittelpunkt steht die Analyse, Visualisierung und Integration der großen Datenmengen, die Omics- Technologien (z.B. Genomik, Transkriptomik, Proteomik, und Metabolomik) generieren und die Grundlagen für ein systembiologisches Verständnis von Organismen und Gemeinschaften bilden.

Arbeitsaufwand:

Präsenzzeit: 196 Stunden Selbststudium: 164 Stunden

Lehrveranstaltung: Angewandte Bioinformatik in den molekularen Biowissenschaften (Praktikum)	10 SWS
Lehrveranstaltung: Angewandte Bioinformatik in den molekularen Biowissenschaften (Vorlesung)	3 SWS
Lehrveranstaltung: Angewandte Bioinformatik (Seminar)	1 SWS
Prüfung: Präsentation (ca. 30 Minuten) zu Methoden und Ergebnissen des	12 C
Praktikums [80% der Gesmatnote] und Seminarvortrag (ca. 15 Minuten) [20% der	
Gesamtnote]	
Prüfungsvorleistungen:	
regelmäßige Teilnahme, testiertes Protokoll oder Manuskript	
Prüfungsanforderungen:	
Kenntnisse in Anwendungen bioinformatischer Methoden mit Schwerpunkten	
in (Meta)Omics basierten Analysen, Motiverkennung und Modellierung von	
Stoffwechselleistungen. Fähigkeit, wissenschaftliche Publikationen reflektierend zu	
präsentieren.	

Zugangsvoraussetzungen: Linux-Kenntnisse, B.Bio-NF117 oder vergleichbares	Empfohlene Vorkenntnisse: Python und R-Kenntnisse
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Rolf Daniel
Angebotshäufigkeit:	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Maximale Studierendenzahl:	
12	

Georg-August-Universität Göttingen		12 C 14 SWS	
Modul M.Bio.106: Strukturbiochemie		14 300	
English title: Structural biochemistry			
Lernziele/Kompetenzen: Methoden der Strukturbiochemie, Struktur und Funktion von biologischen Makromolekülen. Struktur und Faltung von Proteinen, Struktur-Funktionsbeziehungen, Protein-Protein- und Protein-Nukleinsäure-Komplexe, Struktur-basiertes Wirkstoff-Design, Prinzipien molekularer Erkennung. Umgang mit "state of the art" Geräten, kritisches Auseinandersetzen mit aktuellen Themen der Biochemie, detaillierte Analyse von Experimenten und deren Darstellung. Selbstständiges Aneignen von Fachwissen aus Publikationen.		Arbeitsaufwand: Präsenzzeit: 196 Stunden Selbststudium: 164 Stunden	
Lehrveranstaltung: Strukturbiochemie (Vorlesung)		3 SWS	
, , ,		12 C	
Lehrveranstaltung: Strukturbiochemie (Seminar)		1 SWS	
Lehrveranstaltung: Strukturbiologie (Laborpraktikum) Inhalte: Präparation rekombinanter Proteine mittels Affinitäts-, Ionenaustauscher und Gelfiltrations-Chromatografie sowie Ultrazentrifugation, Charakterisierung rekombinanter Proteine und makromolekularer Komplexe (Gelelektrophorese, spektroskopische Methoden), biochemische Analyse von Protein-RNA Komplexen, Kristallisation von Proteinen. Strukturaufklärung biologischer Makromoleku¿le mittels Röntgenkristallografie und Cryo-Elektronen-mikroskopie. Studien zur Dynamik und Funktion makromolekularer Maschinen.		10 SWS	
Prüfungsanforderungen: Kenntnisse von strukturbiochemischen Grundlagen. Kenntnisse über biochemische und analytische Methoden zur Untersuchung von Proteinen und makromolekularen Komplexen. Kenntnisse über ausgewählte Proteine und Proteinkomplexe. Kenntnisse über Grundlagen der Strukturbestimmung und strukturellen Eigenschaften von Proteinen und Nukleinsäuren. Detaillierte Analyse von Experimenten und deren Darstellung. Fähigkeit, wissenschaftliche Publikationen reflektierend zu präsentieren.			
Zugangsvoraussetzungen: Kann nicht in Kombination mit den Schlüsselkompetenzmodulen M.Bio.156 und M.Bio.166 belegt werden. Empfohlene Vorkenntnisse: keine			
Sprache:	Modulverantwortliche[r]:		

Englisch	Prof. Dr. Ralf Ficner
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen		12 C 14 SWS	
Modul M.Bio.107: Biochemie und Biophysik		14 000	
English title: Biochemistry and biophysics			
Lernziele/Kompetenzen: Molekulare Biochemie und Biophysik verschiedener Biomolekülklassen, Funktion des pflanzlichen Primär- und Sekundärstoffwechsels, Lipidstoffwechsel, Lipide als Signalmoleküle sowie sekundäre Metabolite und biotechnologische Nutzung und Änderung von Speicherstoffen, Enzyme des Lipidstoffwechsels, moderne biophysikalische Methoden zur Analyse von Biomolekülen. Umgang mit "state of the art" Geräten, kritisches Auseinandersetzen mit aktuellen Themen der Biochemie, detaillierte Analyse von Experimenten und deren Darstellung. Selbstständiges Aneignen von Fachwissen aus Publikationen.		Arbeitsaufwand: Präsenzzeit: 196 Stunden Selbststudium: 164 Stunden	
Lehrveranstaltung: Biochemie und Biophysik (Vor	lesung)	3 SWS	
Prüfung: Klausur zum Inhalt der Vorlesung (90 Minuten) [80% der Gesamtnote] und Protokoll (max. 20 Seiten) [20% der Gesamtnote] Prüfungsvorleistungen: regelmäßige Teilnahme am Praktikum und testiertes Protokoll		12 C	
Lehrveranstaltung: Biochemie und Biophysik (Tutorium)		1 SWS	
Lehrveranstaltung: Methodenkurs: Biochemie und Biophysik (Laborpraktikum) Inhalte: Biochemische Analyse von Sekundärmetaboliten, Lipiden, Proteinen und Nukleinsäuren mit Hilfe von photometrischen Tests, Elektrophorese, Dünnschichtchromatografie sowie mit vollautomatischen Analysegeräten (HPLC/GC/GCMS). Spektroskopie an Biomolekülen (Fluoreszenz, FT-IR, CD, UV/Vis), moderne mikroskopische Verfahren (optische Mikroskopie, Rastersondenverfahren), Funktionsanalysen verschiedener Klassen von Membranproteinen.		10 SWS	
Prüfungsanforderungen: Kenntnisse über biochemische Grundlagen verschiedener Biomolekülklassen und deren Metabolismus; Kenntnisse in Molekülspektroskopie sowie Einblicke in biotechnologische Verfahren unter Verwendung von Pflanzen; Detaillierte Analyse von Experimenten und deren Darstellung			
Zugangsvoraussetzungen: Kann nicht in Kombination mit M.Bio.157 belegt werden. Empfohlene Vorkenntnisse: keine			
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Ivo Feußner			
Angebotshäufigkeit: jedes Sommersemester Dauer: 1 Semester			
Wiederholbarkeit: Empfohlenes Fachsemester:			

zweimalig	
Maximale Studierendenzahl:	
48	

Course frequency:

each winter semester

twice

10

Number of repeat examinations permitted:

Maximum number of students:

Georg-August-Universität Göttingen		3 C
Module M.Bio.141: General and applied microbiology		3 WLH
Learning outcome, core skills:		Workload:
Evolution und phylogenetisches System, Morphologie	und Zellbiologie,	Attendance time:
Lebensgemeinschaften und symbiontische Beziehung		42 h
Genexpression und molekulare Kontrolle (Transkription	on, Translation); Posttranslationale	Self-study time:
Kontrolle, Proteinstabilität und Proteomics; Genetisch	e Netzwerke; Molekulare Schalter	48 h
und Signaltransduktion; mikrobielle Entwicklungsbiolo		
der wichtigsten Krankheitserreger; Entwicklung neuer antimikrobieller Wirkstoffe;		
die Vielfalt des Stoffwechsels in Bakterien und Archae	· ·	
biotechnologische Anwendungen; industrielle Mikrobi		
Course: Vorlesung: Allgemeine und Angewandte Mikrobiologie (Lecture)		3 WLH
Examination: Written examination (90 minutes)		3 C
Examination requirements:		1
Kenntnisse in Zellbiologie, Biochemie und Genetik prokaryotischer Mikroorganismen		
Admission requirements: Recommended previous knowle		dge:
Kann nicht in Kombination mit Fachmodul M.Bio.101 none		
belegt werden		
Language:	ge: Person responsible for module:	
English Prof. Dr. Jörg Stülke		

Duration:

1 semester[s]

Recommended semester:

Georg-August-Universität Göttingen		3 C
Modul M.Bio.142: Molekulare Genetik und English title: Molecular genetics and microbial cell bio	3 SWS	
Lernziele/Kompetenzen: Vertiefte Kenntnisse der Molekularen Genetik und mikrobielle Zellbiologie an Fallbeispielen von Modellsystemen der molekularen Mykologie (Hefen und filamentöse Pilze). Einarbeitung in ein Thema bis auf die 'Review'-Ebene.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Molekulare Genetik und mikrobielle Zellbiologie (Vorlesung)		3 SWS
Prüfung: Klausur (90 Minuten)		3 C
Prüfungsanforderungen: Kenntnisse in Zellbiologie, Biochemie und Genetik eukaryotischer Mikroorganismen		
Zugangsvoraussetzungen: Kann nicht in Kombination mit Fachmodul M.Bio.102 oder SK-Modul M.Bio172 belegt werden.	 Empfohlene Vorkenntnisse: • Watson, Molecular Biology of the Gene, Pearson, 7th Edition; • Alberts, Molecular Biology of the Cell, Garla 5th Edition 	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Gerhard Braus	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul M.Bio.144: Zell- und Molekularbiologie von Pflanzen- Mikroben-Interaktionen English title: Cellular and molecular biology of plant-microbe interactions		3 SWS
Lernziele/Kompetenzen: Einführung in die Theorie und Methoden der Analyse von Pflanzen-Mikroben- Interaktionen auf zellbiologischer und molekularer Ebene.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Vorlesung: Pflanzen-Mikroben-Interaktionen (Vorlesung)		3 SWS
Prüfung: Klausur (54 Minuten)		
Prüfungsanforderungen: Kenntnis der grundlegenden Konzepte der Pflanzen-Mikroben-Interaktion, Fähigkeit, Ergebnisse aktueller Publikationen auf dem Gebiet der Pflanzen-Mikroben-Interaktion zu verstehen, zu präsentieren und kritisch zu diskutieren.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit Fachmodul M.Bio.104 belegt werden	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Christiane Gatz Prof. Dr. Volker Lipka	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul M.Bio.156: Strukturbiochemie - Schlüsselkompetenzmodul English title: Structural biochemistry		3 SWS
Lernziele/Kompetenzen: Methoden der Strukturbiologie. Struktur und Funktion	Lernziele/Kompetenzen: Methoden der Strukturbiologie, Struktur und Funktion von biologischen Makromolekülen.	
Struktur und Faltung von Proteinen, Struktur-Funktion	, and the second	42 Stunden
und Protein-Nukleinsäure-Komplexe, Struktur-basierte	es Wirkstoff-Design.	Selbststudium:
		48 Stunden
Lehrveranstaltung: Strukturbiochemie (Vorlesung)		3 SWS
Prüfung: Klausur (90 Minuten)		3 C
Prüfungsanforderungen: Kenntnisse von biochemischen und strukturbiochemischen Grundlagen		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
Kann nicht in Kombination mit dem Fachmodul	keine	
M.Bio.106 belegt werden.		
Sprache:	Modulverantwortliche[r]:	
Englisch	Englisch Prof. Dr. Ralf Ficner	
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Oooig / lagaot oiii/oioilat oottiiigoii		3 C 3 SWS
Lernziele/Kompetenzen: Molekulare Biochemie und Biophysik verschiedener Biomolekülklassen, Funktion des pflanzlichen Primär- und Sekundärstoffwechsels, Lipidstoffwechsel, Lipide als Signalmoleküle sowie sekundäre Metabolite und biotechnologische Nutzung und Änderung von Speicherstoffen, Enzyme des Lipidstoffwechsels, moderne biophysikalische Methoden zur Analyse von Biomolekülen.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Biochemie und Biophysik (Vorlesung) Prüfung: Klausur (90 Minuten)		3 SWS 3 C
Prüfungsanforderungen: Kenntnisse über biochemische Grundlagen verschiedener Biomolekülklassen und deren Metabolismus Kenntnisse in Molekülspektroskopie sowie Einblicke in biotechnologische Verfahren unter Verwendung von Pflanzen.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit dem Fachmodul M.Bio.107 belegt werden.	ation mit dem Fachmodul keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Ivo Feußner	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2	
Maximale Studierendenzahl:		

Ocean Assessed Helicage 1994 Office		12.0
Georg-August-Universität Göttingen		3 C 3 SWS
Modul M.Bio.158: Enzymkatalyse und bio	3 3 4 4 5	
Schlüsselkompetenzmodul		
English title: Enzyme catalysis and biological chemis	try	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Katalysemechanismen von Enzymen, Mechanismen	makromolokularar Kompleya	Präsenzzeit:
(Ribosom), Biokatalyse, Kinetik und Thermodynamik	-	42 Stunden
		Selbststudium:
chemische Modellsysteme von Enzymen, Biooligome	ersynthese, Ligandsynthese,	
Ligationstechniken, Array-Technologien		48 Stunden
Aneignung von fundierten Kenntnissen zu aktuellen e	enzymologischen und	
bio(an)organischen Fragestellungen.		
Lehrveranstaltung: Enzymkatalyse und biologisc	he Chemie (Vorlesung)	3 SWS
Prüfung: Klausur (90 Minuten)		3 C
Prüfungsanforderungen:		
Kenntnisse von Enzymmechanismen sowie der kinet		
Analyse biochemischer Reaktionen, Kenntnisse der Synthese von Biooligomeren und		
von Liganden		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
Kann nicht in Kombination mit dem Fachmodul	keine	
M.Bio.108 belegt werden.		
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Kai Tittmann		
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		

		6 C 4 SWS
Lernziele/Kompetenzen: Vertiefte Kenntnisse der Molekularen Genetik und mikrobiellen Zellbiologie an Fallbeispielen von Modellsystemen der molekularen Mykologie (Hefen und filamentöse Pilze). Einarbeitung in ein Thema bis auf die "Review"-Ebene.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Molekulare Genetik und mikrobielle Zellbiologie (Vorlesung) Prüfung: Klausur zum Inhalt der Vorlesung (90 Minuten) [80% der Gesamtnote]; Seminarvortrag (ca. 15 Minuten) [20% der Gesamtnote]		3 SWS
Prüfungsvorleistungen: regelmäßige Teilnahme an Seminar		
Lehrveranstaltung: Molekulare Genetik und mikro	bielle Zellbiologie (Seminar)	1 SWS
Prüfungsanforderungen: Kenntnisse in Zellbiologie, Biochemie und Genetik eukaryotischer Mikroorganismen und in molekularbiologischen, genetischen, zellbiologischen und biochemischen Methoden für eukaryotische Mikroorgansimen. Fähigkeit, wissenschaftliche Publikationen reflektierend zu präsentieren.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit Fachmodule M.Bio.102 oder Schlüsselkompetenzmodul M.Bio.142 belegt werden.	 Empfohlene Vorkenntnisse: Watson, Molecular Biology of Pearson, 7th Edition; Alberts, Molecular Biology of 5th Edition 	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Gerhard Braus	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Bio.176: Strukturbiochemie		4 SWS
English title: Structural biochemistry	English title: Structural biochemistry	
Lernziele/Kompetenzen: Methoden der Strukturbiochemie, Struktur und Funktion von biologischen Makromolekülen, Struktur und Faltung von Proteinen, Struktur-Funktionsbeziehungen, Protein-Protein- und Protein-Nukleinsäure-Komplexe, Struktur-basiertes Wirkstoff- Design, Prinzipien molekularer Erkennung. Kritisches Auseinandersetzen mit aktuellen Themen der Biochemie. Selbstständiges Aneignen von Fachwissen aus Publikationen.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Strukturbiochemie (Vorlesung)		3 SWS
Prüfung: Klausur zum Inhalt der Vorlesung (90 Minuten) [80% der Gesamtnote]; Seminarvortrag (ca. 15 Minuten) [20% der Gesamtnote] Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar		6 C
Lehrveranstaltung: Strukturbiochemie (Seminar)		1 SWS
Prüfungsanforderungen: Kenntnisse von strukturbiochemischen Grundlagen. Kenntnisse über biochemische und analytische Methoden zur Untersuchung von Proteinen und makromolekularen Komplexen. Kenntnisse über ausgewählte Proteine und Proteinkomplexe. Kenntnisse über Grundlagen der Strukturbestimmung und strukturellen Eigenschaften von Proteinen und Nukleinsäuren.		
Fähigkeit, wissenschaftliche Publikationen reflektierend zu präsentieren.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit M.Bio.106 oder M.Bio.156 belegt werden.	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch Modulverantwortliche[r]: Prof. Dr. Ralf Ficner Dr. Achim Dickmanns		
Angebotshäufigkeit: edes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: zweimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul M.Bio.310: Systembiologie English title: Systems biology		12 C 14 SWS
Lernziele/Kompetenzen: Das Modul beschäftigt sich mit der formalen Beschreibung, Modellierung, Analyse und Simulation komplexer Wechselwirkungen zwischen den Komponenten (Moleküle, Zellen, Organe) lebender Systeme auf verschiedenen Abstraktionsebenen. Den Studierenden werden biomolekulare Netzwerke wie metabolische, Signaltransduktions- und genregulatorische Netzwerke vorgestellt. Es werden verschiedene graphen-basierte Abstraktionsmöglichkeiten biomolekularer Interaktionsnetzwerke demonstriert (Entity-Interaction-Graph, Bool'sche Netze, Petri-Netze). Die Studierenden werden in die Grundlagen der Graphentheorie (bis hin zu Pfadanalyse, Clusterkoeffizient, Zentralität etc.) eingeführt und es werden entsprechende Anwendungen auf biomolekulare Netzwerke eingeübt. Den Studierenden werden verschiedene experimentelle Hochdurchsatz-Methoden vorgestellt und deren Anwendung auf biomolekulare Netzwerke aufgezeigt. An ausgewählten Beispielen wird die Simulation molekularer Netzwerke gezeigt.		Arbeitsaufwand: Präsenzzeit: 147 Stunden Selbststudium: 213 Stunden
Lehrveranstaltung: Bioinformatik der Systembiologie (Vorlesung)		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		6 C
Lehrveranstaltung: Bioinformatik der Systembiolo	ogie (Übung)	2 SWS
Lehrveranstaltung: Bioinformatik der Systembiologie (Seminar)		1 SWS
Lehrveranstaltung: Praktikum: Bioinformatik der Systembiologie • 3-wöchiges Blockpraktikum: Modellierung und Analyse biologischer Systeme		9 SWS
Prüfung: Protokoll (max. 10 Seiten) Prüfungsvorleistungen: Seminarvortrag (ca. 30 min), regelmäßige Teilnahme an Übung, Seminar und Praktikum		6 C
Prüfungsanforderungen: Studierende sollten in der Lage sein, biomolekulare Netzwerke zu modellieren, zu analysieren und zu simulieren. Dies erfolgt unter Einbeziehung der Netzwerke Entity-Interaction-Graph, Bool'sche Netze und Petri-Netze. Sie erhalten Kenntnisse in der Graphentheorie und sind in der Lage die erlernten Kenntnisse auf Hochdurchsatzdaten bis hin zur Simulation anzuwenden.		
Zugangsvoraussetzungen: Kann nicht in Kombination mit Schlüsselkompetenzmodul M.Bio.340 belegt werden	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Tim Beißbarth	
Angebotshäufigkeit:	Dauer:	

jedes Sommersemester; verschieden; siehe Lehrveranstaltungen	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen 12 C **12 SWS** Modul M.Bio.323: Einführung in die Bayes'sche Inferenz und Informationstheorie English title: Introduction to Bayesian Statsistics and Information Theory Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden gewinnen einen Überblick über die wichtigsten Konzepte Präsenzzeit: und Anwendungen der Bayes'schen Statistik, insbsondere den Bayes'schen 195 Stunden Wahrscheinlichkeitsbegriff, Parameterschätzung und das bayesianische Äquivalent zum Selbststudium: Konfidenzintervall (Bayesian credible intervals), die Bedeutung und Wahl von a-priori-165 Stunden Wahrscheinlichkeiten basierend auf Vorwissen, sowie Hypothesentests, Modelltests und Markov-Chain-Monte-Carlo-Methoden. Alle Konzepte werden sowohl in Vorlesungen als auch in praktischen Übungsaufgaben am Computer erarbeitet. Das Modul schließt mit einem Ausblick auf die Informationstheorie. Lehrveranstaltung: Introduction to Bayesian Inference and Information Theory 3 SWS (Vorlesung) **1 SWS** Lehrveranstaltung: Classical problems in Bayesian Interference (Seminar) Lehrveranstaltung: Programmierkurs 8 SWS Prüfung: Klausur (90 Minuten) 12 C Prüfungsvorleistungen: regelmäßige Teilnahme, Seminarvortrag Prüfungsanforderungen: Die Studierenden weisen nach, dass sie solide Kenntnisse der Grundlagen des Bayes'schen Wahrscheinlichkeitsbegriffs und der Bayes'schen Statistik aufweisen und einfache klassische Fragestellungen lösen können. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Erfahrung mit mindestens einer Grundlagen der Wahrscheinlichkeitsrechnung Programmiersprache, elementare Computerkenntnisse Sprache: Modulverantwortliche[r]: Prof. Dr. Michael Wibral Englisch Angebotshäufigkeit: Dauer: jedes Wintersemester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 10

3 C Georg-August-Universität Göttingen 2 SWS Modul M.Bio.340: Bioinformatik der Systembiologie (Schlüsselkompetenzmodul) English title: Systems biology Lernziele/Kompetenzen: Arbeitsaufwand:

Das Modul beschäftigt sich mit der formalen Beschreibung, Modellierung, Analyse und Simulation komplexer Wechselwirkungen zwischen den Komponenten (Moleküle, Zellen, Organe) lebender Systeme auf verschiedenen Abstraktionsebenen.

Den Studierenden werden biomolekulare Netzwerke wie metabolische. Signaltransduktions- und genregulatorische Netzwerke vorgestellt. Es werden verschiedene graphen-basierte Abstraktionsmöglichkeiten biomolekularer Interaktionsnetzwerke demonstriert (Entity-Interaction-Graph, Bool'sche Netze, Petri-Netze). Die Studierenden werden in die Grundlagen der Graphentheorie (bis hin zu Pfadanalyse, Clusterkoeffizient, Zentralität etc.) eingeführt. Verschiedene experimentelle Hochdurchsatz-Methoden werden vorgestellt und deren Anwendung auf biomolekulare Netzwerke aufgezeigt.

Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden

Lehrveranstaltung: Vorlesung: Bioinformatik der Systembiologie (Vorlesung)	2 SWS
Prüfung: Mündlich (ca. 30 Minuten)	3 C

Prüfungsanforderungen:

Studierende sollten in der Lage sein, biomolekulare Netzwerke zu modellieren, zu analysieren und zu simulieren. Dies erfolgt unter Einbeziehung der Netzwerke Entity-Interaction-Graph, Bool'sche Netze und Petri-Netze. Sie sind in der Lage Kenntnisse in der Graphentheorie anzuwenden.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Tim Beißbarth
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul M.Bio.372: Matlab in Biopsychology and Neuroscience English title: Matlab in neuroscience		3 C 2 SWS
Lernziele/Kompetenzen: Der Kurs stellt eine allgemeine Einführung in die Grundlagen von Matlab dar, mit einem Focus auf psychophysische und neurowissenschaftliche Anwendungen. Es werden das Wissen und die praktischen Fähigkeiten vermittelt um existierenden Matlab Code zu lesen und selbstständig Matlab Programme zu entwickeln. Der Kurs besteht aus 2 Teilen, eine theoretisch orientierte Vorlesung und ein praktisches Tutorium in dem die wöchentlichen Übungen besprochen werden (je 2h/Woche).		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Matlab: Grundlagen (Vorlesung)		1 SWS
Lehrveranstaltung: Matlab: Vertiefung (Tutorium)		1 SWS
Prüfung: Klausur (60 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme am Tutorium sowie Erarbeitung der Übungsaufgaben Prüfungsanforderungen: Die Studierenden erbringen den Nachweis, dass sie Matlab Code lesen sowie selbst		3 C
Zugangsvoraussetzungen: Voraussetzung ist die vorherige Teilnahme an der Vorlesung Biologische Psychologie II/Kognitive Neurowissenschaften oder einer äquivalenten Veranstaltung.	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Alexander Gail	
Angebotshäufigkeit: jedes Sommersemester; erste Semesterhälfte	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Bemerkungen:

20

Die Veranstaltung ist geeignet für hoch motivierte Bachelor- und Master-Studierende der Psychologie, Biologie und Physik, die überdurchschnittliches Forschungsinteresse haben.

One and Assessed Harbon artifly Official and		
Georg-August-Universität Göttingen Module M.Bio.375: Neurorehabilitation Technologies: Introduction		2 C 2 WLH
and Applications		
Learning outcome, core skills: Students are able to describe the state of the art in Neurorehabilitation technologies and understand the basics of the related physiological processes. They are in a position to discuss and evaluate current trends as well as to recognize limitations of available assistive and (neuro)rehabilitation technology. The programming and lab exercises will allow students to address variety of practical Neurorehabilitation challenges.		Workload: Attendance time: 28 h Self-study time: 32 h
Course: Introduction to Neurorehabilitation Technologies (Seminar) Contents: Basic motor physiology Biophysiological signal acquisition and processing Invasive and non-invasive man-machine interfaces Upper limb related technologies Lower limb related technologies Feedback for sensory-motor integration and rehabilitation Selected topics on advanced technologies and their applications		1 WLH
Examination: scientific literature review (5-7 pages), not graded Examination prerequisites: Participation and successful completion of all laboratory exercises.		3 C
Course: Neurorehabilitation Technologies (Exercise) Contents: Biophysiological signal acquisition and processing Prosthesis control Motion analysis		1 WLH
Examination requirements: Students show that they are able to present and critically reflect scientific publications. They are familiar with the basic principles of neurorehabilitation technologies.		
Admission requirements:	Recommended previous knowled basic programming skills (B.Inf.186 basic knowledge in neurophysiolog M.Bio.304)	01/1802)
Language: English	Person responsible for module: Prof. Dr. Arndt Schilling; Dr. Marko Markovic	
Course frequency:	Duration:	

each winter semester1

Number of repeat examinations permitted:

Recommended semester:

twice	
Maximum number of students: 16	

Additional notes and regulations:

Literature suggestions will be handed out at the beginning of each term. However, the students are expected to independently perform literature research on the selected topic.

Georg-August-Universität Göttingen	6 C 4 SWS
Modul M.Biodiv.425: Evolution der Embryophyta	4 5005
English title: Evolution of embryophyta	

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden werden durch Studium, Präsentation und Diskussion aktueller Präsenzzeit: 56 Stunden Fall-studien zu Speziation, Evolutionsgeschichte, chromosomale und genomische Evolution, Reproduktionsbiologie, Merkmalsevolution und Koevolution mit dem Selbststudium: Forschungsstand im Bereich der organismischen Evolution von Embryophyten vertraut 124 Stunden gemacht. Sie erhalten einen Überblick über neue theoretische und methodische Forschungsansätze zum Verständnis der Pflanzenevolution. Sie erwerben die Fähigkeit zur Entwicklung evolutionsbiologischer Hypothesen und können geeignete Modellsysteme und Methoden zur Hypothesenüberprüfung wählen. Die Studierenden erlangen praktische Fähigkeiten in der Präsentation, Interpretation und Diskussion von Ergebnissen (in wissenschaftlichem Englisch). Sie können evolutionäre Prozesse, Hypothesen und Methoden beschreiben und verstehen und Beispiele für Fallstudien zu Landpflanzen geben. Sie sind in der Lage Vorträge in englischer Sprache zu halten und wissenschaftliche Ergebnisse auf Englisch zu diskutieren.

Lehrveranstaltung: Artbildung und Evolution von Landpflanzen (Vorlesung) Angebotshäufigkeit: jedes Wintersemester	2 SWS
Lehrveranstaltung: Pflanzensystematik und Phykologie (Seminar) Angebotshäufigkeit: jedes Semester	2 SWS
Prüfung: Mündlich zum Stoff der Vorlesung (ca. 15 Minuten)	6 C
Prüfungsvorleistungen:	
Seminarvortrag (ca. 45 min)	
Prüfungsanforderungen:	
In der mündlichen Prüfung zeigen die Studierenden ihre Fähigkeiten zum Verständnis	
und in der Diskussion evolutionärer Prozesse und Hypothesen sowie ihr Wissen	
über Fallstudien zu Landpflanzen. Im Seminar sollen sie in wissenschaftlichem	
Englisch Vorträge halten und ihre eigenen Forschungsergebnisse - bevorzugt die der	
Masterarbeit – präsentieren.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Elvira Hörandl
Angebotshäufigkeit: V: jedes Wintersemester, S: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen

Module M.Biodiv.446: Molecular zoology and insect-biotechnology

6 C 8 WLH

Learning outcome, core skills:

The module is aimed at students who want to gain in-depth knowledge of molecular genetic work in theory and practice. Relevant methods and experimental planning are taught theoretically and practically. Selected topics of molecular zoology are treated in depth in lectures and on the basis of current publications. Current developments of molecular methods in pest control and insect biotechnology will be covered. Learning objectives:

Workload:

Attendance time: 112 h Self-study time: 68 h

- Application, experimental strategies and evaluation of different molecular biological methods.
- Gene function analysis in zoology: how to identify relevant genes and how to study their function in model and non-model organisms? (including genetic screens, reverse genetics (RNAi), genome editing (CRISPR/Cas9), transgenesis)
- Knowledge of databases of DNA, protein and gene function
- Identification of orthologous genes in different species
- · Establishment of new molecular genetic model systems for zoological questions
- · Advanced discussion of current research topics in molecular zoology
- Advanced discussion of recent approaches in insect biotechnology using molecular genetic methods (including pest control).

Students should be able to:

- design experimental strategies for the identification and analysis of gene function in non-model organisms
- design the establishment of new molecular genetic model systems
- be able to present and assess scientific questions on selected topics of molecular zoology.

Course: Gene function analysis in diverse animals and applications in pest control (Lecture) Contents: molecular genetic methods; gene fuction analysis; selected topics from molecular zoology; most recent developments in insect biotechnology	2 WLH
Course: Designing experiments to study gene function (Seminar)	2 WLH
Course: Introduction to molecular work and methods for gene function studies (Exercise)	4 WLH
Examination: Oral Presentation (approx. 15 minutes)	6 C
Examination requirements: The students should be able to apply the contents and methods listed as "core skills" to new questions.	

Admission requirements:	Recommended previous knowledge:
none	none

Language: English	Person responsible for module: Prof. Dr. Gregor Bucher
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 8	

Additional notes and regulations:

The modules B.Biodiv.370 and M.Biodiv.446 are mutually exclusive.

Georg-August-Universität Göttingen Module M.Biodiv.479: Introduction to phylogenomics 6 C 6 WLH

Learning outcome, core skills:

The research field of phylogenomics comprises the utilization of genome and transcriptome data for the inference of phylogenetic trees. In this modul students will be introduced to the theoretical and practical knowledge of how to assemble genomes and transcriptomes and their annotation. Moreover, techniques to search for genes in such data will be presented (e.g., BLAST, hidden markov models). Additionally, the students will work with different alignment- and read mapping methods. Based on the assembled datasets different tree reconstruction methods will be conducted (Neighbor Joining, Maximum Parsimony, Maximum Likelihood, Bayesian Inference) and critically discussed. Within an accompanying seminar actual studies in the field of evolutionary genomics are presented and discussed.

Students get an introduction into the Linux environment and the installation of all programs will be done independently. The command line will be mainly used for all analyses. Students will learn to perform genome-scale analyses for the reconstruction of phylogenetic trees. Within a seminar students will present recently published genomic studies in English language. In the last week, datasets will be analysed independently and results will be summarized as poster, which will be presented within a short talk.

Workload:

Attendance time: 84 h

Self-study time: 96 h

Course: Introduction to phylogenomics (Lecture)	1 WLH
Course: Introduction to phylogenomics (Seminar)	1 WLH
Course: Introduction to phylogenomics (Exercise)	4 WLH
Examination: Oral Presentation (approx. 15 minutes)	6 C
Examination prerequisites:	
Short talk (ca. 12-15 minutes)	

Examination requirements:

Knowledge of how to reconstruct phylogenetic trees using genomic and transcriptomics data. Critical discussion of phylogenetic analyses and overview of actual controversies.

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Christoph Bleidorn
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 12	

Georg-August-Universität Göttingen Modul M.Biodiv.491: "Next Generation Sequencing" in der Evolutionsbiologie English title: Next generation sequencing for evolutionary biology

Lernziele/Kompetenzen:

Die Studierenden erlangen Wissen über die verschiedenen Systeme und Methoden des "Next Generation Sequencing". Der Fokus des Moduls richtet sich auf das sich schnell entwickelnde Feld der Bioinformatik und Datenanalyse. Labormethoden werden erklärt und diskutiert. Die Studierenden erlernen die verschiedenen Anwendungsmöglichkeiten von "Next Generation Sequencing" -Daten im evolutionsbiologischen Feld der Tiere und Pflanzen, z.B. biologische Diversität, Merkmalsevolution, Adaptation, Phylogeographie, Populationsgenetik, Hybridisierung, Genotypisierung und QTL (Quantitative Trait Locus)-Analysen. Sie erlangen einen Überblick über die Theorie und gewinnen praktische Erfahrung in diesem neuen Forschungsfeld. Sie erwerben die Kompetenz für evolutionäre Fragestellungen die geeigneten Methoden zu wählen und Hypothesen an Nicht-Modell-Organismen zu testen.

Die Studierenden sind in der Lage die Unterschiede und Vor- und Nachteile zwischen verschiedenen "Next Generation Sequencing"-Methoden zu benennen und geeignete Methoden zu wählen, um bestimmte evolutionäre Fragestellungen an Nicht-Modell-Organismen zu untersuchen. Sie sind in der Lage, die Rohdaten des "Next Generation Sequencing" zu vergleichen und zu analysieren und Gene eines abgeglichenen Genoms oder Transkriptoms zu notieren.

Sie sollen Fallstudien im Bereich des "Next Generation Sequencing" während des Seminars in wissenschaftlichem Englisch präsentieren und diskutieren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

0,5 SWS Lehrveranstaltung: M.Biodiv.491-2 "Next Generation Sequencing": Beispiele botanischer und zoologischer Studien (Seminar) Lehrveranstaltung: M.Biodiv.491-3 Analyse von "Next Generation Sequencing"-3 SWS Daten (Übung) Lehrveranstaltung: M.Biodiv.491-1 "Next Generation Sequencing": Methoden, 0,5 SWS **Datenanalyse und Anwendung** (Vorlesung) 6 C Prüfung: Protokoll (max. 12 Seiten) Prüfungsvorleistungen: Vortrag (max. 20 min.) Prüfungsanforderungen: Kenntnisse der verschiedenen Anwendungen des "Next Generation Sequencing" im Feld der Evolutionsbiologie von Pflanzen und Tieren. Überblick über die Theorie als auch praktische Erfahrung in diesem neuen Forschungsfeld.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Vorlesung: M.Biodiv.425; Grundkenntnisse von Programmen zur Contig-Assemblierung und zum

	multiplen Sequenzabgleich (z.B. Geneious) sind vorteilhaft
Sprache: Englisch	Modulverantwortliche[r]: Dr. Marc Appelhans
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 12	

Georg-August-Universität Göttingen Module M.Biodiv.600: Introduction to phylogenetics 6 C 8 WLH

Learning outcome, core skills:

The aim of phylogenetic systematics is to reconstruct evolutionary relationships of living things. A broad array of methods gives the opportunity to use molecular and morphological data to infer how life has diversified and changed over time. In this modul students will be introduced to the theoretical and practical background of phylogenetics. The course includes an introduction to the description and delimitation of species, DNA barcoding, homology hypotheses, phylogenetic characters and character coding. Additionally, actual computational methods for the reconstruction of phylogenetic trees using molecular and morphological characters will be presented. Based on phylogenetic trees ancestral characters states and/or biogeographical patterns will be inferred.

Based on the introduced methods the students will work independently on projects of exemplar datasets (e.g., diverse groups of insects or annelids, but maybe also from other animal groups). Within a seminar students will present recently published studies in the field of phylogenetic systematics in English language. In the last week, the student will present the results of the datasets they analysed in the form of a poster, which will be accompanied with a short talk.

Workload:

Attendance time: 112 h Self-study time: 68 h

Course: Introduction to phylogenetics (Lecture)	1 WLH
Course: Introduction to phylogenetics (Seminar)	1 WLH
Course: Introduction to phylogenetics (Exercise)	6 WLH
Examination: Oral Presentation (approx. 15 minutes)	6 C
Examination prerequisites:	
Talk (ca. 12-15 minutes)	

Examination requirements:

Basics of phylogenetic systematics, knowledge of how to reconstruct phylogenetic trees using computational methods. Interpretation of phylogenetic trees.

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Christoph Bleidorn Dr. Maria Teresa Aguado Molina
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 12	

Georg-August-Universität Göttingen Module M.CoBi.501: Bioinformatics and its areas of application 8 C 7 WLH

Learning outcome, core skills: Workload: The students will acquire knowledge on a diverse range of topics - both applied as well Attendance time: as purely bioinformatical. For this, there will be research-oriented lectures. 98 h Self-study time: On the applied side, these topics prominently feature - but are not limited to - the 142 h different types of "omics"-approaches available to answer biological questions (genomics, transcriptomics, phylogenomics, metabolomics, proteomics, CHIP-Seq, comparative genomics, phenomics etc). They will learn about feasibility and different approaches to data analysis. Furthermore, students will learn about the digitization of the biological sciences, featuring aspescts such as machine readable phenotypic annotation of morphology, phenotypic database, biological image analysis and more. Finally, the students will acquire knowledge on algorithmic and statistical aspects of bioinformatics, featuring the latest developments and challenges in the development of new bioinformatic tools for life sciences. Course: Bioinformatics and its areas of application (Lecture) 3 WLH Contents: This course provides an appetizer of the various applications and uses of bioinformatics especially those represented by research on Göttingen Campus. Course: IMPRS Genome Science (Lecture) 2 WLH 2 WLH Course: Industry excursion (Excursion) Contents: excursion to companies that make use of bioinformatics/computational biology (and hire bioinformaticians and computational biologists) 8 C Examination: Term Paper (max. 10 pages), not graded **Examination requirements:** Students show that they gained an overview of the diversity of areas of application for

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Jan de Vries
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

algorithmic and applied bioinformatics - including tools for computational biology to solve biological questions - as well as in depth knowledge on a topic of choice for the essay.

Georg-August-Universität Göttingen Module M.CoBi.502: Biology for (bio)informaticians	10 C 6 WLH
Learning outcome, core skills:	Workload:
This course aims to teach the principles of biology required for aspiring bioinformaticians	Attendance time:

This course aims to teach the principles of biology required for aspiring bioinformaticians and computational biologists. The students will learn about the basics of the building blocks of life. An introduction to molecular biology will cover aspects of cell biology, developmental biology, principles of genetics and genome biology, microbiology, protein biology and enzymology, and biochemistry as well as metabolism. Furthermore, they will get a glimpse into biodiversity through an introduction organismal diversity across uni- and multicellular life. This will be contextualized by a basic (molecular) evolutionary biological framework. Finally, students will get a glimpse into how wet laboratory work is carried out.

Attendance time: 84 h Self-study time: 216 h

Course: Biology for (bio)informaticians (Lecture)	4 WLH
Course: Methods in biochemistry and microbiology (Internship)	2 WLH

Course: Biology for (bio)informaticians (Tutorial)	2 WLH
Examination: Written examination (90 minutes)	10 C
Examination prerequisites:	
protocol	

Examination requirements: knowledge of the basics in molecular biology (cell biology, microbiology, genetics, neurobiology, developmental biology, biochemistry) as well as biodiversity (microorganisms, plants, fungi, animals)

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Prof. Dr. Kai Heimel
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen Module M.CoBi.503: Advanced course in Computational Biology

Learning outcome, core skills:	Workload:
The student learns how to independently perform a project in the area of bioinformatics	Attendance time:
and/or computational biology. Objective of this project can be the development,	280 h
evaluation / benchmarking, and analysis of bioinformatic software tools, the automation	Self-study time:
of data processing, and the analysis of biological data with bioinformatic techniques;	80 h
the scientific question addressed can revolve around bioinformatic problems, biological	
phenomena and related fields.	
Course: Lab course: 8 weeks, full-time (Internship)	20 WLH
Course frequency: each semester	
Examination: Oral examination (approx. 30 minutes)	12 C
Examination prerequisites:	
scientific presentation and discussion of obtained results (in form of a protocol)	
Examination requirements:	
independent execution of a project in bioinformatics, proven ability to present own	
results	

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Alle
Course frequency: not specified	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen Module M.CoBi.504: Comparative and Evolutionary Genomics 12 C 14 WLH

Workload: Learning outcome, core skills: Students will acquire an understanding of the usage and usefulness of comparative Attendance time: approaches in analyzing large-scale biological data (foremost sequencing data). This 196 h will entail a hands-on experience with carrying out comparative analyses on genomic Self-study time: data. The students will learn how to analyze, evaluate, and present comparative data. 164 h Furthermore, students will read, present, and critically discus published comparative studies that cover current topics in comparative and evolutionary genomics. Main topics are: comparative genomics: more than evolutionary biology, introduction to evolutionary/ tree thinking, the evolutionary forces that shape genomes, a common language for comparisons (ontologies, pathways and more), reconciliation of gene families and species trees, forward and reverse genetics in light of comparative genomics, major evolutionary transitions gleaned from genomics, phylogenomics, reticulate evolution. **Course: Comparative and Evolutionary Genomics** (Lecture) 4 WLH Contents: principles of evolutionary thinking, evolutionary concepts, analyses and useful software for comparative genomic analyses, phylogenomics, ancestral character state reconstruction, interpretation of data Examination: protocol (10-20 pages; 70% of final grade); oral presentation in 12 C seminar(25 min + 20 min discussuon; 30% of final grade) **Examination prerequisites:** regular attendance and active participation **Examination requirements:** Detailed knowledge on macro-evolutionary processes, evolutionary thinking, methods available to compare genomic data, background on methods to analyse comparative evolutionary questions with genomic data, interpretation of results 3 WLH Course: Genomic insights into evolutionary processes (Seminar) Contents: reading and presenting a published article on comparative and evolutionary genomics, discussion among all participants on the presented work, feedback on presentation,

Admission requirements:	Recommended previous knowledge: none
Language: English	Person responsible for module: Prof. Dr. Jan de Vries
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:

Course: Applying Comparative and Evolutionary Genomics (Internship)

discussions around evolutionary thinking

7 WLH

Maximum number of students:	
15	

Georg-August-Universität Göttingen 6 C 8 WLH Module M.CoBi.505: Population Genomics Workload: Learning outcome, core skills: Students will acquire an understanding on the principles and concepts important for Attendance time: population genomic analyses and inferences. Dry data labs (practicals) will give them 112 h hands-on experience with various population genomic analyses and the software used Self-study time: to conduct them. Critical discussions of the dry labs will help them interpret results 68 h and increase their understanding of key evolutionary processes and methodological assumptions. After passing this course the students should be able to identify when population genomic approaches are useful and be able to set up an outline for a population genomic study. Course: Population genomics (Lecture) 4 WLH Contents: Basic genetics (mutations, alleles, polymorphisms, inheritance), Species concept & types of speciation, Phylogeny & tree-thinking, Evolutionary processes in populations (drift, bottleneck, radiation, migration, selection), Hardy-Weinberg-Equilibrium, High throughput sequencing for population genomics (e.g. genome resequencing, RAD-Seq), Population genetic and genomic analyses (e.g. GWAS, Fst, McDonald-Kreitman test), Coalescence theory and simulations, Application of population genomics **Course: Population genomics** (Exercise) 4 WLH Answering basic questions/problems in genetics and population genetics, tree-thinking and phylogeny, handling of population genetic and genomic datasets, using different types of software to conduct population genetic and population genomic analyses, interpretation, presentation and discussion of the obtained results Examination: written exam (80%), graded worksheets in practicals (20%) 6 C **Examination prerequisites:** regular attendance and fully completed worksheets **Examination requirements:** detailed knowledge on the background and principles of population genetics and genomics, phylogenetics and tree-thinking, methods and calculations to analyse population genetic/genomic problems, how to design a population genomic study, interpretation of population genetic/genomic data and results. Admission requirements: Recommended previous knowledge: none none Language: Person responsible for module: **English** Dr. Sophie de Vries

Duration:

1 semester[s]

Recommended semester:

Course frequency:

twice

each winter semester

Number of repeat examinations permitted:

Maximum number of students:	
not limited	

Georg-August-Universität Göttingen Module M.Inf.1114: Algorithms on Sequences 5 C 4 WLH

Learning outcome, core skills:

We expect that the participants will gain an understanding of classical string-processing tools. They are supposed to understand and be able to use in various situations: classical text algorithms (e.g., pattern matching algorithms, edit distance), classical text indexing data structures (e.g., suffix arrays / trees), and classical combinatorial results that are useful in this context (e.g., periodicity lemmas).

Workload:

4 WLH

Attendance time: 56 h Self-study time: 94 h

Course: Algorithms on Sequences (Lecture, Exercise)

Contents:

This course is an introduction into the theory of stringology, or algorithms on sequences of symbols (also called words or strings). Our main intention is to present a series of basic algorithmic and combinatorial results, which can be used to develop efficient word-processing tools. While the emphasis of the course is on the theoretical side of stringology, we also present a series of applications of the presented concepts in areas like data-compression or computational biology

The main topics our course will cover are: basic combinatorics on words, pattern matching algorithms, data structures for text indexing (suffix arrays, suffix trees), text compression (Huffman encoding, Lempel-Ziv method), detection of regularities in words, algorithms for words with don't care symbols (partial words), word distance algorithms, longest common subsequence algorithms, approximate pattern matching. The presentation of each theoretical topic from the above will be accompanied by a brief discussion on its possible applications.

Literature

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms (3rd Edition), MIT Press, 2009.
- M. Crochemore, C. Hancart, T. Lecroq: Algorithms on Strings, Cambridge University Press, 2007.
- M. Crochemore, W. Rytter: Jewels of Stringology, World Scientific, 2002.
- D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, 1997.

Examination: Oral examination (approx. 20 minutes)

Examination requirements:

basic combinatorics on words, pattern matching algorithms, data structures for text indexing (suffix arrays, suffix trees), text compression (Huffman encoding, Lempel-Ziv method), detection of regularities in words, algorithms for words with don't care symbols (partial words), word distance algorithms, longest common subsequence algorithms, approximate pattern matching

5 C

Language:	Person responsible for module:	
none	none	
Admission requirements:	Recommended previous knowledge:	

English	Prof. Dr. Florin Manea
Course frequency: irregular	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 50	

Georg-August-Universität Göttingen	6 C		
Modul M.Inf.1142: Semantic Web	4 SWS		
English title: Semantic Web			
Lernziele/Kompetenzen:	Arbeitsaufwand:		
Die Studierenden kennen die theoretischen Grundlagen sowie technischen Konzepte		Präsenzzeit:	
des Semantic Web. Sie können den Nutzen ur	des Semantic Web. Sie können den Nutzen und die Grenzen der verwendeten		
Technologien einschätzen und in realen Szena	arien abwägen. Sie sehen an einigen	Selbststudium:	
Beispielen, wo aktuelle wissenschaftliche Fragestellungen ansetzen.		124 Stunden	
Lehrveranstaltung: Semantic Web (Vorlesung, Übung)		4 SWS	
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.)		6 C	
Prüfungsanforderungen:			
Kenntnisse der theoretischen Grundlagen und			
Web; Fähigkeit zum Abschätzen des Nutzens und der Grenzen der verwendeten			
Technologien; Fähigkeit zur Abwägung realer Szenarien; Fähigkeit zum Nachvollziehen			
wissenschaftlicher Fragestellungen und Vorgehensweisen.			
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:		
Datenbanken, Formale Systeme	M.Inf.1243	M.Inf.1243	
Sprache:	Modulverantwortliche[r]:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Wolfgang May		
Angebotshäufigkeit:	Dauer:		
unregelmäßig	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	Empfohlenes Fachsemester:	
zweimalig			
Maximale Studierendenzahl:			
50			

Georg-August-Universität Göttingen Module M.Inf.1232: Parallel Computing

6 C 4 WLH

Learning outcome, core skills:

Successfully completing the module, students are able to:

- · define and describe the benefit of parallel computing
- specify the classification of parallel computers (Flyn classification)
- analytically evaluate the performance of parallel computing approaches (scaling/ performance models)
- know the parallel hardware and performance improvement approaches (cache coherence, pipeline, etc.)
- · know the interconnects and networks and their role in parallel computing
- understand and develop sample parallel programs using different paradigms and development environments (e.g., shared memory and distributed models)
- expose to some applications of Parallel Computing through hands-on exercises

Workload:

Attendance time: 56 h

Self-study time:

124 h

Course: Parallel Computing (Lecture, Exercise)

Contents:

Successfully completing the lecture, students are able to:

- define and describe the benefit of parallel computing and identify the role of software and hardware in parallel computing
- specify the Flynn classification of parallel computers (SISD, SIMD, MIMD)
- analytically evaluate the performance of parallel computing approaches (Scaling/ Performance models)
- understand the different architecture of parallel hardware and performance improvement approaches (e.g., caching and cache coherence issues, pipeline, etc.)
- · define Interconnects and networks for parallel computing
- architecture of parallel computing (MPP, Vector, Shared memory, GPU, Many-Core, Clusters, Grid, Cloud)
- design and develop parallel software using a systematic approach
- parallel computing algorithms and development environments (i.e. shared memory and distributed memory parallel programming)
- write parallel algorithms/programs using different paradigms and environments (e.g., POSIX Multi-threaded programming, OpenMP, MPI, OpenCL/CUDA, MapReduce, etc.)
- get exposed to some applications of Parallel Computing through exercises

References

- An Introduction to Parallel Programming, Peter S. Pacheco, Morgan Kaufmann (MK), 2011, ISBN: 978-0-12-374260-5.
- Designing and Building Parallel Programs, Ian Foster, Addison-Waesley, 1995, ISBN 0-201-57594-9 (Available online).

4 WLH

 Advanced Computer Architecture: Parallelism, Scalability, Programmability, Kai Hwang, Int. Edition, McGraw Hill, 1993, ISBN: 0-07-113342-9. In addition to the mentioned text book, tutorial and survey papers will be distributed in some lectures as extra reading metasic. 	
in some lectures as extra reading material.	
Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	6 C
Examination requirements:	
Parallel programming; Shared Memory Parallelism; Distributed Memory Parallelism,	
Single Instruction Multiple Data (SIMD); Multiple Instruction Multiple Data (MIMD);	
Hypercube; Parallel interconnects and networks; Pipelining; Cache Coherence;	
Parallel Architectures; Parallel Algorithms; OpenMP; MPI; Multi-Threading (pthreads);	
Heterogeneous Parallelism (GPGPU, OpenCL/CUDA)	

Admission requirements: • Data structures and algorithms • Programming in C/C++	Recommended previous knowledge:
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 50	

15

Georg-August-Universität Göttingen Modul M.Inf.1501: Data Mining in der Bioinformatik		6 C 4 SWS
English title: Data Mining in Bioinformatics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden lernen Methoden zur Analyse mehr	dimensionaler Daten, die eine	Präsenzzeit:
entscheidende Rolle bei der Erforschung biologischer	Systeme spielen. Ziel ist das	56 Stunden
Verständnis der besonderen Eigenschaften von hoch		Selbststudium:
statistischen Methoden mit denen Strukturen in komp	, ,	124 Stunden
werden können. Kriterien für die Auswahl und Anwen		
sollen theoretisch und praktisch nachvollzogen werden.		
Lehrveranstaltung: Data Mining in der Bioinformatik (Vorlesung)		2 SWS
Lehrveranstaltung: Rechnerübung zu Data Mining in der Bioinformatik (Blockveranstaltung)		2 SWS
Prüfung: Mündlich (ca. 20 Minuten)		6 C
Prüfungsanforderungen: Die Studierenden sollen nach Abschluss des Moduls in der Lage sein, Methoden zur Analyse von komplexen Daten selbständig zu verstehen und anzuwenden, sowie die Grenzen der Anwendbarkeit kritisch zu beurteilen.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	•
keine	Algorithmen der Bioinformatik, Main der Bioinformatik	schinelles Lernen
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Dr. Peter Meinicke	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Inf.1504: Algorithmen der Bioinformatik II English title: Algorithms in Bioinformatics II		4 SWS
Lernziele/Kompetenzen: Die Studierenden erlernen Algorithmen zur Clusteranalyse und zur Analyse von RNA-Strukturen, Genvorhersage bei Eukaryoten, Mustererkennung auf Sequenzen und fortgeschrittene Methoden des Sequenzalignments.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Algorithmen der Bioinformatik II (Vorlesung, Übung)		4 SWS
Prüfung: Mündlich (ca. 20 Minuten)		6 C
Prüfungsanforderungen: Die Studierenden sollen nach Absolvierung des Moduls befähigt sein, bekannte Verfahren aus der Informatik für bioinformatische Fragestellungen anzuwenden und die Grenzen der Anwendbarkeit kritisch zu beurteilen.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundlegende Kenntnisse aus den Bereichen Algorithmen der Bioinformatik, Maschinelles Lern in der Bioinformatik und Molekularbiologie	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

6 C Georg-August-Universität Göttingen 4 WLH Module M.Inf.2102: Advanced Statistical Learning for Data Science Learning outcome, core skills: Workload: Students will Attendance time: 56 h learn concepts of advanced statistical methods and their scope of applications. Self-study time: These methods comprise the EM algorithm, Markov models, Hidden Markov 124 h Models, Markov chain Monte Carlo. • gain a solid understanding of ensemble learning algorithms. In particular, we will address additive tree approaches like boosting and Random Forest algorithms, as well as methods for ensemble optimization · learn strategies for model assessment and selection such as nested crossvalidation, Monte Carlo validation, or permutation tests. Moreover, this will comprise measures of model quality and robustness. · acquire practical experience in the interpretation of machine learning models and learn required methods for feature selection, importance, stability, and robustness · learn techniques of statistical network inference, their implementation as well as their application to high-dimensional data. 2 WLH **Course: Advanced Statistical Learning for Data Science** (Lecture) Hastie, et al. Elements of Statistical Learning https://web.stanford.edu/~hastie/ ElemStatLearn/ Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml 6 C Examination: Written exam (90 min) or oral exam (approx. 20 min) **Examination prerequisites:** M.Inf.2102.Ex: At least 50% of homework exercises solved. **Examination requirements:** Knowledge of advanced statistical methods, ensemble learning, model assessment, and interpretation as well as statistical network inference. Evaluate their advantages and disadvantages and the ability to implement and interpret the results of these techniques.

Admission requirements:	Recommended previous knowledge:
none	Basic knowledge of linear algebra and probability
	Completion of B.Inf.1236 Machine Learning or
	equivalent
Language:	Person responsible for module:
English	Dr. Anne-Christin Hauschild; Dr. Michael
	Altenbuchinger
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
twice	1 - 3

Course: Statistical Learning in Data Science Exercise (Exercise)

2 WLH

Maximum number of students:	
not limited	

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-QMW.0001: Generalized Regression Learning outcome, core skills: Workload: Upon completion of the module, the students have acquired the following competencies: Attendance time: 56 h · overview on extended regression modelling techniques that allow to analyse data Self-study time: with non-normal responses, 124 h approaches for modeling nonlinear effects in scatterplot smoothing, • introduction to additive models and mixed models for complex regression analyses, • implementation of these approaches using statistical software packages. Course: Generalized Regression (Lecture) 2 WLH Contents: Generalized linear models (binary and Poisson regression, exponential families, maximum likelihood estimation, iteratively weighted least squares regression, tests of hypotheses, confidence intervals, model selection and model checking, categorical regression models), nonparametric smoothing techniques (penalized spline smoothing, local smoothing approaches, general properties of scatterplot smoothers, choosing the smoothing parameter, bivariate and spatial smoothing, generalized additive models), mixed models, quantile regression Course: Generalized Regression (Tutorial) 2 WLH Contents: Generalized linear models (binary and Poisson regression, exponential families, maximum likelihood estimation, iteratively weighted least squares regression, tests of hypotheses, confidence intervals, model selection and model checking, categorical regression models), nonparametric smoothing techniques (penalized spline smoothing, local smoothing approaches, general properties of scatterplot smoothers, choosing the smoothing parameter, bivariate and spatial smoothing, generalized additive models), mixed models, quantile regression 6 C Examination: Written examination (90 minutes) or oral examination (approx. 20 minutes) **Examination requirements:** In the exam, the students demonstrate their ability to choose, fit and interpret extended regression modeling techniques. They show a general understanding of the derived estimates and their interpretation in various contexts. The students are able to implement complex regression models using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercise class. Admission requirements: Recommended previous knowledge: Module B.WIWI-QMW.0001: Linear Models none Language: Person responsible for module: Prof. Dr. Thomas Kneib English

Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 2
Maximum number of students: not limited	

Additional notes and regulations:

The actual examination will be published at the beginning of the semester.

Georg-August-Universität Göttingen 6 C 4 WLH Module M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) Learning outcome, core skills: Workload: Upon completion of the module, the students have acquired the following competencies: Attendance time: 56 h • foundations and general properties of likelihood-based inference in statistics, Self-study time: bayesian approaches to statistical learning and their properties, 124 h implementation of both approaches in statistical software using appropriate numerical procedures. 2 WLH Course: Advanced Statistical Inference (Likelihood & Baye) (Lecture) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 2 WLH Course: Advanced Statistical Inference (Likelihood & Bayes) (Exercise) Contents: The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference, model choice, predictions 6 C Examination: Written examination (90 minutes) or oral examination (approx. 20 minutes) **Examination requirements:** The students demonstrate their general understanding of likelihood-based and Bayesian inference for different types of applications and research questions. They know about the advantages and disadvantages as well as general properties of both approaches, can critically assess the appropriateness for specific problems, and can implement them in statistical software. The exam covers contents of both the lecture and the exercise class. Admission requirements: Recommended previous knowledge: none none Person responsible for module: Language: Prof. Dr. Thomas Kneib English

Duration:

1 semester[s]

Course frequency:

every year

Number of repeat examinations permitted: twice	Recommended semester: 1 - 2
Maximum number of students: not limited	
Additional notes and regulations: The actual examination will be published at the beginning of the semester.	

6 C Georg-August-Universität Göttingen 4 WLH Module M.iPAB.0003: Statistical genetics, breeding informatics and experimental design Learning outcome, core skills: Workload: Novel biotechnological methods allow the production of very large data sets (gene Attendance time: sequences, genotypes, transcriptomes) at decreasing costs. Students learn about 56 h statistical and computational methods to use these records for breeding issues. Self-study time: Furthermore, the main experimental designs to plan, implement, and evaluate targeted 124 h and efficient experiments for data generation will be treated. 4 WLH Course: Statistical genetics, breeding informatics and experimental design (Lecture, Exercise) Contents: · Gene Expression Analysis · Genome-wide association analysis · QTL mapping · Statistical hypothesis testing · Regression methods · Analysis of variance · Multiple testing Experimental designs (block designs, randomized designs, Latin squares) · Sample size estimation Introduction to programming · Fundamentals of databases Literature: Andrea Foulkes: Applied Statistical Genetics with R 6 C **Examination: Written examination (60 minutes) Examination requirements:** Profound knowledge of statistics and informatics methods to use them for breeding issues.

Admission requirements:	Recommended previous knowledge: Basics in statistics and genetics
Language: English	Person responsible for module: Prof. Dr. Armin Schmitt
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	

Georg-August-Universität Göttingen		3 C
Module M.iPAB.0014: Data Analysis with R		2 WLH
Learning outcome, core skills:		Workload:
The students will be able to use methods provided b	by the statistical package R to	Attendance time:
perform the analysis of data sets that are typical in t		28 h
identification, usage and evaluation of online resour	ces (e.g. packages and data sets).	Self-study time: 62 h
Course: Data Analysis with R (Block course, Lecture, Exercise) Contents:		2 WLH
The fundamental concepts of the programming package R will be presented and deepened during practical exercises. Statistical methods will be recapitulated if necessary. Special emphasis is put on visualization methods.		
Literature:		
Wiki-book "R programming" https://en.wikibooks.org/wiki/R_Programming		
"R for Beginners" by Emanuel Paradis https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf		
"R tips" by Paul E. Johnson http://pj.freefaculty.org/R/Rtips.pdf		
Examination: Oral examination (approx. 20 minutes)		3 C
Examination requirements: Ability to analyze typical data sets with the statistical package R and interpretation of the results.		
Admission requirements:	Recommended previous knowle	edge:
none	Knowledge of basic statistics cond	epts
Language:	Person responsible for module:	
English	Prof. Dr. Armin Schmitt	
Course frequency:	Duration:	
each semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	Master: 4	

24

Maximum number of students:

Georg-August-Universität Göttingen Module M.iPAB.0017: Applied Bioinformatics with R

6 C 4 WLH

Learning outcome, core skills:

This module will cover the fundamental concepts of bioinformatics. Topics will include usage of relevant/modern biological databases and tools that are required to perform different analyses. Further, an introduction to multi-omics-data will be given, including genome, trancriptome and proteome analysis. This module aims to teach interested students fundamental analysis skills to evaluate biological data using bioinformatic techniques, and to become proficient in performing such analyses.

Workload:

Attendance time: 56 h Self-study time: 124 h

In more detail, following topics will be treated:

- · Analysis of multi-omics data
- · Standard databases in bioinformatics
- · DNA sequence and genome analysis
- · Variant calling techniques
- · Sequence alignment
- · Gene regulatory network analysis
- Clustering

The lecture will be based on the analysis of real data sets from agricultural research projects as far as possible.

Course: Applied Bioinformatics with R (Lecture, Exercise)

Contents:

The course consists of lectures, exercises and a project work. After the lectures and the exercises the students will have to carry out a project work that must be finished within ten weeks after the end of the lectures. The students as well as the other research groups are welcome to suggest topics, possibly questions related to their master thesis can be treated. The project work should be a concise written report of about ten pages in which one or several of the techniques that were treated in the course are applied.

4 WLH

Examination: Oral examination (approx. 20 minutes, 75%) and term paper (max. 10 | 6 C pages, 25%)

Examination requirements:

- · Knowledge about the fundamental concepts of bioinformatics
- · Knowledge about different databases in bioinformatics
- Analysis of biological data, interpretation and modeling og biological information and applying this to the solution of biological problems in any area involving molecular data.

Admission requirements: none	Recommended previous knowledge: Basic knowledge of R
Language: English	Person responsible for module: Prof. Dr. Armin Schmitt
Course frequency: each winter semester	Duration: 1 semester[s]

Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen Module SK.Bio-NF.7001: Neurobiology

Learning outcome, core skills:

The students should acquire comprehension in form and function of neurons and their anatomical and physiological features (genetics, subcellular organization, resting membrane potential, action potential generation, stimulus conduction, transmitter release, ion channels, receptors, second messenger cascades, axonal transport). The students acquire knowledge of the physiological basics of sensory systems (olfactory, gustatory, acoustic, mechanosensory and visual perception) as well as motor control. Based on this the students educe understanding for the relation between neuronal circuits and simple modes of behavior (central pattern generators, reflexes, and taxis movements). The students should conceptually learn how neuronal connections are modified by experience (cellular mechanisms of learning and memory) and should learn different types of modification of behavior based on experience and neuronal substrates. The students should acquire fundamental insight into the organization and function of brains and autonomous nervous systems of mammals and invertebrates. The neurobiological basis of behavioral control (orientation, communication, circadian rhythm and sleep as well as motivation and metabolism) is explained. The students will learn physiological and cellular mechanisms of aging and of neurodegenerative diseases.

Workload:

Attendance time: 30 h Self-study time: 60 h

Course: Neurobiology (Lecture)	2 WLH
Examination: Written examination (90 minutes)	3 C

Examination requirements:

The students should be able to assess coherence and facts of statements in neurobiology and to answer questions on the structure and function of neurons and neuronal circuits. They should have the ability to describe and compare neuronal basics of behavioral control, their experience-dependent modification and conceptual mechanisms of complex behavior. They should be able to describe and compare physiological mechanisms of sensory perception and different sensory modalities as well as physiological and cellular mechanisms of aging and of neurodegenerative diseases.

Admission requirements:	Recommended previous knowledge: Basic knowledge in Biology
Language: English	Person responsible for module: Prof. Dr. Andre Fiala
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4 - 6
Maximum number of students: 30	

Additional notes and regulations:

Das Modul kann nicht in Kombination mit SK.Bio.7001 belegt werden.

Fakultät für Biologie und Psychologie:

Nach Beschlüssen des Fakultätsrats der Fakultät für Biologie und Psychologie vom 09.03.2022 und 04.05.2022 sowie nach Stellungnahme des Senats vom 18.05.2022 hat das Präsidium der Georg-August-Universität Göttingen am 25.05.2022 die Neufassung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Psychologie: Klinische Psychologie und Psychotherapie" genehmigt (§ 44 Abs. 1 Satz 2; § 41 Abs. 2 Satz 2 NHG; §§ 37 Abs. 1 Satz 3 Nr. 5 b), 44 Abs. 1 Satz 3 NHG).

Die Neufassung des Modulverzeichnisses tritt nach deren Bekanntmachung in den Amtlichen Mitteilungen II zum 01.10.2022 in Kraft.

Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Psychologie: Klinische Psycholgie und Psychotherapie" (Amtliche Mitteilungen I Nr. 25/2022 S. 465)

Module

M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie	.6876
M.KliPPT.1012: Wissenschaftliche Vertiefung: Lernpsychologie	. 6878
M.KliPPT.1013: Wissenschaftliche Vertiefung: Bewusstseinsforschung	6880
M.KliPPT.1014: Wissenschaftliche Vertiefung: Biologische Grundlagen individueller Unterschiede	. 6882
M.KliPPT.1021: Vertiefte Forschungsmethodik	.6884
M.KliPPT.1031: Spezielle Störungs- und Verfahrenslehre der Psychotherapie	6886
M.KliPPT.1041: Angewandte Psychotherapie	.6889
M.KliPPT.1051: Dokumentation, Evaluierung und Organisation psychotherapeutischer Behandlungen	.6891
M.KliPPT.1061: Vertiefte psychologische Diagnostik und Begutachtung	. 6893
M.KliPPT.1071: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil I	.6896
M.KliPPT.1072: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil II	.6899
M.KliPPT.1073: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil III	.6902
M.KliPPT.1081: Selbstreflexion	. 6905
M.KliPPT.2171: Forschungsorientiertes Praktikum II - Psychotherapieforschung	. 6906
M KliPPT 2181: Berufsqualifizierende Tätigkeit III – angewandte Praxis der Psychotherapie	6907

Übersicht nach Modulgruppen

I. Master-Studiengang "Psychologie: Klinische Psychologie und Psychotherapie"

Es müssen insgesamt wenigstens 120 C nach Maßgabe der folgenden Bestimmungen erworben werden.

1. Hochschulische Lehre

a. Pflichtmodule
Es müssen folgende neun Module im Umfang von insgesamt 55 C erfolgreich absolviert werden:
M.KliPPT.1021: Vertiefte Forschungsmethodik (8 C, 6 SWS)
M.KliPPT.1031: Spezielle Störungs- und Verfahrenslehre der Psychotherapie (11 C, 8 SWS)6886
M.KliPPT.1041: Angewandte Psychotherapie (5 C, 4 SWS)6889
M.KliPPT.1051: Dokumentation, Evaluierung und Organisation psychotherapeutischer Behandlungen (3 C, 2 SWS)6891
M.KliPPT.1061: Vertiefte psychologische Diagnostik und Begutachtung (10 C, 6 SWS) 6893
M.KliPPT.1071: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil I (5 C, 4 SWS)
M.KliPPT.1072: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil II (5 C, 4 SWS)
M.KliPPT.1073: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil III (5 C, 4 SWS)
M.KliPPT.1081: Selbstreflexion (3 C, 2 SWS)6905
M.KliPPT.1081: Selbstreflexion (3 C, 2 SWS)
b. WahlpflichtmoduleEs müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert
 b. Wahlpflichtmodule Es müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden: M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie (5 C,
 b. Wahlpflichtmodule Es müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden: M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie (5 C, 4 SWS)
b. Wahlpflichtmodule Es müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden: M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie (5 C, 4 SWS)
b. Wahlpflichtmodule Es müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden: M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie (5 C, 4 SWS)
b. Wahlpflichtmodule Es müssen zwei der folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden: M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie (5 C, 4 SWS)

3. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

4. Schlüsselkompetenzen

Es können als freiwillige Zusatzleistungen Schlüsselkompetenzen im Umfang von bis zu 6 C aus dem universitätsweiten Modulverzeichnis Schlüsselkompetenzen und den Studienangeboten der Zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS) gewählt werden.

Folgende Fachmodule vermitteln überfachliche und berufsfeldorientierte Qualifikationen und Kompetenzen integrativ:

M.KliPPT.1021: Vertiefte Forschungsmethodik (8 C, 6 SWS)
M.KliPPT.1051: Dokumentation, Evaluierung und Organisation psychotherapeutischer Behandlungen (3 C, 2 SWS)
M.KliPPT.1081: Selbstreflexion (3 C, 2 SWS)6905

Georg-August-Universität Göttingen Modul M.KliPPT.1011: Wissenschaftliche Vertiefung: Kognitive Entwicklungspsychologie English title: Scientific specialization: Cognitive Development

Lernziele/Kompetenzen:

Die Studierenden erlernen selbständig Forschungsparadigmen und aktuelle Forschungsergebnisse in einem vertieften psychologischen Grundlagenbereich zu erfassen und zu beurteilen, um sie bei der eigenen beruflichen Tätigkeit zu nutzen.

Die Studierenden erarbeiten sich einen Überblick über zentrale Theorien der kognitiven Entwicklung in der menschlichen Ontogenese und kennen Methoden und Befunde der kognitiven Entwicklungspsychologie. Die Studierenden lernen, begründet mit Bezug auf wissenschaftliche Theorien und empirische Befunde zu argumentieren.

Studienleistungen:

Aktive und regelmäßige Teilnahme an den Seminaren. Regelmäßiges Literaturstudium und Teilnahme an Diskussionen über den angeeigneten Stoff in den Seminaren. In dokumentierten Einzel- oder Gruppenarbeiten mit mündlichem Vortrag erwerben die Studierenden die Kompetenz, wissenschaftliche Inhalte reflektiert und systematisch zu präsentieren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

Lehrveranstaltung: Kognitive Entwicklung I (Seminar)	2 SWS
Lehrveranstaltung: Kognitive Entwicklung II (Seminar)	2 SWS
Prüfung: Mündlich (ca. 20 Minuten)	5 C
Prüfungsvorleistungen:	
Dokumentierte Einzel- oder Gruppenarbeit mit mündlichem Vortrag (ca. 40 Minuten)	
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis über Kenntnisse in Grundlagen, Theorien	
und Methoden der Kognitiven Entwicklungspsychologie sowie über Kenntnisse	
zu zentralen empirischen Befunden. In der Prüfung werden aktuelle Theorien und	
empirische Befunde diskutiert.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Hannes Rakoczy
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	

Bemerkungen:

Entspricht PsychThApprO § 8 Anlage 2, Nr. 1

Georg-August-Universität Göttingen Modul M.KliPPT.1012: Wissenschaftliche Vertiefung: Lernpsychologie English title: Scientific specialization: Learning Science

Lernziele/Kompetenzen:

Die Studierenden erlernen selbständig Forschungsparadigmen und aktuelle Forschungsergebnisse in einem vertieften psychologischen Grundlagenbereich zu erfassen und zu beurteilen, um sie bei der eigenen beruflichen Tätigkeit zu nutzen.

Die Studierenden erwerben Kenntnisse in Grundlagen, Theorien und Methoden der Lernpsychologie mit Fokus auf der Beschreibung typischer vs. atypischer Lernverläufe. Dabei erwerben sie Kenntnisse zu zentralen empirischen Befunden aus den folgenden Bereichen: Grundlegende Theorien und Prozesse des Lernen und Wissenserwerbs, neuronale Grundlagen von Lernprozessen und Teilleistungsstörungen, Minder- und Hochbegabung, typische und atypische Lernprozesse in verschiedenen schulischen Bereichen (Lesen, Schreiben, Rechnen). Die Studierenden lernen, begründet mit Bezug auf wissenschaftliche Theorien und empirische Befunde zu argumentieren.

Studienleistungen:

Aktive und regelmäßige Teilnahme an den Seminaren. Regelmäßiges Literaturstudium und Teilnahme an Diskussionen über den angeeigneten Stoff in den Seminaren. In dokumentierten Einzel- oder Gruppenarbeiten mit mündlichem Vortrag erwerben die Studierenden die Kompetenz, wissenschaftliche Inhalte reflektiert und systematisch zu präsentieren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

Lehrveranstaltung: Grundlagen und Theorien der Lernpsychologie (Seminar)	2 SWS
Lehrveranstaltung: Lern- und Entwicklungsstörungen (Seminar)	2 SWS
Prüfung: Mündlich (ca. 20 Minuten)	5 C
Prüfungsvorleistungen:	
Dokumentierte Einzel- oder Gruppenarbeit mit mündlichem Vortrag (ca. 30 Minuten)	
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis über Kenntnisse in Grundlagen, Theorien	
und Methoden der Lernpsychologie sowie über Kenntnisse zu zentralen empirischen	
Befunden aus den folgenden Bereichen: Theorien und Prozesse des Lernen und	
Wissenserwerbs, neuronale Grundlagen von Lernprozessen und Teilleistungsstörungen,	
Minder- und Hochbegabung, typische und atypische Lernprozesse in verschiedenen	
schulischen Bereichen (Lesen, Schreiben, Rechnen).	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Sascha Schroeder
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	[1
Maximale Studierendenzahl:	
30	
Bemerkungen:	
Entspricht PsychThApprO § 8 Anlage 2, Nr. 1	

Georg-August-Universität Göttingen Modul M.KliPPT.1013: Wissenschaftliche Vertiefung: Bewusstseinsforschung English title: Scientific specialization: Studies of Consciousness

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen selbständig Forschungsparadigmen und aktuelle Präsenzzeit: Forschungsergebnisse in einem vertieften psychologischen Grundlagenbereich zu 56 Stunden erfassen und zu beurteilen, um sie bei der eigenen beruflichen Tätigkeit zu nutzen. Selbststudium: 94 Stunden Die Studierenden erarbeiten sich einen Überblick über zentrale Theorien des Bewusstseins und lernen experimentelle Paradigmen kennen, wie sie in aktuellen Untersuchungen in den Bereichen unbewusste Verarbeitung und Bewusstseinsforschung verwendet werden. Die Studierenden lernen, begründet mit Bezug auf wissenschaftliche Theorien und empirische Befunde zu argumentieren. Studienleistungen: Regelmäßiges Literaturstudium und aktive Teilnahme an Diskussionen über den angeeigneten Stoff in den Seminaren. In mündlichen Kurzreferaten und Diskussionen erwerben die Studierenden die Kompetenz, wissenschaftliche Inhalte reflektiert und systematisch zu präsentieren.

Lehrveranstaltung: Bewusstseinsforschung 1 (Seminar)	2 SWS
Lehrveranstaltung: Bewusstseinsforschung 2 (Seminar)	2 SWS
Prüfung: Mündlich (ca. 20 Minuten)	5 C
Prüfungsvorleistungen:	
Mündliches Kurzreferat	
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis über Kenntnisse in Grundlagen, Theorien	
und Methoden der Bewusstseinsforschung sowie über Kenntnisse zu zentralen	
empirischen Befunden. In der Prüfung werden aktuelle Theorien und empirische	
Befunde diskutiert.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Uwe Mattler
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	

Entspricht PsychThApprO § 8 Anlage 2, Nr. 1

Georg-August-Universität Göttingen

Modul M.KliPPT.1014: Wissenschaftliche Vertiefung: Biologische Grundlagen individueller Unterschiede

English title: Scientific specialization: Biological foundations of individual differences

5 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden erlernen selbständig Forschungsparadigmen und aktuelle Forschungsergebnisse in einem vertieften psychologischen Grundlagenbereich zu erfassen und zu beurteilen, um sie bei der eigenen beruflichen Tätigkeit zu nutzen.

Die Studierenden erwerben Kenntnisse in Grundlagen, Theorien und Methoden der biologischen Zugänge zu psychologischen Unterschieden zwischen Menschen, wie Persönlichkeitseigenschaften, Intelligenz und klinischen Störungen. Dabei erwerben sie Kenntnisse zu zentralen theoretischen Konzepten und empirischen Befunden aus den folgenden Bereichen: Quantitative, molekulare und evolutionären Verhaltensgenetik, evolutionäre Psychologie, Verhaltensendokrinologie und Neurowissenschaften.

Die Studierenden lernen, begründet mit Bezug auf wissenschaftliche Theorien und empirische Befunde zu argumentieren.

Studienleistungen:

Aktive und regelmäßige Teilnahme am Seminar. Regelmäßiges Literaturstudium und Teilnahme an Diskussionen über den angeeigneten Stoff im Seminar. In dokumentierten Einzel- oder Gruppenarbeiten mit mündlichem Vortrag erwerben die Studierenden die Kompetenz, wissenschaftliche Inhalte reflektiert und systematisch zu präsentieren.

Lehrveranstaltung: Biologische Grundlagen individueller Unterschiede I

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

2 SWS

(Vorlesung) Lehrveranstaltung: Biologische Grundlagen individueller Unterschiede II (Seminar) 2 SWS 5 C Prüfung: Mündlich (ca. 20 Minuten) Prüfungsvorleistungen: Dokumentierte Einzel- oder Gruppenarbeit mit mündlichem Vortrag (ca. 30 Min.) oder Moderation einer Seminarsitzung (ca. 90 Min.) Prüfungsanforderungen: Die Studierenden erbringen den Nachweis über Kenntnisse in Grundlagen, Theorien und Methoden biologischer Zugänge zu individuellen Unterschieden sowie über Kenntnisse zu zentralen empirischen Befunden aus den folgenden Bereichen: Zwillings-, Familien- und Adoptionsstudien sowie genomweite Assoziations- und Sequenzierungsstudien zu Persönlichkeit, Intelligenz und Störungsbildern wie Schizophrenie, Autismus und kognitive Störungen, Evolutionsgenetik, evolutionspsychologische Ansätze zu Emotionen, Depression, Geschlechtsunterschieden, Partnerschaft und Sexualität, neuroendokrine Ansätze zu

keine	keine

keine

Empfohlene Vorkenntnisse:

Wettbewerb, Fürsorge und Stress.

Zugangsvoraussetzungen:

Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Lars Penke
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 30	
Bemerkungen: Entspricht PsychThApprO § 8 Anlage 2, Nr. 1	

Georg-August-Universität Göttingen Modul M.KliPPT.1021: Vertiefte Forschungsmethodik English title: Advanced research and statistical methods 8 C (Anteil SK: 2 C) 6 SWS

Lernziele/Kompetenzen:

Die Studierenden

- wenden komplexe und multivariate Erhebungs- und Auswertungsmethoden zur Evaluierung und Qualitätssicherung von Interventionen an,
- nutzen und beurteilen einschlägige Forschungsstudien und deren Ergebnisse für die Psychotherapie,
- bewerten wissenschaftliche Befunde sowie Neu- oder Weiterentwicklungen in der Psychotherapie inhaltlich und methodisch in Bezug auf deren Forschungsansatz und deren Aussagekraft, so dass sie daraus fundierte Handlungsentscheidungen für die psychotherapeutische Diagnostik, für psychotherapeutische Interventionen und für die Beratung ableiten können.

Dabei werden die beiden Wissensbereiche

· multivariate Verfahren und Messtheorie sowie

Lehrveranstaltung: Statistische Methoden (Seminar)

• Evaluierung wissenschaftlicher Befunde und deren Integration in die eigene psychotherapeutische Tätigkeit

abgedeckt.

Studienleistung:

Regelmäßige und aktive Teilnahme an den Seminaren; Bearbeitung und Abgabe wöchentlicher Hausaufgaben in den Seminaren

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

156 Stunden

3 SWS

Lehrveranstaltung: Methoden der Evaluationsforschung (Seminar)	3 SWS
Prüfung: Klausur (120 Minuten)	8 C
Prüfungsvorleistungen:	
Bearbeitung und Abgabe von mind. 75% der wöchentlichen Hausaufgaben in den	
Seminaren	
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis, dass sie Wissen über die Evaluation	
psychologischer Interventionsmaßnahmen, die Berechnung von Metaanalysen und	
komplexen multivariaten Analysen bei unterschiedlichen Studiendesigns erworben	
haben. Ihre Kompetenzen bei der Berechnung dieser Analysen weisen die Studierenden	
durch die praktische Durchführung von Analysen nach. Die Kompetenz zur Nutzung von	
Forschungsstudien weisen sie durch eine angemessene Interpretation von aktuellen	
Forschungsergebnissen nach.	

keine	keine
Sprache:	Modulverantwortliche[r]:

Deutsch	apl. Prof. Dr. York Hagmayer
J	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Bemerkungen:

Maximale Studierendenzahl:

Seminar: 30 Teilnehmer*innen

Entspricht PsychThApprO § 8, Anlage 2 Nr. 2

Georg-August-Universität Göttingen

Modul M.KliPPT.1031: Spezielle Störungs- und Verfahrenslehre der Psychotherapie

English title: Specific mental disorders and their treatment

11 C 8 SWS

Lernziele/Kompetenzen:

Die Studierenden

- erfassen psychologische und neuropsychologische Störungsbilder sowie psychische Aspekte bei körperlichen Erkrankungen bei allen Alters- und Patientengruppen unter Berücksichtigung wissenschaftlicher Erkenntnisse,
- schätzen die Chancen, Risiken und Grenzen der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden wissenschaftlich fundiert und in Abhängigkeit von Lebensalter, Krankheitsbildern, sozialen und Persönlichkeitsmerkmalen, Gewalterfahrungen sowie dem emotionalen und intellektuellen Entwicklungsstand der betroffenen Patientinnen oder Patienten ein,
- erläutern ihre Einschätzung der Chancen, Risiken und Grenzen der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden den Patientinnen und Patienten, anderen beteiligten oder zu beteiligenden Personen, Institutionen oder Behörden,
- wählen auf der Grundlage vorangegangener Diagnostik, Differentialdiagnostik und Klassifikation die dem Befund sowie der Patientin oder dem Patienten angemessenen wissenschaftlich fundierten Behandlungsleitlinien aus,
- entwickeln selbständig wissenschaftlich fundierte Fallkonzeptionen und die entsprechende Behandlungsplanung und beachten die Besonderheiten der jeweiligen Altersgruppe, der jeweiligen Krankheitsbilder und des jeweiligen Krankheitskontextes sowie des emotionalen und intellektuellen Entwicklungsstandes der betroffenen Patientinnen und Patienten,
- erklären auf dem aktuellen Stand der Wissenschaft psychische und psychisch mitbedingte Erkrankungen im Kindes-, Jugend- und Erwachsenenalter einschließlich des höheren Lebensalters.

Dabei werden die Wissensbereiche

- psychotherapeutische Behandlung nach Zielgruppen (Kinder und Jugendliche, Erwachsene, ältere Menschen, Menschen mit Behinderung, Menschen aus unterschiedlichen Kulturkreisen) und die Besonderheiten der Zielgruppen,
- psychotherapeutische Behandlung nach Störungsbildern und die Besonderheiten der Störungsbilder,
- psychotherapeutische Behandlung nach Setting (Einzeltherapie, Paar- und Familientherapie, Gruppentherapie, Notfall- und Krisenintervention) und die Besonderheiten des Settings,

Arbeitsaufwand:

Präsenzzeit: 112 Stunden Selbststudium: 218 Stunden

- psychotherapeutische Behandlung nach wissenschaftlich geprüften und anerkannten Verfahren und Methoden sowie die Besonderheiten der wissenschaftlich geprüften und anerkannten Verfahren und Methoden,
- · Fallkonzeption und Behandlungsplanung,
- Weiterentwicklung bestehender und Entwicklung neuer psychotherapeutischer Verfahren und Methoden

abgedeckt.

Studienleistung:

Regelmäßige und aktive Teilnahme an den Seminaren

Lehrveranstaltung: Diagnostik und Behandlung psychischer Störungen (Vorlesung) Angebotshäufigkeit: jedes Wintersemester	2 SWS
Lehrveranstaltung: Ausgewählte Themen der Störungs- und Verfahrenslehre der Psychotherapie I (Seminar) Angebotshäufigkeit: jedes Wintersemester	2 SWS
Lehrveranstaltung: Ausgewählte Themen der Störungs- und Verfahrenslehre der Psychotherapie II (Seminar) Angebotshäufigkeit: jedes Sommersemester	2 SWS
Lehrveranstaltung: Ausgewählte Themen der Störungs- und Verfahrenslehre der Psychotherapie III (Seminar) Angebotshäufigkeit: jedes Sommersemester	2 SWS
Prüfung: Klausur (60 Minuten) Prüfungsanforderungen:	11 C

Die Studierenden weisen nach, dass sie (a) psychologische und neuropsychologische Störungsbilder sowie psychische Aspekte bei körperlichen Erkrankungen bei allen Alters- und Patientengruppen unter Berücksichtigung wissenschaftlicher Erkenntnisse erfassen können, (b) Chancen, Risiken und Grenzen der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden wissenschaftlich fundiert und in Abhängigkeit von Lebensalter, Krankheitsbild, sozialen und Persönlichkeitsmerkmalen, Gewalterfahrungen sowie emotionalem und intellektuellem Entwicklungsstand der betroffenen Patient*innen einschätzen können, (c) Patient*innen, anderen beteiligten oder zu beteiligenden Personen, Institutionen oder Behörden ihre Einschätzung der Chancen, Risiken und Grenzen der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden erläutern können, (d) auf der Grundlage vorangegangener Diagnostik, Differentialdiagnostik und Klassifikation die dem Befund sowie der Patientin / dem Patienten angemessenen wissenschaftlich fundierten Behandlungsleitlinien

auswählen können, (e) selbständig wissenschaftlich fundierte Fallkonzeptionen und die entsprechende Behandlungsplanung entwickeln können und dabei die Besonderheiten

Krankheitskontextes sowie des emotionalen und intellektuellen Entwicklungsstandes der betroffenen Patient*innen beachten, (f) auf dem aktuellen Stand der Wissenschaft

der jeweiligen Altersgruppe, der jeweiligen Krankheitsbilder und des jeweiligen

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 09.06.2022/Nr. 6

psychische und psychisch mitbedingte Erkrankungen im Kindes-, Jugend- und Erwachsenenalter einschließlich des höheren Lebensalters erklären können.

Sie erbringen den Nachweis, dass sie dieses Wissen auf die folgenden Bereiche anwenden können: (i) psychotherapeutische Behandlung nach Zielgruppen (Kinder und Jugendliche, Erwachsene, ältere Menschen, Menschen mit Behinderung, Menschen aus unterschiedlichen Kulturkreisen) und die Besonderheiten der Zielgruppen, (ii) psychotherapeutische Behandlung nach Störungsbildern und die Besonderheiten der Störungsbilder, (iii) psychotherapeutische Behandlung nach Setting (Einzeltherapie, Paar- und Familientherapie, Gruppentherapie, Notfall- und Krisenintervention) und die Besonderheiten des Settings, (iv) psychotherapeutische Behandlung nach wissenschaftlich geprüften und anerkannten Verfahren und Methoden und Besonderheiten der wissenschaftlich geprüften und anerkannten Verfahren und Methoden, (v) Fallkonzeption und Behandlungsplanung, (vi) Weiterentwicklung bestehender und Entwicklung neuer psychotherapeutischer Verfahren und Methoden.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Timo Brockmeyer
Angebotshäufigkeit:	Dauer:
jedes Semester	2 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	1 - 2

Bemerkungen:

Maximale Studierendenzahl:

Vorlesung: nicht begrenzt

Seminar: 30 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 3

Georg-August-Universität Göttingen 5 C 4 SWS Modul M.KliPPT.1041: Angewandte Psychotherapie English title: Applied Psychotherapy

Lernziele/Kompetenzen:

Die Studierenden

- nehmen die Behandlungsplanung gemäß den unterschiedlichen Settings (Einzeltherapie, Gruppentherapie, Paar- und Familientherapie) und unter Berücksichtigung der Besonderheit von stationärer oder ambulanter Versorgung vor.
- beraten Patientinnen und Patienten sowie andere beteiligte oder zu beteiligende Personen anhand der spezifischen Merkmale und Behandlungsansätze der klinischen Versorgung insbesondere in den Bereichen Psychiatrie, Psychosomatik, Neuropsychologie, Prävention, Rehabilitation oder Forensik und der ambulanten Versorgung angemessen über die spezifischen Indikationen der unterschiedlichen Versorgungseinrichtungen
- überführen Patientinnen und Patienten bei Bedarf angemessen in die weitere Versorgung an der entsprechenden Einrichtung,
- schätzen die Notwendigkeit einer alternativen oder additiven Versorgung durch psychologische, psychosoziale, pädagogische, sozialpädagogische, rehabilitative oder medizinische Interventionen ein und leiten diese Interventionen, sofern erforderlich, in die Wege,
- beachten die für eine Tätigkeit im Gesundheitswesen notwendigen berufs- und sozialrechtlichen Grundlagen einschließlich institutioneller und struktureller Rahmenbedingungen bei der Ausübung von Psychotherapie.

Dabei werden die Wissensbereiche

- Kennzeichnungen des Versorgungssystems unter besonderer Berücksichtigung von psychischen Störungen mit Krankheitswert, bei denen Psychotherapie indiziert ist,
- ambulante Psychotherapie bei Kindern, Jugendlichen, Erwachsenen, älteren Menschen und Menschen mit Behinderung,
- klinische Versorgung insbesondere in den Bereichen Psychiatrie, Psychosomatik, Neuropsychologie oder Forensik,
- psychosoziale Versorgung insbesondere in den Bereichen Prävention, Rehabilitation oder Beratung

abgedeckt.

Studienleistung:

Regelmäßige und aktive Teilnahme am Seminar

Lehrveranstaltung: Angewandte Psychotherapie: Grundlagen (Vorlesung)	2 SWS
Lehrveranstaltung: Angewandte Psychotherapie: Vertiefung (Seminar)	2 SWS

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

94 Stunden

Prüfung: Klausur (60 Minuten)

Prüfungsanforderungen:

Die Studierenden erbringen den Nachweis, dass sie (a) wissen, wie die Behandlungsplanung gemäß den unterschiedlichen Settings (Einzeltherapie, Gruppentherapie, Paar- und Familientherapie) und unter Berücksichtigung der Besonderheit von stationärer oder ambulanter Versorgung vorzunehmen ist, (b) wissen, wie Patient*innen sowie andere beteiligte oder zu beteiligende Personen anhand der spezifischen Merkmale und Behandlungsansätze der klinischen Versorgung insbesondere in den Bereichen Psychiatrie, Psychosomatik, Neuropsychologie, Prävention, Rehabilitation oder Forensik und der ambulanten Versorgung angemessen über die spezifischen Indikationen der unterschiedlichen Versorgungseinrichtungen beraten werden, (c) wissen, wie Patient*innen bei Bedarf angemessen in die weitere Versorgung an der entsprechenden Einrichtung zu überführen sind, (d) die Notwendigkeit einer alternativen oder additiven Versorgung durch psychologische, psychosoziale, pädagogische, sozialpädagogische, rehabilitative oder medizinische Interventionen einschätzen können und wissen, wie diese Interventionen, sofern erforderlich, in die Wege geleitet werden, (e) die für eine Tätigkeit im Gesundheitswesen notwendigen berufs- und sozialrechtlichen Grundlagen einschließlich institutioneller und struktureller Rahmenbedingungen bei der Ausübung von Psychotherapie kennen.

Sie erbringen den Nachweis, dass sie dieses Wissen auf folgende Bereiche anwenden können: (i) Kennzeichnungen des Versorgungssystems unter besonderer Berücksichtigung von psychischen Störungen mit Krankheitswert, bei denen Psychotherapie indiziert ist, (ii) ambulante Psychotherapie bei Kindern, Jugendlichen, Erwachsenen, älteren Menschen und Menschen mit Behinderung, (iii) klinische Versorgung insbesondere in den Bereichen Psychiatrie, Psychosomatik, Neuropsychologie oder Forensik, (iv) psychosoziale Versorgung insbesondere in den Bereichen Prävention, Rehabilitation oder Beratung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	N. N.
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	3

Bemerkungen:

Maximale Studierendenzahl:

Vorlesung: nicht begrenzt

Seminar: 30 TeilnehmerInnen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 4

5 C

Modul M.KliPPT.1051: Dokumentation, Evaluierung und Organisation psychotherapeutischer Behandlungen

English title: Documentation, evaluation and organization of psychotherapeutic treatment

3 C (Anteil SK: 1 C) 2 SWS

Lernziele/Kompetenzen:

Die Studierenden

- dokumentieren ihr psychotherapeutisches Handeln und überprüfen ihr Handeln zur Verbesserung der Behandlungsqualität kontinuierlich,
- beurteilen die Struktur-, Prozess- und Ergebnisqualität psychotherapeutischer und psychosozialer Maßnahmen sowie von Settings,
- evaluieren psychotherapeutisches Handeln sowohl bei Einzelfällen wie auch im Behandlungssetting unter Anwendung wissenschafts-methodischer Kenntnisse und unter Berücksichtigung qualitäts-relevanter Aspekte,
- beurteilen Maßnahmen des kontinuierlichen Qualitätsmanagements sowie Maßnahmen zur kontinuierlichen Qualitätsverbesserung,
- ergreifen selbständig angemessene Maßnahme, um die Patientensicherheit zu gewährleisten,
- · leiten interdisziplinäre Teams.

Dabei werden die Wissensbereiche

- · Qualitätssicherung und Qualitätsmanagement,
- Methoden der Prüfung, zur Sicherung und zur weiteren Verbesserung der psychotherapeutischen Versorgung unter Berücksichtigung der Anforderungen und Rahmenbedingungen des Gesundheitssystems,
- Zuständigkeiten und Kompetenzen der Berufsgruppen im Gesundheitswesen sowie Besonderheiten bei Führungsfunktionen

abgedeckt.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Dokumentation, Evaluierung und Organisation psychotherapeutischer Behandlungen (Vorlesung) Prüfung: Klausur (60 Minuten)

3 C

2 SWS

Prüfungsanforderungen:

Die Studierenden erbringen den Nachweis, dass sie (a) wissen, wie psychotherapeutisches Handeln zu dokumentieren und zur Verbesserung der Behandlungsqualität kontinuierlich zu überprüfen ist, (b) die Struktur-, Prozessund Ergebnisqualität psychotherapeutischer und psychosozialer Maßnahmen sowie Settings beurteilen können, (c) wissen, wie psychotherapeutisches Handeln sowohl bei Einzelfällen wie auch im Behandlungssetting unter Anwendung wissenschaftsmethodischer Kenntnisse und unter Berücksichtigung qualitätsrelevanter Aspekte zu evaluieren ist, (d) Maßnahmen des kontinuierlichen Qualitätsmanagements sowie Maßnahmen zur kontinuierlichen Qualitätsverbesserung beurteilen können, (e)

wissen, wie angemessene Maßnahmen zur Gewährleistung der Patientensicherheit ergriffen werden können und wie interdisziplinäre Teams geleitet werden können. Sie erbringen den Nachweis, dass sie dieses Wissen auf folgende Bereiche anwenden können: (i) Qualitätssicherung und Qualitätsmanagement, (ii) Methoden der Prüfung, zur Sicherung und zur weiteren Verbesserung der psychotherapeutischen Versorgung unter Berücksichtigung der Anforderungen und Rahmenbedingungen des Gesundheitssystems, (iii) Zuständigkeiten und Kompetenzen der Berufsgruppen im Gesundheitswesen sowie Besonderheiten bei Führungsfunktionen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: N. N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2

Bemerkungen:

Entspricht PsychThApprO § 8 Anlage 2, Nr. 5

Modul M.KliPPT.1061: Vertiefte psychologische Diagnostik und Begutachtung

English title: Advanced Psychological Assessment

10 C 6 SWS

Lernziele/Kompetenzen:

Die Studierenden

- entwickeln und bewerten psychodiagnostische Verfahren nach aktuellen testtheoretischen Modellen,
- erstellen Gutachten zu klinisch-psychologischen oder psychotherapeutischen Fragestellungen nach dem allgemeinen Stand der wissenschaftlichen Begutachtung,
- entscheiden nach wissenschaftlichen Kriterien, welche diagnostischen Verfahren unter Berücksichtigung der jeweiligen Fragestellung einschließlich des Lebensalters, der Persönlichkeitsmerkmale, des sozialen Umfeldes sowie des emotionalen und des intellektuellen Entwicklungsstandes von Patientinnen und Patienten situationsangemessen anzuwenden sind, führen diese Verfahren im Einzelfall durch, werten die Ergebnisse aus und interpretieren die Ergebnisse,
- setzen diagnostische Verfahren zur Erkennung von Risikoprofilen, Suizidalität, Anzeichen von Kindeswohlgefährdung sowie von Anzeichen von Gewalterfahrungen k\u00f6rperlicher, psychischer, sexueller Art und ung\u00fcnstiger Behandlungsverl\u00e4ufe angemessen ein,
- erheben und beurteilen systematisch Verlaufs- und Veränderungs-prozesse,
- bearbeiten und bewerten wissenschaftlich gutachterliche Fragestellungen, die die psychotherapeutische Versorgung betreffen, einschließlich von Fragestellungen zu Arbeits-, Berufs- und Erwerbsunfähigkeit sowie zum Grad der Behinderung oder zum Grad der Schädigung,
- erkennen die Grenzen der eigenen diagnostischen Kompetenz und Urteilsfähigkeit und leiten, soweit notwendig, Maßnahmen zur eigenen Unterstützung ein.

Dabei werden die Wissensbereiche

- · diagnostische Modelle und Methoden,
- Methoden der Zielsetzung, des Aufbaus, Verfassens und Präsentierens von psychologischen Gutachten mit Bezug auf die Psychotherapie,
- Beurteilung von Fragestellungen der Arbeits-, Berufs- und Erwerbsunfähigkeit sowie zum Grad der Behinderung oder Schädigung,
- Grundlagen zur Beurteilung von Fragestellungen mit familien- oder strafrechtsrelevanten Inhalten

abgedeckt.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar und Seminar

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 216 Stunden

Lehrveranstaltung: Klinisch-psychologische Begutachtung (Seminar)	3 SWS
Lehrveranstaltung: Klinisch-psychologische Diagnostik (Oberseminar)	3 SWS
Prüfung: Klausur (60 Minuten)	10 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis, dass sie wissen, (a) wie	
psychodiagnostische Verfahren nach aktuellen testtheoretischen Modellen	
entwickelt und bewertet werden, (b) wie Gutachten zu klinisch-psychologischen oder	
psychotherapeutischen Fragestellungen erstellt werden, (c) welche diagnostischen	
Verfahren unter Berücksichtigung der jeweiligen Fragestellung (einschließlich	
des Lebensalters, der Persönlichkeitsmerkmale, des sozialen Umfeldes sowie	
des emotionalen und des intellektuellen Entwicklungsstandes von Patient*innen)	
situationsangemessen anzuwenden sind, (c) wie diese Verfahren im Einzelfall	
durchzuführen und deren Ergebnisse auszuwerten und zu interpretieren sind, (d) wie	
diagnostische Verfahren zur Erkennung von Risikoprofilen, Suizidalität, Anzeichen	
von Kindeswohlgefährdung sowie von Anzeichen von Gewalterfahrungen körperlicher,	
psychischer, sexueller Art und ungünstiger Behandlungsverläufe angemessen	
eingesetzt werden, (e) wie systematisch Verlaufs- und Veränderungsprozesse erhoben	
und bewertet werden, (f) wie wissenschaftlich gutachterliche Fragestellungen, die die	
psychotherapeutische Versorgung betreffen, einschließlich von Fragestellungen zu	
Arbeits-, Berufs- und Erwerbsunfähigkeit sowie zum Grad der Behinderung oder zum	
Grad der Schädigung bearbeitet und bewertet werden, (g) wo die Grenzen der eigenen	
diagnostischen Kompetenz und Urteilsfähigkeit liegen und wie, soweit notwendig,	
Maßnahmen zur eigenen Unterstützung eingelietet werden können.	
Die Studierenden erbringen den Nachweis, dass sie dieses Wissen auf die folgenden	
Bereiche anwenden können: (i) diagnostische Modelle und Methoden, (ii) Methoden	
der Zielsetzung, des Aufbaus, Verfassens und Präsentierens von psychologischen	
Gutachten mit Bezug auf die Psychotherapie, (iii) Beurteilung von Fragestellungen	
der Arbeits-, Berufs- und Erwerbsunfähigkeit sowie zum Grad der Behinderung oder	
Schädigung, (iv) Grundlagen zur Beurteilung von Fragestellungen mit familien- oder	
strafrechtsrelevanten Inhalten.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: N. N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2

Maximale Studierendenzahl:

Oberseminar: 15 Teilnehmer*innen

Seminar: 30 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 6

Modul M.KliPPT.1071: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil I

English title: Applied Psychotherapy Training II - Part I

5 C 4 SWS

Lernziele/Kompetenzen:

Folgende Lernziele/ Kompetenzen beziehen sich auf den Wissensbereich "wissenschaftlich geprüfte und anerkannte Methoden der Psychotherapie".

Die Studierenden

- führen selbständig psychotherapeutische Erstgespräche, Problem- und Zielanalysen sowie die Therapieplanung durch,
- setzen selbständig psychotherapeutische Basistechniken als Grundlage der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden bei Kindern und Jugendlichen sowie bei Erwachsenen unter Berücksichtigung von Besonderheiten der jeweiligen Alters- und Patientengruppe ein,
- führen allgemeine Beratungsgespräche unter Berücksichtigung wissenschaftlich relevanter Erkenntnisse und mittels eines der Situation angemessenen Gesprächsverhalten durch und berücksichtigen Aspekte der partizipativen Entscheidungsfindung,
- klären Patientinnen und Patienten sowie andere beteiligte oder zu beteiligende Personen individuell angemessen über die wissenschaftlichen Erkenntnisse, Störungsmodelle und wissenschaftlich fundierten Behandlungsleitlinien zu den verschiedenen Krankheitsbildern der unterschiedlichen Alters- und Patientengruppen auf,
- führen selbständig psychoedukative Maßnahmen durch,
- erklären Patientinnen und Patienten das Behandlungsrational unterschiedlicher wissenschaftlich geprüfter und anerkannter psychotherapeutischer Verfahren und Methoden individuell angemessen,
- beachten Aspekte der therapeutischen Beziehung, um auftretende Probleme in der Behandlungs- und Veränderungsmotivation von Patientinnen und Patienten sowie von Therapeutinnen und Therapeuten zu erkennen, angemessen zu thematisieren und in geeigneter Weise zu lösen,
- erkennen Notfall- und Krisensituationen einschließlich der Suizidalität oder Anzeichen von Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher, psychischer, sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf selbständig und ergreifen geeignete Maßnahmen, um Schaden für Patientinnen und Patienten abzuwenden.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

Lehrveranstaltung: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der	4 SWS
Psychotherapie: wissenschaftlich geprüfte und anerkannte Methoden der	
Psychotherapie (Oberseminar)	
Prüfung: Klausur (60 Minuten)	5 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis, dass sie - bezogen auf den Wissensbereich	
"wissenschaftlich geprüfte und anerkannte Methoden der Psychotherapie" - (a)	
wissen, wie sie selbständig psychotherapeutische Erstgespräche, Problem- und	
Zielanalysen sowie Therapieplanung durchgeführt werden, (b) erklären können,	
wie psychotherapeutische Basistechniken als Grundlage der unterschiedlichen	
wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren	
und Methoden bei Kindern und Jugendlichen sowie bei Erwachsenen unter	
Berücksichtigung von Besonderheiten der jeweiligen Alters- und Patientengruppe	
eingesetzt werden, (c) beschreiben können, wie allgemeine Beratungsgespräche	
unter Berücksichtigung wissenschaftlich relevanter Erkenntnisse und mittels eines	
der Situation angemessenen Gesprächsverhalten durchgeführt und dabei Aspekte	
der partizipativen Entscheidungsfindung berücksichtigt werden, (d) wissen, wie	
Patientinnen und Patienten sowie andere beteiligte oder zu beteiligende Personen	
individuell angemessen über die wissenschaftlichen Erkenntnisse, Störungsmodelle	
und wissenschaftlich fundierten Behandlungsleitlinien zu den verschiedenen	
Krankheitsbildern der unterschiedlichen Alters- und Patientengruppen aufzuklären	
sind, (e) beschreiben können, wie psychoedukative Maßnahmen durchgeführt werden	
und wie Patient*innen das Behandlungsrational unterschiedlicher wissenschaftlich	
geprüfter und anerkannter psychotherapeutischer Verfahren und Methoden	
individuell angemessen zu erklären ist, (f) wissen, wie Aspekte der therapeutischen	
Beziehung zu berücksichtigen sind, um auftretende Probleme in der Behandlungs-	
und Veränderungsmotivation von Patient*innen sowie von Therapeut*innen zu	
erkennen, angemessen zu thematisieren und in geeigneter Weise zu lösen, (g)	
Notfall- und Krisensituationen einschließlich der Suizidalität oder Anzeichen von	
Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher, psychischer,	
sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf erkennen können und	
wissen, wie geeignete Maßnahmen zu ergreifen sind, um Schaden für Patient*innen	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Timo Brockmeyer
Angebotshäufigkeit: jedes Wintersemester	Dauer: 2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

abzuwenden.

Maximale Studierendenzahl: 4 Gruppen zu je 15 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 7 sowie § 10

Modul M.KliPPT.1072: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil II

English title: Applied Psychotherapy Training II - Part II

5 C 4 SWS

Lernziele/Kompetenzen:

Folgende Lernziele/ Kompetenzen beziehen sich auf den Wissensbereich "Psychotherapie bei Kindern und Jugendlichen".

Die Studierenden

- führen selbständig psychotherapeutische Erstgespräche, Problem- und Zielanalysen sowie die Therapieplanung durch,
- setzen selbständig psychotherapeutische Basistechniken als Grundlage der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden bei Kindern und Jugendlichen sowie bei Erwachsenen unter Berücksichtigung von Besonderheiten der jeweiligen Alters- und Patientengruppe ein,
- führen allgemeine Beratungsgespräche unter Berücksichtigung wissenschaftlich relevanter Erkenntnisse und mittels eines der Situation angemessenen Gesprächsverhalten durch und berücksichtigen Aspekte der partizipativen Entscheidungsfindung,
- klären Patientinnen und Patienten sowie andere beteiligte oder zu beteiligende Personen individuell angemessen über die wissenschaftlichen Erkenntnisse, Störungsmodelle und wissenschaftlich fundierten Behandlungsleitlinien zu den verschiedenen Krankheitsbildern der unterschiedlichen Alters- und Patientengruppen auf,
- führen selbständig psychoedukative Maßnahmen durch,
- erklären Patientinnen und Patienten das Behandlungsrational unterschiedlicher wissenschaftlich geprüfter und anerkannter psychotherapeutischer Verfahren und Methoden individuell angemessen,
- beachten Aspekte der therapeutischen Beziehung, um auftretende Probleme in der Behandlungs- und Veränderungsmotivation von Patientinnen und Patienten sowie von Therapeutinnen und Therapeuten zu erkennen, angemessen zu thematisieren und in geeigneter Weise zu lösen,
- erkennen Notfall- und Krisensituationen einschließlich der Suizidalität oder Anzeichen von Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher, psychischer, sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf selbständig und ergreifen geeignete Maßnahmen, um Schaden für Patientinnen und Patienten abzuwenden.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

Lehrveranstaltung: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der	4 SWS
Psychotherapie: Psychotherapie bei Kindern und Jugendlichen (Oberseminar)	
Prüfung: Klausur (60 Minuten)	5 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis, dass sie - bezogen auf den Wissensbereich	
"Psychotherapie bei Kindern und Jugendlichen" - (a) wissen, wie sie selbständig	
psychotherapeutische Erstgespräche, Problem- und Zielanalysen sowie	
Therapieplanung durchgeführt werden, (b) erklären können, wie psychotherapeutische	
Basistechniken als Grundlage der unterschiedlichen wissenschaftlich geprüften	
und anerkannten psychotherapeutischen Verfahren und Methoden bei Kindern und	
Jugendlichen sowie bei Erwachsenen unter Berücksichtigung von Besonderheiten der	
jeweiligen Alters- und Patientengruppe eingesetzt werden, (c) beschreiben können, wie	
allgemeine Beratungsgespräche unter Berücksichtigung wissenschaftlich relevanter	
Erkenntnisse und mittels eines der Situation angemessenen Gesprächsverhalten	
durchgeführt und dabei Aspekte der partizipativen Entscheidungsfindung berücksichtigt	
werden, (d) wissen, wie Patientinnen und Patienten sowie andere beteiligte oder	
zu beteiligende Personen individuell angemessen über die wissenschaftlichen	
Erkenntnisse, Störungsmodelle und wissenschaftlich fundierten Behandlungsleitlinien	
zu den verschiedenen Krankheitsbildern der unterschiedlichen Alters- und	
Patientengruppen aufzuklären sind, (e) beschreiben können, wie psychoedukative	
Maßnahmen durchgeführt werden und wie Patient*innen das Behandlungsrational	
unterschiedlicher wissenschaftlich geprüfter und anerkannter psychotherapeutischer	
Verfahren und Methoden individuell angemessen zu erklären ist, (f) wissen, wie	
Aspekte der therapeutischen Beziehung zu berücksichtigen sind, um auftretende	
Probleme in der Behandlungs- und Veränderungsmotivation von Patient*innen sowie	
von Therapeut*innen zu erkennen, angemessen zu thematisieren und in geeigneter	
Weise zu lösen, (g) Notfall- und Krisensituationen einschließlich der Suizidalität oder	
Anzeichen von Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher,	
psychischer, sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf erkennen	
können und wissen, wie geeignete Maßnahmen zu ergreifen sind, um Schaden für	
Patient*innen abzuwenden.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: N. N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl:	

Maximale Studierendenzahl: 4 Gruppen zu je 15 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 7 sowie § 10

Modul M.KliPPT.1073: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der Psychotherapie: Teil III

English title: Applied Psychotherapy Training II - Part III

5 C 4 SWS

Lernziele/Kompetenzen:

Folgende Lernziele/ Kompetenzen beziehen sich auf den Wissensbereich "Psychotherapie bei Erwachsenen und älteren Menschen".

Die Studierenden

- führen selbständig psychotherapeutische Erstgespräche, Problem- und Zielanalysen sowie die Therapieplanung durch,
- setzen selbständig psychotherapeutische Basistechniken als Grundlage der unterschiedlichen wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden bei Kindern und Jugendlichen sowie bei Erwachsenen unter Berücksichtigung von Besonderheiten der jeweiligen Alters- und Patientengruppe ein,
- führen allgemeine Beratungsgespräche unter Berücksichtigung wissenschaftlich relevanter Erkenntnisse und mittels eines der Situation angemessenen Gesprächsverhalten durch und berücksichtigen Aspekte der partizipativen Entscheidungsfindung,
- klären Patientinnen und Patienten sowie andere beteiligte oder zu beteiligende Personen individuell angemessen über die wissenschaftlichen Erkenntnisse, Störungsmodelle und wissenschaftlich fundierten Behandlungsleitlinien zu den verschiedenen Krankheitsbildern der unterschiedlichen Alters- und Patientengruppen auf,
- führen selbständig psychoedukative Maßnahmen durch,
- erklären Patientinnen und Patienten das Behandlungsrational unterschiedlicher wissenschaftlich geprüfter und anerkannter psychotherapeutischer Verfahren und Methoden individuell angemessen,
- beachten Aspekte der therapeutischen Beziehung, um auftretende Probleme in der Behandlungs- und Veränderungsmotivation von Patientinnen und Patienten sowie von Therapeutinnen und Therapeuten zu erkennen, angemessen zu thematisieren und in geeigneter Weise zu lösen,
- erkennen Notfall- und Krisensituationen einschließlich der Suizidalität oder Anzeichen von Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher, psychischer, sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf selbständig und ergreifen geeignete Maßnahmen, um Schaden für Patientinnen und Patienten abzuwenden.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

	4 014/0
Lehrveranstaltung: Berufsqualifizierende Tätigkeit II – vertiefte Praxis der	4 SWS
Psychotherapie: Psychotherapie bei Erwachsenen und älteren Menschen	
(Oberseminar)	
Prüfung: Klausur (60 Minuten)	5 C
Prüfungsanforderungen:	
Die Studierenden erbringen den Nachweis, dass sie - bezogen auf den Wissensbereich	
"Psychotherapie bei Erwachsenen und älteren Menschen" - (a) wissen, wie sie	
selbständig psychotherapeutische Erstgespräche, Problem- und Zielanalysen sowie	
Therapieplanung durchgeführt werden, (b) erklären können, wie psychotherapeutische	
Basistechniken als Grundlage der unterschiedlichen wissenschaftlich geprüften	
und anerkannten psychotherapeutischen Verfahren und Methoden bei Kindern und	
Jugendlichen sowie bei Erwachsenen unter Berücksichtigung von Besonderheiten der	
jeweiligen Alters- und Patientengruppe eingesetzt werden, (c) beschreiben können, wie	
allgemeine Beratungsgespräche unter Berücksichtigung wissenschaftlich relevanter	
Erkenntnisse und mittels eines der Situation angemessenen Gesprächsverhalten	
durchgeführt und dabei Aspekte der partizipativen Entscheidungsfindung berücksichtigt	
werden, (d) wissen, wie Patientinnen und Patienten sowie andere beteiligte oder	
zu beteiligende Personen individuell angemessen über die wissenschaftlichen	
Erkenntnisse, Störungsmodelle und wissenschaftlich fundierten Behandlungsleitlinien	
zu den verschiedenen Krankheitsbildern der unterschiedlichen Alters- und	
Patientengruppen aufzuklären sind, (e) beschreiben können, wie psychoedukative	
Maßnahmen durchgeführt werden und wie Patient*innen das Behandlungsrational	
unterschiedlicher wissenschaftlich geprüfter und anerkannter psychotherapeutischer	
Verfahren und Methoden individuell angemessen zu erklären ist, (f) wissen, wie	
Aspekte der therapeutischen Beziehung zu berücksichtigen sind, um auftretende	
Probleme in der Behandlungs- und Veränderungsmotivation von Patient*innen sowie	
von Therapeut*innen zu erkennen, angemessen zu thematisieren und in geeigneter	
Weise zu lösen, (g) Notfall- und Krisensituationen einschließlich der Suizidalität oder	
Anzeichen von Kindeswohlgefährdung, Anzeichen von Gewalterfahrungen körperlicher,	
psychischer, sexueller Art sowie Fehlentwicklungen im Behandlungsverlauf erkennen	
können und wissen, wie geeignete Maßnahmen zu ergreifen sind, um Schaden für	
Patient*innen abzuwenden.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: N. N.
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 15	

Maximale Studierendenzahl: 4 Gruppen zu je 15 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 7 sowie § 10

Georg-August-Universität Göttingen	3 C (Anteil SK: 3
Modul M.KliPPT.1081: Selbstreflexion	2 SWS
English title: self reflection	

Lernziele/Kompetenzen:

Die Studierenden

- reflektieren das eigene psychotherapeutische Handeln, die Stärken und Schwächen der eigenen Persönlichkeit und ihrer Auswirkungen auf das eigene psychotherapeutische Handeln,
- nehmen Verbesserungsvorschläge an,
- nehmen eigene Emotionen, Kognitionen, Motive und Verhaltensweisen im therapeutischen Prozess wahr und regulieren sie, um sie bei der Optimierung von therapeutischen Prozessen zu berücksichtigen oder die Kompetenzen zur Selbstregulation kontinuierlich zu verbessern,
- erkennen Grenzen des eigenen psychotherapeutischen Handelns und leiten geeignete Maßnahmen daraus ab.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar, da das Qualifikationsziel der kritischen Auseinandersetzung mit dem eigenen psychotherapeutischen Handeln nur durch regelmäßige aktive Teilnahme erreicht werden kann.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Selbstreflexion (Oberseminar)	2 SWS
Prüfung: Lerntagebuch (max. 5 Seiten), unbenotet	3 C

Zugangsvoraussetzungen: Erfolgreiches Absolvieren mind. eines Moduls aus M.KliPPT.1071, M.KliPPT.1072 und M.KliPPT.1073: Berufsqualifizierende Tätigkeit II - vertiefte Praxis der Psychotherapie Teile I-III	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: N. N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl: 15	

Bemerkungen:

Maximale Studierendenzahl: 4 Gruppen zu je 15 Teilnehmer*innen

Entspricht PsychThApprO § 8 Anlage 2, Nr. 8

Georg-August-Universität Göttingen Modul M.KliPPT.2171: Forschungsorientiertes Praktikum II Psychotherapieforschung English title: Psychotherapy Research Training

Lernziele/Kompetenzen:

Die Studierenden

- können wesentliche Qualitätskriterien wissenschaftlicher Studien im psychotherapeutischen Kontext bei der Planung, Durchführung, Auswertung und Darstellung von wissenschaftlichen Studien benennen und bei einer eigenen Studiengestaltung umsetzen sowie
- bei der Gestaltung von eigenen wissenschaftlichen Studien Maßnahmen berücksichtigen, die dem Erwerb von psychotherapeutischen Kompetenzen bei teilnehmenden Studientherapeutinnen und Studientherapeuten dienen und zur Qualitätssicherung des Therapeutenverhaltens in Therapiestudien beitragen.

Die Studierenden erwerben die Befähigung auch durch selbständiges Beobachten menschlichen Erlebens und Verhaltens und der menschlichen Entwicklung einschließlich der sozialen Einflüsse und biologischen Komponenten. Den Studierenden wird in diesem Zusammenhang die Berücksichtigung von Forschungsergebnissen in der patientenindividuellen Versorgung und für die Versorgungsinnovation vermittelt.

Studienleistung:

Regelmäßige und aktive Teilnahme am Oberseminar

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden

 Lehrveranstaltung: Psychotherapieforschung (Oberseminar)
 3 SWS

 Prüfung: Forschungstagebuch (max. 10 Seiten), unbenotet
 5 C

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Timo Brockmeyer N.N. N.N.
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl: 15	

Bemerkungen:

Maximale Studierendenzahl: 4 Gruppen zu je 15 Teilnehmer*innen

Entspricht PsychThApprO § 17

Modul M.KliPPT.2181: Berufsqualifizierende Tätigkeit III – angewandte Praxis der Psychotherapie

English title: Applied Psychotherapy Training III

20 C 4 SWS

Lernziele/Kompetenzen:

Die studierenden Personen sind während der "berufsqualifizierenden Tätigkeit III – angewandte Praxis der Psychotherapie" zu befähigen, die Inhalte, die sie in der hochschulischen Lehre während der "berufsqualifizierenden Tätigkeit II – vertiefte Praxis der Psychotherapie" erworbenen haben, in realen Behandlungssettings und im direkten Kontakt mit Patient*innen umzusetzen. Hierzu sind sie unter Anwendung der wissenschaftlich geprüften und anerkannten psychotherapeutischen Verfahren und Methoden an der Diagnostik und der Behandlung von Patient*innen zu beteiligen, indem sie

- 1. aufbauend auf wissenschaftlich fundierten Kenntnissen zu psychischen Funktionen, Störungen und diagnostischen Grundlagen mittels wissenschaftlich geprüfter Methoden Anamnesen und psychodiagnostische Untersuchungen bei mindestens zehn Patient*innen verschiedener Alters- und Patient*innengruppen aus mindestens vier verschiedenen Störungsbereichen mit jeweils unterschiedlichen Schwere- und Beeinträchtigungsgraden durchführen, die mindestens die folgenden Leistungen umfassen: vier Erstgespräche, vier Anamnesen, die per Video aufzuzeichnen und von den studierenden Personen schriftlich zu protokollieren sind, vier wissenschaftlich fundierte psychodiagnostische Untersuchungen, vier Indikationsstellungen oder Risiko- und Prognoseeinschätzungen einschließlich Suizidalitätsabklärung und vier Patient*innenaufklärungen über diagnostische und klassifikatorische Befunde,
- 2. an mindestens einer psychotherapeutischen ambulanten Patient*innenbehandlung im Umfang von mindestens zwölf aufeinanderfolgenden Behandlungsstunden teilnehmen, die unter Verknüpfung von klinisch-praktischen Aspekten mit ihren jeweiligen wissenschaftlichen Grundlagen durchgeführt wird und zu der begleitend diagnostische und therapeutische Handlungen eingeübt werden,
- 3. an mindestens zwei weiteren einzelpsychotherapeutischen Patient*innenbehandlungen, bei denen eine Patientin oder ein Patient entweder ein Kind oder eine Jugendliche oder ein Jugendlicher sein soll, mit unterschiedlicher Indikationsstellung im Umfang von insgesamt mindestens zwölf Behandlungsstunden teilnehmen und dabei die Diagnostik, die Anamnese und die Therapieplanung übernehmen sowie die Zwischen- und Abschlussevaluierung durchführen,
- 4. mindestens drei verschiedene psychotherapeutische Basismaßnahmen wie Entspannungsverfahren, Psychoedukation oder Informationsgespräche mit Angehörigen selbständig, aber unter Anleitung durchführen,
- 5. Gespräche mit bedeutsamen Bezugspersonen bei mindestens vier Patient*innenbehandlungen führen und dokumentieren,
- 6. mindestens zwölf gruppenpsychotherapeutische Sitzungen begleiten,

Arbeitsaufwand:

Präsenzzeit: 600 Stunden Selbststudium:

0 Stunden

Entspricht PsychThApprO § 18

7. selbständig und eigenverantwortlich mindestens ein ausführliches psychologisch-				
psychotherapeutisches Gutachten erstellen, das auss				
dienen darf, und				
8. an einrichtungsinternen Fortbildungen teilnehmen.				
Lehrveranstaltung: Angewandte Praxis der Psychotherapie im (teil-) stationären				
Kontext (Praktikum)				
Die 450 Stunden Präsenzzeit des (teil-) stationären P				
PsychThApprO in mind. sechswöchigen studienbegle				
werden.				
Lehrveranstaltung: Angewandte Praxis der Psych	4 SWS			
Kontext (Praktische Übung)				
Prüfung: Praktikumsbericht (max. 5 Seiten), unbenotet		20 C		
Prüfungsvorleistungen:				
In diesem Modul sind gemäß § 38 PsychThApprO mir				
Anamnesen der Patient*innen aus BQT III anzufertige				
Praktikum sowie die ambulante Praktische Übung ist				
Praktikumsstelle über die aktive Teilnahme und die Al				
übertragenen Aufgaben einzureichen.				
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:			
Erfolgreiches Absolvieren mind. 1 Veranstaltung aus	keine			
M.KliPPT.1071, M.KliPPT.1072 und M.KliPPT.1073:				
"Berufsqualifizierende Tätigkeit II - vertiefte Praxis				
der Psychotherapie" Teil I-III				
Sprache:	Modulverantwortliche[r]:			
Deutsch	Cornelia Bernardi			
Angebotshäufigkeit:	Dauer:			
jedes Semester	1-2 Semester			
Wiederholbarkeit:	Empfohlenes Fachsemester:			
zweimalig	3 - 4			
Bemerkungen:				