Refereed Papers - Statistical Methodology
- Säfken, B., Kneib, T. and Wood, S. (2024)
On the degrees of freedom of the smoothing parameter
Biometrika, to appear. - Henrich, J., van Delden, J., Seidel, D., Kneib, T and Ecker, A. (2024)
TreeLearn: A Comprehensive Deep Learning Method for Segmenting Individual Trees from Forest Point Clouds
Ecological Informatics, to appear - Reuter, A., Thielmann, A., Weisser, C., Säfken, B. and Kneib, T. (2024)
Probabilistic Topic Modelling with Transformer Representations
IEEE Transactions on Neural Networks and Learning Systems, to appear. - Rappl, A.,Carlan, M., Kneib, T., Klokman, S., and Bergherr, E. (2024)
Bayesian Effect Selection in Structured Additive Quantile Regression
Statistical Modelling, to appear - Thielmann, A., Reuter, A., Kneib, T., Rügamer, D. and Säfken, B. (2024)
Interpretable Additive Tabular Transformer Networks
Transactions on Machine Learning Research, to appear - Urdangarin, A., Goicoa, T., Kneib, T., and Ugarte, M.D. (2024)
A simplified spatial+ approach to mitigate spatial confounding in multivariate spatial areal models
Spatial Statistics, to appear - Carlan, M. and Kneib, T. (2024)
Bayesian Discrete Conditional Transformation Models
Statistical Modelling, to appear - Carlan, M., Kneib, T. and Klein, N. (2024)
Bayesian Conditional Transformation Models
Journal of the American Statistical Association, to appear - Dorn, F., Radice, R., Marra, G. and Kneib, T. (2024)
A Bivariate Relative Poverty Line for Time and Income Poverty: Detecting Intersectional Differences Using Distributional Copulas
Review of Income and Wealth, to appear - Lichter, J., Wiemann, P. and Kneib, T. (2024)
Variational Inference: Uncertainty Quantification in Additive Models
AStA Advances in Statistical Analysis, to appear - Wiemann, P., Kneib, T. and Hambuckers, J. (2024)
Using the Softplus Function to Construct Alternative Link Functions in Generalized Linear Models and Beyond
Statistical Papers, to appear - Schmidt, R. and Kneib, T. (2023):
Multivariate Distributional Stochastic Frontier Models
Computational Statistics and Data Analysis, 187, 107796 - Rappl, A., Kneib, T., Lang, S. and Bergherr, E. (2023)
Spatial Joint Models through Bayesian Structured Piece-wise Additive Joint Modelling for Longitudinal and Time-to-Event Data
Statistics and Computing, 33, 135 - Riebl, H., Klein, N. and Kneib, T. (2023)
Modeling Intra-Annual Tree Stem Growth with a Distributional Regression Approach for Gaussian Process Responses
Journal of the Royal Statistical Society, Series C (Applied Statistics), 72, 414-433 - Lado Baleato, Ó., Kneib, T., Cadarso-Suárez, C., Gude, F. (2023)
Multivariate reference regions based on Multivariate Conditional Transformation Models. Application in the measurement of glycemic markers in diabetes
Biometrical Journal, 65, 2200229 - Marques, I. M., Wiemann, P. F .V. and Kneib, T. (2023)
A variance partitioning multi-resolution model for forest inventory data with a fixed plot design
Journal of Agricultural, Biological and Ecological Statistics, 28, 706-725 - Kant, G., Weisser, C., Kneib, T., Säfken, B. (2023)
Topic Model-Machine Learning Classifier Integrations on Geocoded Twitter Data.
In: Phuong, N.H., Kreinovich, V. (eds) Biomedical and Other Applications of Soft Computing. Studies in Computational Intelligence, vol 1045
Springer, Cham. - Rügamer, D., Baumann, P., Kneib, T. and Hothorn, T. (2023)
Probabilistic time series forecasts with autoregressive transformation models
Statistics and Computing, 33, 37 - Thielmann, A., Weißer, C., Kneib, T. and Säfken, B. (2023)
Coherence based Document Clustering
17th IEEE International Conference on Semantic Computing (ICSC) 2023, 9-16 - Martínez-Flórez, G.,Barrera-Causil, C., Kuang, S., Fazlali, Z., Wegener, D., Kneib, T., De Bastiani, F. and Marmolejo-Ramos, F. (2023)
Generalised Exponential-Gaussian distribution: a method for neural reaction time analysis
Cognitive Neurodynamics, 17, 221-237 - Thielmann, A., Weisser, C., Gerloff, C., Python, A., Kneib, T. and Säfken, B. (2023)
Pseudo-Document Simulation for Comparing LDA, GSDMM and GPM Topic Models on Short and Sparse Text using Twitter Data
Computational Statistics, 38, 647-674 - Friedrich, S., Groll, A., Ickstadt, K., Kneib, T., Pauly, M., Rahnenführer, J. and Friede, T. (2023)
Regularization approaches in clinical biostatistics: A review of methods and their applications
Statistical Methods in Medical Research, 32, 425-440 - Kneib, T., Silbersdorff, A. and Säfken, B. (2023)
Rage Against the Mean - A Review of Distributional Regression Approaches
Econometrics and Statistics, 26, 99-123 - Marmolejo-Ramos, F., Tejo, M., Brabec, M., Kuzilek, J., Joksimovic, S., Kovanovic, V., González, J., Kneib, T., Bühlmann, P., Kook, L., Briseño-Sánchez, G., Ospina, R. (2023)
Distributional regression modelling via GAMLSS. An overview through a data set from learning analytics
WIREs Data Mining and Knowledge Discovery, 13, e1479 - Marques, I., Kneib, T. and Klein, N. (2022)
A non-stationary model for spatially dependent circular response data based on wrapped Gaussian processes
Statistics and Computing, 32, 73. - Stadlmann, S. and Kneib, T. (2022)
Interactively visualizing distributional regression models with distreg.vis
Statistical Modelling, 22, 527-545 - Wiemann, P., Klein, N. and Kneib, T. (2022)
Correcting for Sample Selection Bias in Bayesian Distributional Regression Models
Computational Statistics and Data Analysis, 168, 107382 - Martins, R., de Sousa, B., Kneib, T., Hohberg, M., Klein, N., Rodrigues, V. and Duarte, E. (2022)
Is age at menopause increasing? - Comparison of imputation methods to handle missing values
BMC Medical Research Methodology, 22, 187 - Tillmann, A., Kqiku, L., Reinhardt, D., Weisser, C., Säfken, B. and Kneib, T. (2022)
Privacy Estimation on Twitter: Modelling the Effect of Latent Topics on Privacy by Integrating XGBoost, Topic and Generalized Additive Models 2022 IEEE Smart World Congress - Marques, I., Kneib, T. and Klein, N.(2022)
Mitigating Spatial Confounding by Explicitly Correlating Gaussian Random Fields
Environmetrics, 33, e2727 - Hohberg, M., Donat, F., Marra, G. and Kneib, T. (2022)
Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes
Journal of the Royal Statistical Society, Series C (Applied Statistics), 70, 1365-1390 - Adam, T., Mayr, A. and Kneib, T. (2022)
Gradient boosting in Markov-switching generalized additive models for location, scale and shape
Econometrics and Statistics, 22, 3-16 - Klein, N., Hothorn, T. Barbanti, L. and Kneib, T. (2022)
Multivariate Conditional Transformation Models
Scandinavian Journal of Statistics, 49, 116-142 - Hambuckers, J. and Kneib, T. (2021)
Smooth-transition regression models for non-stationary extremes
Journal of Financial Econometrics, nbab005 - Luber, M., Weisser, C., Säfken, B., Silbersdorff, A., Kneib, T. and Kis-Katos, K. (2021)
Identifying Topical Shifts in Twitter Streams: An Integration of Non-Negative Matrix Factorisation, Sentiment analysis and Structural Break Models for Large Scale Data
In Bright J., Giachanou A., Spaiser V., Spezzano F., George A., Pavliuc A. (Eds), Disinformation in Open Online Media. MISDOOM 2021. Springer Lecture Notes in Computer Science - Spiegel, E., Kneib, T., von Gablenz, P. and Otto-Sobotka, F. (2021)
Generalized expectile regression with flexible response function
Biometrical Journal, 63, 1028-1051 - Lasser, J., Manik, D., Silbersdorff, A., Säfken, B. and Kneib, T. (2021)
Introductory data science across disciplines, using Python, case studies and industry consulting projects
Teaching Statistics, 43, S190-S200 - Voncken, L., Kneib, T., Albers, C. J., Umlauf, N. and Timmerman, M. E. (2021)
Bayesian Gaussian distributional regression models for more efficient norm estimation
British Journal of Mathematical and Statistical Psychology, 74, 99-117 - Klein, N, Carlan, M., Kneib, T., Lang, S. and Wagner, H. (2021)
Bayesian Effect Selection in Structured Additive Distributional Regression Models
Bayesian Analysis, 16, 545-573 - Marques, I., Klein,. N. and Kneib, T. (2020)
Non-Stationary Spatial Regression for Modelling Monthly Precipitation in Germany
Spatial Statistics, 40, 100386 - Briseño Sanchez, G., Hohberg, M., Groll, A. and Kneib, T. (2020)
Flexible instrumental variable distributional regression
Journal of the Royal Statistical Society, Series A (Statistics in Society), 183, 1553-1574 - van der Wurp, H., Groll, A., Kneib, T., Marra, G. and Radice, R. (2020)
Generalised joint regression for count data: a penalty extension for competitive settings
Statistics and Computing, 30, 1419-1432 - Santos, B. and Kneib, T. (2020)
Noncrossing structured additive multiple-output Bayesian quantile regression models
Statistics and Computing, 30, 855-869. - Säfken, B. and Kneib, T. (2020)
Conditional Covariance Penalties for Mixed Models
Scandinavian Journal of Statistics, 47, 990-1010 - Klein, N., Malzahn, D., Rosenberger, A., Lozano-Kühne, J., Kneib, T. and Bickeböller, H. (2020)
Candidate gene association analysis for a continuous phenotype with a spike at zero using parent-offspring trios
Journal of Applied Statistics, 47, 2066-2080 - Spiegel, E., Kneib, T. and Otto-Sobotka, F. (2020)
Spatio-Temporal Expectile Regression Models
Statistical Modelling, 20, 386-409 - Michaelis, P., Klein, N. and Kneib, T. (2020)
Mixed Discrete-Continuous Regression - A Novel Approach Based on Weight Functions
Stat, 9(1), e277 - Röder, J., Muntermann, J. and Kneib, T. (2020)
Towards a Taxonomy of Data Heterogeneity
Proceedings of Internationale Tagung Wirtschaftsinformatik, Potsdam, Germany. - Hohberg, M., Pütz, P. and Kneib, T. (2020)
Treatment Effects Beyond the Mean: A Practical Guide Using Distributional Regression
PloS ONE, 15(2): e0226514. . - Klein, N. and Kneib, T. (2020)
Directional Bivariate Quantiles - A Robust Approach based on the Cumulative Distribution Function
AStA Advances in Statistical Analysis, 104, 225-260 - Klein, N., Herwartz, H. and Kneib, T. (2020)
Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales
Journal of Econometrics, 214, 513-539 - Pollice, A., Lasinio, G. J., Rossi, R., Amato, M., Kneib, T. and Lang, S. (2019)
Bayesian Measurement Error Correction in Structured Additive Distributional Regression with an Application to the Analysis of Sensor Data on Soil-Plant Variability
Stochastic Environmental Research and Risk Assessment, 33, 747-763 - Groll, A., Hambuckers, J., Kneib, T. and Umlauf, N. (2019)
LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape
Computational Statistics & Data Analysis, 140, 59-74. - Martini, J. W. R., Rosales, F., Ha, N.-T., Kneib, T., Heise, J. and Wimmer, V. (2019)
Lost in Translation: On the Problem of Data Coding in Penalized Whole Genome Regression with Interactions
G3 - Genes, Genomes, Genetics, 9, 1117-1129 - Thaden, H., Klein, N. and Kneib, T. (2019)
Multivariate Effect Priors in Semiparametric Recursive Bivariate Gaussian Models
Computational Statistics and Data Analysis, 137, 51-66. - Sobotka , F., Salvati, N., Ranallo, M. G. and Kneib, T. (2019)
Adaptive Semiparametric M-Quantile Regression
Econometrics and Statistics, 11, 116-129. - Kneib, T., Klein, N., Lang, S. and Umlauf, N. (2019)
Modular Regression - A Lego System for Building Structured Additive Distributional Regression Models with Tensor Product Interactions (with discussion and rejoinder)
TEST, 28, 1-59. - Spiegel, E., Kneib, T. and Sobotka, F. (2019)
Generalized Additive Models with Flexible Response Functions
Statistics and Computing, 29, 123-138. - Klein, N., Kneib, T., Marra, G., Radice, R., Rokicki, S. and McGovern, M. (2019)
Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes
Statistics in Medicine, 38, 413-436. - Filippou, P., Kneib, T., Marra, G. and Radice, R. (2019)
A Trivariate Additive Regression Model with Arbitrary Link Functions and Varying Correlation Matrix
Journal of Statistical Planning and Inference, 199, 236-248 - Steiner, W., Baumgartner, B., Guhl, D. and Kneib, T. (2019)
Flexible Estimation of Time-Varying Effects from Retail Panel Data
OR Spectrum, 40, 837–873. - Groll, A., Kneib, T., Mayr, A. and Schauberger, G. (2018)
On the dependency of soccer scores – a sparse bivariate Poisson model for the UEFA European football championship 2016
Journal of Quantitative Analysis of Sports, 14, 65-79 - Hambuckers, J., Groll, A. and Kneib, T. (2018)
Understanding the Economic Determinants of the Severity of Operational Losses: A regularized Generalized Pareto Regression Approach
Journal of Applied Econometrics, 33, 898-935 - Guhl, D., Baumgartner, B., Steiner, W. J. and Kneib, T. (2018)
Estimating Time-Varying Parameters in Brand Choice Models: A Semiparametric Approach
International Journal of Research in Marketing, 35, 394-414. - Hohberg, M., Landau, K., Kneib, T., Klasen, S. and Zucchini, W. (2018)
Vulnerability to poverty revisited: Flexible modeling and better predictive performance
Journal of Economic Inequality, 16, 439-454 - Hambuckers, J., Kneib, T., Langrock, R. and Sohn, A. (2018)
A Markov-switching Generalized Additive Model for Compound Poisson Processes, with Applications to Operational Losses Models
Quantitative Finance, 18, 1679-1698 - Thaden, H. and Kneib, T. (2018)
Structural Equation Models for Dealing with Spatial Confounding
The American Statistician, 72, 239-252 - Michaelis, P., Klein, N. and Kneib, T. (2018)
Bayesian Multivariate Distributional Regression with Skewed Responses and Skewed Random Effects
Journal of Computational and Graphical Statistics, 27, 602-611 - Umlauf, N. and Kneib, T. (2018)
A Primer on Bayesian Distributional Regression
Statistical Modelling, 18, 219-247 - Pütz, P. and Kneib, T. (2018)
A Penalized Spline Estimator For Fixed Effects Panel Data Models
AStA Advances in Statistical Analysis, 102, 145-166 - Friedrichs, S., Manitz, J., Amos, C. I., Risch, A., Chang-Claude, J., Heinrich, J., Kneib, T., Bickeböller, H. and Hofner, B. (2017)
Pathway-Based Kernel Boosting for the Analysis of Data from Genome-Wide Association Studies
Computational and Mathematical Methods in Medicine, Article ID 6742763 - Thaden, H., Pata, M. P., Klein, N., Cadarso Suarez, C. and Kneib, T. (2017)
Integrating Multivariate Conditionally Autoregressive Spatial Priors into Recursive Bivariate Models for Analyzing Environmental Sensitivity of Mussels
Spatial Statistics, 22, 419-433 - Duarte, E., de Sousa, B., Cadarso-Suarez, C., Kneib, T. and Rodrigues, V. (2017)
Exploring risk factors in breast cancer screening program data using structured geoadditive models with high order interaction
Spatial Statistics, 22, 403-418. - Spiegel, E., Sobotka, F. and Kneib, T. (2017)
Model Selection in Semiparametric Expectile Regression
Electronic Journal of Statistics, 11, 3008-3038 - Waldmann, E., Taylor-Robinson D., Klein, N., Kneib T., Pressler T., Schmid, M. and Mayr, A. (2017)
Boosting Joint Models for Longitudinal and Time-to-Event Data.
Biometrical Journal, 59, 1104-1121. - Waldmann, E., Sobotka, F. and Kneib, T. (2017)
Bayesian regularisation in geoadditive expectile regression
Statistics and Computing, 27, 1539-1553. - Manitz, J., Harbering, J., Schmidt, M., Kneib, T., and Schöbel, A. (2017)
Source estimation for propagation processes on complex networks with an application to delays in public transportation systems
Journal of the Royal Statistical Society, Series C (Applied Statistics), 66, 521-536. - Langrock, R., Kneib, T. and Michelot, T. (2017)
Markov-switching generalized additive models
Statistics and Computing, 27, 259-270. - Sennhenn-Reulen, H. and Kneib, T. (2016)
Structured Fusion Lasso Penalised Multi-state Models
Statistics in Medicine, 35, 4637-4659. - Klein, N. and Kneib, T. (2016)
Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression
Bayesian Analysis, 11, 1071-1106. - Klein, N. and Kneib, T. (2016)
Simultaneous Inference in Structured Additive Conditional Copula Regression Models: A Unifying Bayesian Approach
Statistics and Computing, 26, 841-860. - Michelot, T., Langrock, R., Kneib, T. and King, R. (2016)
Maximum penalized likelihood estimation in semiparametric mark-recapture-recovery models
Biometrical Journal, 58, 222-239 - Reulen, H. and Kneib, T. (2016)
Boosting Multistate Models
Lifetime Data Analysis, 22,241-262 - Hofner, B., Kneib, T. and Hothorn, T. (2016)
A Unified Framework of Constrained Regression
Statistics and Computing, 26, 1-14 - Buck, C., Kneib, T., Tkaczick, T., Konstabel, K. and Pigeot, I. (2015)
Assessing Opportunities for Physical Activity in the Built Environment of Children: Interrelation between Kernel Density and Neighborhood Scale
International Journal of Health Geographics, 14: 35 - Sohn, A., Klein,. N. and Kneib, T. (2015)
A Semiparametric Analysis of Conditional Income Distributions
Schmollers Jahrbuch - Journal of Applied Science Studies, 135, 13-22 - Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015)
Bayesian Structured Additive Distributional Regression with an Application to Regional Income Inequality in Germany
Annals of Applied Statistics, 9, 1024-1052. - Langrock, R., Kneib, T., Sohn, A., and DeRuiter, S. L. (2015)
Nonparametric inference in hidden Markov models using P-splines
Biometrics, 71, 520-528 - Schulze Waltrup, L., Sobotka, F., Kneib, T. and Kauermann, G. (2015)
Expectile and Quantile Regression - David and Goliath?
Statistical Modelling, 15, 433-456 - Langrock, R., Michelot, T., Sohn, A. and Kneib, T. (2015)
Semiparametric stochastic volatility modelling using penalized splines
Computational Statistics, 30, 517-537 - Waldmann, E. and Kneib, T. (2015)
Variational Approximations in Geoadditive Latent Gaussian Regression: Mean and Quantile Regression
Statistics and Computing, 25, 1247-1263 - Rodriguez Alvarez, M. X., Lee, D.-J., Kneib, T., Durban, M. and Eilers, P. (2015)
Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm
Statistics and Computing, 25, 941-957 - Konrath, S., Fahrmeir, L. and Kneib, T. (2015)
Bayesian Accelerated Failure Time Models Based on Penalized Mixtures of Gaussians: Regularization and Variable Selection
AStA Advances in Statistical Analysis, 99, 259-280 - Klein, N., Kneib, T., Klasen, S., and Lang, S. (2015)
Bayesian Structured Additive Distributional Regression for Multivariate Responses
Journal of the Royal Statistical Society Series C (Applied Statistics), 64, 569-591 - Waldmann, E. and Kneib, T. (2015)
Bayesian Bivariate Quantile Regression
Statistical Modelling, 15, 326-344 - Klein, N., Kneib, T. and Lang, S. (2015)
Bayesian Generalized Additive Models for Location, Scale and Shape for Zero-Inflated and Overdispersed Count Data
Journal of the American Statistical Association, 110, 405-419. - Helms, H.-J., Benda, N., Zinserling, J., Kneib, T. and Friede, T. (2015)
Spline-based procedures for dose-finding studies with active control
Statistics in Medicine, 34, 232-248, - Wiesenfarth, M., Matías Hisgen, C., Kneib, T. and Cadarso-Suarez, C. (2014)
Bayesian Nonparametric Instrumental Variable Regression based on Penalized Splines and Dirichlet Process Mixtures
Journal of Business and Economic Statistics, 32, 468-482 - Klein, N., Denuit, M., Lang, S. and Kneib, T. (2014)
Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape
Insurance: Mathematics and Economics, 55, 225-249 - Duarte, E., de Sousa, B., Cadarso-Suarez, C., Rodrigues, V. and Kneib, T. (2014)
Structured additive regression (STAR) modeling of age of menarche and the age of menopause in breast cancer screening program
Biometrical Journal, 56, 416-427 - Lang, S., Umlauf, N., Wechselberger, P., Hartgen, K. and Kneib, T. (2014)
Multilevel Structured Additive Regression
Statistics and Computing, 24, 223-238 - Manitz, J., Kneib, T., Schlather, M., Helbing, D., Brockmann, D. (2014)
Origin Detection during food-borne Disease Outbreaks - A case study of the 2011 EHEC/HUS Outbreak in Germany
PLOS Currents: Outbreaks, Apr 1. Edition 1. - Säfken, B., Kneib, T., van Waveren, C.-S. and Greven, S. (2014)
A Unifying Approach to the Estimation of the Conditional Akaike Information in Generalized Linear Mixed Models
Electronic Journal of Statistics, 8, 1-301 - Hothorn, T., Kneib, T. and Bühlmann, P. (2014)
Conditional Transformation Models
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 76, 3-27 - Hillmann, J., Kneib, T., Köpcke, L., Juarez Paz, L. M. and Kretzberg, J. (2014)
A Bivariate Cumulative Probit Model for the Comparison of Neuronal Encoding Hypotheses
Biometrical Journal, 56, 23-43 - Freytag, S., Manitz, J., Schlather, M., Kneib, T., Amos, C. I., Risch, A., Chang-Claude, J., Heinrich, J. and Bickeböller, H. (2013)
A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies
Human Heredity, 76, 64-75 - Rodríguez Girondo, M., Kneib, T., Cadarso-Suárez, C. and Abu-Assi, E. (2013)
Model Building in Non Proportional Hazard Regression
Statistics in Medicine, 32, 5301-5314. - Kneib, T. (2013)
Beyond Mean Regression (with discussion and rejoinder)
Statistical Modelling, 13, 275-385 - Scheipl, F., Kneib, T. and Fahrmeir, L. (2013)
Penalized Likelihood and Bayesian Function Selection in Regression Models
AStA Advances in Statistical Analysis, 97, 349-385 - Waldmann, E., Kneib, T., Lang, S., Yue, Y. and Flexeder, C. (2013)
Bayesian Semiparametric Additive Quantile Regression
Statistical Modelling, 13, 223-252 - Sobotka, F., Radice, R., Marra, G. and Kneib, T. (2013)
Estimating the relationship of women's education and fertility in Botswana using an instrumental variable approach to semiparametric expectile regression
Journal of the Royal Statistical Society Series C (Applied Statistics), 62, 25-45 - Sobotka, F., Kauermann, G., Schulze-Waltrup, L. and Kneib, T. (2013)
On Confidence Intervals for Geoadditive Expectile Regression
Statistics and Computing, 23, 135-148 - Hofner, B., Hothorn, T. and Kneib, T. (2013)
Variable Selection and Model Choice in Structured Survival Models
Computational Statistics, 28, 1079-1101.
Preliminary version: Department of Statistics, Technical Report No. 43 - Freytag, S., Amos, C. I., Bickeböller, H., Kneib, T. and Schlather, M. (2012)
Novel Kernel for Correcting Significance Bias in the Logistic Kernel Machine Test with an Application to Rheumatoid Arthritis
Human Heredity, 74, 97-108 - Scheipl, F., Fahrmeir, L. and Kneib, T. (2012)
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Journal of the American Statistical Association, 107, 1518-1532 - Heinzl, F., Kneib, T. and Fahrmeir, L. (2012)
Additive mixed models with Dirichlet process mixture and P-spline priors
Advances in Statistical Analysis, 96, 47-68
Preliminary version: Department of Statistics, Technical Report No. 68 - Hofner, B., Hothorn, T., Schmid, M. and Kneib, T. (2012)
A Framework for Unbiased Model Selection Based on Boosting
Journal of Computational and Graphical Statistics, 20, 956-971.
Preliminary version: Department of Statistics, Technical Report No. 72 - Sobotka, F. and Kneib, T. (2012)
Geoadditive Expectile Regression
Computational Statistics & Data Analysis, 56, Issue 4, 755-767. - Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012)
Generalized additive models for location scale and shape for high-dimensional data - a flexible approach based on boosting
Journal of the Royal Statistical Society Series C (Applied Statistics), 61, 403-427
Preliminary version: Department of Statistics, Technical Report No. 98 - Fenske, N. Kneib, T. and Hothorn, T. (2011)
Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
Journal of the American Statistical Association, 106, 494-510.
Preliminary version: Department of Statistics, Technical Report No. 52 - Kneib, T., Knauer, F. and Küchenhoff, H. (2011)
A general approach to the analysis of habitat selection
Environmental and Ecological Statistics, 18, 1-25. Early Online Version
Preliminary version: Department of Statistics, Technical Report No. 1 - Hofner, B., Kneib, T., Hartl, W. and Küchenhoff, H. (2011)
Building Cox-Type Structured Hazard Regression Models with Time-Varying Effects
Statistical Modelling, 11, 3-24
Preliminary version: Department of Statistics, Technical Report No. 27 - Kneib, T., Konrath, S. and Fahrmeir, L. (2011)
High-dimensional Structured Additive Regression Models: Bayesian Regularisation, Smoothing and Predictive Performance
Journal of the Royal Statistical Society Series C (Applied Statistics), 60, 51-70.
Preliminary version: Department of Statistics, Technical Report No. 46 - Greven, S. and Kneib, T. (2010)
On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models
Biometrika, 97, 773-789.
Preliminary version - Krivobokova, T., Kneib, T. and Claeskens, G. (2010)
Simultaneous Confidence Bands for Penalized Spline Estimators
Journal of the American Statistical Association, 105, 852-863.
Preliminary version - Wiesenfarth, M. and Kneib, T. (2010)
Bayesian Geoadditive Sample Selection Models
Journal of the Royal Statistical Society Series C (Applied Statistics), 59, 381-404. - Cadarso-Suarez, C., Meira-Machado, L., Kneib, T. and Gude, F. (2010)
Flexible hazard ratio curves for continuous predictors in multi-state models: an application to breast cancer data
Statistical Modelling, 10, 291-314. - Fahrmeir, L., Kneib, T. and Konrath, S. (2010)
Bayesian Regularisation in Structured Additive Regression: A Unifying Perspective on Shrinkage, Smoothing and Predictor Selection
Statistics and Computing, 20, 203-219. - Kneib, T., Hothorn, T. and Tutz, G. (2009)
Variable Selection and Model Choice in Geoadditive Regression
Biometrics, 65, 626-634. Supplementary Material
Preliminary version: Department of Statistics, Technical Report No. 3 - Scheipl, F. and Kneib, T. (2009)
Locally Adaptive Bayesian P-Splines with a Normal-Exponential-Gamma Prior
Computational Statistics and Data Analysis, 53, 3533-3552.
Preliminary version: Department of Statistics, Technical Report 22 - Fahrmeir, L. and Kneib, T. (2009)
Propriety of Postersiors in Structured Additive Regression Models: Theory and Empirical Evidence.
Journal of Statistical Planning and Inference, 139, 843-859.
Preliminary version: Discussion Paper 510, SFB 386 - Kneib, T., and Hennerfeind, A. (2008)
Bayesian Semiparametric Multi-State Models
Statistical Modelling, 8, 169-198.
Preliminary version: Discussion Paper 502, SFB 386. - Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. and Zeileis, A. (2008)
Conditional Variable Importance for Random Forests
BMC Bioinformatics, 9:307.
Preliminary version: Department of Statistics, Technical Report No. 23 - Kneib, T., Müller, J. and Hothorn, T. (2008)
Spatial Smoothing Techniques for the Assessment of Habitat Suitability
Environmental and Ecological Statistics, 15, 343-364.
Preliminary version: Discussion Paper 492, SFB 386. - Kneib, T., Baumgartner, B. and Steiner, W. J. (2007)
Semiparametric Multinomial Logit Models for Analysing Consumer Choice Behaviour
AStA Advances in Statistical Analysis, 91, 225-244.
Preliminary version: SFB Discussion Paper 501 - Kneib, T. and Fahrmeir, L. (2007)
A mixed model approach for geoadditive hazard regression
Scandinavian Journal of Statistics, 34, 207-228
Preliminary version: SFB Discussion Paper 400 - Kneib, T. (2006)
Mixed model-based inference in geoadditive hazard regression for interval censored survival times
Computational Statistics and Data Analysis, 51, 777-792.
Preliminary version: SFB Discussion Paper 447. - Kneib, T. and Fahrmeir, L. (2006)
Structured additive regression for categorical space-time data: A mixed model approach.
Biometrics, 62, 109-118.
Supplementary material: SFB DiscussionPaper 431
Preliminary version: SFB Discussion Paper 377 - Fahrmeir, L., Kneib, T. and Lang, S. (2004)
Penalized structured additive regression for space-time data: a Bayesian perspective.
Statistica Sinica, 14, 731-761.
Preliminary version: SFB Discussion Paper 305